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1. Introduction. Let G be a connected reductive algebraic group
over the complex number field C and T be its maximal torus. We denote
the Lie algebras of G and T by g and t, respectively. Let Ox be the
G-orbit containing XBQ under the adjoint action of G on g. Then the
Weyl group W of (G, T) naturally acts on the coordinate ring C[t Π Ox]
of the scheme-theoretic intersection of t and the Zariski closure Ox of Ox.
We consider the following problem due to Kostant, Kraft, DeConcini and
Procesi. (See [1] and [5].)

PROBLEM. Describe C[t Π Ox] as a W-module for each nilpotent orbit

Ox in g.

When x is regular nilpotent, Ox is just the variety N consisting of
all the nilpotent elements in g, and C[t Π N] is isomorphic to the regular
representation of W (Cf. Kostant [4].).

DeConcini and Procesi [1] have shown that for G = GL(n, C),
C[t Π Ox] is isomorphic to the representation induced from the trivial
representation of a certain subgroup of parabolic type. They also natu-
rally identified C[t Π Ox] with a certain representation of W constructed
by Springer [11], [12] (Cf. §2 and §3 below for precise statements.). In
[1] they conjectured that certain explicitly constructed polynomials form
a generator system of the defining ideal of the variety Ox and proved
the above results using these polynomials.

In this note we first give another candidate for a generator system
of the defining ideal of Ox and show that the proof of the results in [1]
can be a little simplified by replacing their polynomials by ours (§2, §3).
Though some of the statements and the arguments in §2 and §3 are
similar to those in [1], we include them for convenience of the readers.

For a general reductive group G the structure of C[t Π Ox] is not
yet clear. We secondly show that for a nilpotent orbit of a certain type
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in g = Sp(2n, C) (the Lie algebra of Sp(2n, C)), C[t n 0x] is also isomorphic
to the representation induced from the trivial representation of a subgroup
of parabolic type (§4).

The first version of this paper contained the explicit descriptions of
C[t Π Ox] for C2, C3 and G2 except for one nilpotent orbit in the case of
G2. We omit them because for C2 and Cs they are already contained in
Kraft [5] and our result is incomlete for G2.

The author expresses his hearty thanks to Professors R. Hotta and
T. Oshima for valuable suggestions. He would also like to thank the
referee for useful suggestions.

2. Structure of C[tf)Om] in the case of GL(n, C). In §2 and §3 we
consider the case G = GL(n, C) and g = M(n, C). Then the set of nilpotent
orbits in g is parametrized by the set of partitions of n. For a partition
σ = (60 ̂  6χ ̂  b2 ^ •) of n we denote by Oσ the nilpotent orbit consisting
of the nilpotent matrices so that the sizes of their Jordan blocks are
given by the δ/s. We set pσ(s) = bn__8 + bn_8+1 + for s = 1, , n.
For x e M(n, C) and s = 1, , n let dz

s(t) be the greatest common divisor
of all the s-minors of the matrix (ί J — x) e M{n, C[i\).

LEMMA l._ (i) xe Oσ if and only if d%t) = tp°{8) for s = 1, , n.
(ii) xeθσ if and only if f°{s) \d%t) for s = 1, - ,n.

PROOF, (i) follows from the theory of elementary divisors. It is
well known that for two partitions σ = (bo^b1^ •) and τ — (b'o^b[ ̂  •)
of n we have Oσ 3 Oτ if and only if b0 ^ b'o, bQ + b^bΌ + b[, . Thus
(ii) follows from (i). q.e.d.

We define a family of polynomials {#£} in the variables xu (1 <̂  i, j ^ n)
to be the set of the coefficients of tm in s-minors of (tI — (xiS)) with
8 = 1, , n and m ^ pσ(s) — 1.

COROLLARY, X e Oσ if and only if g1(x) = 0 for all i.

Let Γ be a maximal torus of G consisting of diagonal matrices
which belong to G. Then its Lie algebra t is given by

t = . xteC
0

We define the dual partition σ = (c0 ^ cλ ^ •) of a = (δ0 ̂  &i ̂  •) by
^ = #bΊ&i ^ i + 1}. Let Wv

σ be the subgroup of the Weyl group W =
Sn defined by TFΪ = SC oxSC lx c S n . We prove the following theorem
using {̂ }.
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THEOREM 1 (DeConcini-Proceci [1]). C[t f] Oσ] is isomorphic to
g^l^J as a W-module.

a a

Let P; be the parabolic subgroup of G given by

P v = Λ
0

At e GL(c{, C)

The Richardson orbit corresponding to P* is Oσ and the subgroup of W
corresponding to P* is W*σ. Since Gx is connected for xeθσ and since
Oσ is normal by Kraft-Procesi [6], C[t n Oa] contains I n d ^ l ^ J by Kraft
[5; Proposition 4].

Set Aa = CiXijlKig*) + (xi5\i Φ j)). Then we have only to prove the
following (#).

We set An — C[xu , xn] = C[t]. Let gleA71 be the polynomial obtained
by specializing g\ by xrr h->xr and # r 8 κ θ ( r ^ s ) . If we put Kσ = (</*)>
then A; = An/iζ, and Kσ is generated by the coefficients of tm in (ί — xh)
• (ί — #ίs) 6 A"[ί] with s, m and ilf , i8 running through the integers
satisfying I <* s <L n, 0 <̂  m 5̂  pσ(s) — 1 and 1 ^ i t < < i8 ^ n. In
other words Kσ is generated by the elementary symmetric functions in
variables xh, , xu with degree ^ s + 1 — pσ(s)f where s and ilf , i8

are the integers satisfying 1 <; s <̂  n and 1 ^ \ < < ίβ ^ ^.
We prove (#) by induction on n. As the case n = 1 is trivial, we

assume that n ^ 2 and (#) holds for % — 1 in the following.

DEFINITION. For a partition σ = (δ0 *S 6X ^ •) of n with δ0 > i ^ 0,
we define a partition σt = (δj ^ δί ^ •) of w — 1 as follows. If we set
ί0 = max {* ^ 01 bt > i), then δ;o = btQ - 1 and δ; = δ, (j ^ ί0).

Let Φ: An —• A71"1 be the algebra homomorphism defined by Φ(â  ) =

&/ (i ^ ^) and Φ(a?w) = 0.

LEMMA 2. Φ(2ζ,) c ϋΓ,,..

PROOF. We first remark that pσi(s) is given by

_ /^σ(s + 1) if d^ n — 1 — s
Vσi S "~ 1^(8 + 1) - 1 if c, > n - 1 - 8 .

Set (ί — a?iχ) •••(* — a?iβ) = t8 + a^t8'1 + + α0 f or 1 <: ̂  < < i, ^ n .
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( i ) In the case i8 < n we have t8 + Φ(a8_ΐ)t8~ι + + Φ(a0) =
(ί - &<j •••(«- α i f) If m ^ pα(«) - 1, then m ^ po(s) - 1 = pα<(β - 1) -
1 ^ p,,(8) - 1 for Ci^n - s, and m ^ pσ(s) - 1 = pσi(s - 1) = P*£(s) -
&Li- ^ pσi(s) - i - 1 ^ pσ<(β) - 1 for c< > Λ - β.

(ii) In the case ΐβ = n we have Φ(a0) = 0 and t*~ι + Φ{a8_^)tB~2 H +
Φ(Λl) = (ί - a?4l) (ί - XiaJ. If m ^ pσ(a) - 1, then m - 1 ^ pβ(β) - 2 ^
pσi(β - 1) - 1. q.e.d.

Thus Φ induces a surjective homomorphism Φ*: A; -> AJΓ1.

LEMMA 3. (Ker Φ€) -α?i c (^+1) in An

σ.

PROOF. It is easy to see that KerΦ* is generated by xn and the
coefficients of tm in (t — xh) •••(* — ίcis) with s, m and ΐx, , i8 running
through the integers satisfying 1 <^ s <^ n, O ^ m ^ pσi(s) — 1 and 1 <̂
i £ < < ΐ8 ^ n - 1. Set (t - xh) •••(«- a?<β) = ί8 + α^iί8"1 + + α0 e
A"[£] for 1 ^ ix < < i8 ^ n — 1. Then it is sufficient to prove that
αmxi e (x\+1) in An

σ for m ^ ^σi(s) — 1. Since the coefficient of tm in
(ί — xh) •••(* — ccΐβ)(ί — a?n) vanishes for m ^ pσ(s + 1) — 1, we see that
-αoxn = 0, α0 - α ^ = 0, , αPσ(β+1,_2 - αPα(f+1).1α?n = 0. Thus αmx*n = α m + 1 4 + 1

for m ^ ^ ( s + 1) — 2. We may thus assume that s ^ n — ct — 1 and m =
pσ(s + 1) - 1 = pσ.(s) - 1. Since pα(s + 1) - pσ(β) ^ i and α,^^ = 0 in
A;, we have α P σ ( 8 + 1 ) _χ = αPα(f+1)_2ajί-1 = - - = a^(e)_X-(2)o(s+1)"^(8)) = 0 and
we are done. q.e.d.

PROOF OF THEOREM 1. Let Jt be the principal ideal of An

σ generated
by x\. Then since Jt/Jt+ι is a cyclic A ^-module by Lemma 3, we have

dim (JJJi+1) ^ dim A:;1 ^ ( \ *)

Thus
In - 1

dim An

σ = Σ dim (JJJi+1) ^ Σ (

This proves (#) for n, and so the proof of Theorem 1 is complete.
q.e.d.

3. Relations with Springer's representation. We first review the
cohomology algebra of the flag variety. Set G = GL(n, C) = GL( V)
(V = Cn). We denote the protective variety consisting of all the complete
flags of V by ^ 7 that is,

j r = {(0 = F o c T Ί C c Fn = F) | dimV4 = i for all i} .

Then the cohomology algebra H*{^~) — H*(J?~,C) can be described as
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follows. Let Vj be the subbundle of the trivial vector bundle &~ x V
over ^r whose fiber at (V%) e _^~ is just V5. We denote the first Chern
class of the line bundle VJVi^ by xie

PROPOSITION 1 (cf. Kleiman [3]). (i) H*(^~) is generated by xlt , xn

as an algebra.
(ii) Define the algebra homomorphism π from the polynomial ring

C[t] = C[xlf , xn] onto H*(^~) by π{x^) = xt. Then Ker π is generated
as an ideal by the elementary symmetric functions flf •••,/*.

Thus we obtain an algebra isomorphism

π: C[t ΠN]= C[xl9 , sJ/(/ l f ••-,/,)-> R\&*) .

On the other hand the Weyl group W = Sn acts on &~ as follows.
For any (V<) 6 ̂ 7 there exists ge U(n) so that Vt = ©j=i Cg(e3), where
ieu , en) is the canonical basis of V — Cn. Then the action of w e
W = Sn on ^ can be defined by

(Vί) w = (V;) with V; = ®Cg(ew-Uj)).

Thus W acts on H*(^~). Then the algebra isomorphism π is also an
isomorphism as T7-modules.

Now for a partition η of n we fix an element x0 e Oη and define a
subvariety J*> of ^ " by

^ = {(Vi)e^~\xo(Vi)<zVi-ι for all i}.

Springer [11], [12] defined a W-module structure on the cohomology algebra
Furthermore for η0 = (1 ^ 1 ^ •) the TF-module structure on
ίZ"*(^0) defined by Springer coincides with the ordinary one

described above. (We are considering here the T7-module structure
obtained by tensoring the one-dimensional sign representation of W with
the original one defined in [11], [12].) The natural algebra homomorphism
pη: H""{^r) —>H*(&\i) induced by the inclusion J^^* ^ is known to be
a homomorphism as TΓ-modules (Cf. Hotta-Springer [2].).

THEOREM 2. (DeConcini-Procesi [1]). There exists a unique iso-
morphism j η as algebras and W-modules which makes the following
diagram commutative',

c[t n α;] -r-> #
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Here p* is the natural algebra homomorphism.

From the cellular decomposition of J^ given by Spaltenstein [9] (cf.
also Hotta-Springer [2]), we have dimJEΓ*(^) = ( ? ) . Thus dimC[tn
0^] = dimH*(^) by Theorem 1. Since p* and pη are surjective homo-
morphism, it is sufficient to prove that the images under pηoπ of the
elements in the generator system of Kerpv vanish in H*(^).

In order to prove Theorem 2 we need some basic facts about the
Grassmann and Scubert varieties. For 1 ^ s <̂  n we denote by Gr8(V)
the Grassmann variety consisting of all the s-dimensional subspaces of
V = Cn. We fix a complete flag (0 = Uo c U, c c Un = V) obtained by
refining the flag ( axl(V) axo(V) c V) for a fixed xQe0η. For a
sequence λ = (\, λ2, , λβ) of integers with 0 <; \ <; ^ λ8 <̂  n — s,
let Yj be the subvariety of Gr8(V) given by

Yλ = {Γe Gr8(F) | dim(Γ n ^ ΐ + < ) ^ i (ί = 1, , β)} .

Then Yj is called the Schubert variety corresponding to λ. Let ^ be
the ordering on {λ} given by λ ^ μ iff Xt^ μt (ί = 1, •••,«).

PROPOSITION 2 (cf. Kleiman [3]). (i) Γ̂  3 Yμ if and only if λ ^ μ.
(ii) 1/ we set Yλ=Yλ — \JμzχYμ, then Gr8(V) = JlχYχ, which gives

a cellular decomposition of Gr8(V).

PROPOSITION 3. Let p\^~-*Gr8{V) be the natural projection given
by p(( Vt)) = V8. Then we have p(J^) c YλQ, where λ0 = (0, , 0, n — s, ,
n — s) with 0 repeated p$(s)-times and n — s repeated (s — p^(s))-times.

PROOF. From the definition of ^ , we see that V8 z> Xo~8(V) for
(Vt)eJ^. On the other hand dimxΓ\V) = rankxΓ8 = Pί(β). Thus
a#-*(^) = J7Pv(8). Hence dim (V, Π Ut) = dim tΓ€ = % for i ^ p?(8) and
dim(F β Π U{n_8)+ί) ^ i for i > pj(e), and we are done. q.e.d.

DEFINITION. For a sequence of integers λ = (λx, « ,λβ) with 0 ^
λx ^ 5̂  λ8, we set

and Sa(a?lf ••-,«.) = [λx, , λ8]/[0, , 0]. (Sλ(χl9 ••-,».) is a symmetric
polynomial which is called the Schur function.)

REMARK. Let h8tj be the i-th elementary symmetric polynomial in
the variables xl9 , x8, that is,

(t - s j (ί - a?.) = t8 - fe,,^-1 + + (-l)βfe8,8.

Then we have h8tj = SμaJf where μ8tj = (0, , 0,1, •••,!) with 0 repeated
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(s — j)-times and 1 repeated ^-times.

PROPOSITION 4 (cf. Kleiman [3]). (i) Let p*: H*(Gr8(V)) -±H*(J?~)
be the homomorphism induced by p: ^~ —> Gr8(V). Then p* is injective
and its image is the set of all the symmetric polynomials in the Chern
classes xlf ••-,#„. (Thus we identify H*(Gr8(V)) with a subalgebra of
•ff*C^H in the following.)

(ii) Sλ(xl9 - , x8) is not zero if and only if λβ ^ n — s.
(iii) {Sλ(xlf , x8) I λβ ^ n — s} is the dual basis of the basis of the

o

homology group H*(Gr8(V)) given by the cells Yλ9 that is, (Sλ(xl9 •••,£,),
o

Yμ) = δλμ.

PROOF OF THEOREM 2. By the proof of Theorem 1, it is sufficient
to prove that pη(h8tύ(xh, , xis)) = 0 for 1 <; \ < < i8 ^ n and j ^
s — (jty(«) — 1). Since pη is a homomorphism of T7-modules, we may
assume that ix = 1, , i8 = s. Then by the remark above we have
h8,0i, •••,«.) = Sμ9j(xu , »,). Since p ( ^ ) c 7 ί o by Proposition 3, we
have a commutative diagram;

If i ^ s - (pv(s) - l), then λ0 ^ ^ β i i . Thus i*(SPaJ(xl9 , «.)) = 0. Hence

Pn(SμaJ(xlt , α.)) = k*oi*(Sμaj(xlf , α,)) = 0, and we are done.

4. Structure of C[tf]Ox] for some 0x in the case of Sp(2n,C). In
this section we consider the case

G = Sp(2n, C) = {ff 6 GL(2n, C) \ <gJg = J} and

, C) = {# 6 Jlf(2w, C) I 'a?J + Jx = 0} ,

L-i". oj

where

J

Then

T = ] \\ h: nonsingular diagonal matrix

is a maximal torus of G whose Lie algebra is
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t = <

x1

0

0

- x n .

and the Weyl group W of (G, Γ) is isomorphic to the semi-direct product
of Sn and (Z/2Z)n, as is well known.

The nilpotent orbits in g are parametrized as follows. For a par-
tition σ = (&o ̂  6i ^ •) of 2w with the following condition (V) let Oa

be the set of matrices in $p(2n, C) with the Jordan type σ.

(V) # {i I bt = 2r - 1} = 0(mod 2) for each r e JV.

Then the following is well known.

LEMMA 4. If σ satisfies (V), then Oσ Φ 0 . AWT/ nilpotent orbit in
Q coincides with some Oσ for a σ satisfying (V).

We determine the T7-module structure of C[t Π Oσ] for a special σ
satisfying the following condition (VV)-

(VV) %{i\bi = 2r - 1} = 0 for each reN.

THEOREM 3. Let σ = (60 ^ 6i ^ •) 6e α partition of 2n which
satisfies (VV) We de îoίe ίfee d̂ αZ partition of(σ/2) = ((60/2) ̂  (6x/2) ̂  •)
δi/ T = (d0 ^ ^i ^ •)• Then C[t Π OJ is isomorphic to Indί£r(lWΓ) as a
W-module, where Wτ = Sdo x Sdl x c Sn c TF.

We prove this theorem in exactly the same manner as Theorem 1.
Let Pτ be the parabolic subgroup given by

V eG x=
0

Then the Richardson orbit corresponding to Pτ is 0o and the subgroup of
W corresponding to Pτ is Wτ. Since~Oσ is normal by Kraft-Procesi [6]
and GX = PX for xeθσ by Springer-Steinberg [10; III, 4.16], C[tf]Oσ]
contains Ind^r(l^r) by Kraft [5; Proposition 4].

Let hieCiQ] be the restriction of Q\ e C[M(2n, C)] (cf. §3) to Q =
$p(2n, C). Then the following is obvious.

LEMMA 5. xeθσ if and only if hftx) = 0 for all i.
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Set Bn = C[t] = C[xlf •••, xn]. We denote t h e restr ict ion of h\ to t

by KϊeC[xl9 ---,xn]. F o r Lσ = (&?) and B: = Bn/Lσ we have only t o

prove the following (##).

We note that Lσ is generated by the coefficients of tm in
IK=i ( ί 2 - ^ p ) Πί=i (ί - εqxSq) with A , r, m, eff, i1? , iA, j l 9 •--, j r running
through the integers satisfying 0 <; ft 5̂  w, 0 5g r <; %, 0 <̂  m 5̂  pσ(2k + r) —
1, ε, = ± 1 , 1 ^ ix < < % ^ n, 1 ^ j \ < < j r ^ n, %VΦ j q (1 ^ p ^ ft,
1 ^ 9 ^ r) .

We prove (##) by induction on n. The case n = 1 being trivial, we
assume that ti ^ 2 and (##) holds for % — 1.

DEFINITION. For a partition tf = (δ0 ^ &x ^ •) of 2n with (VV)
and an integer i with 60 > i ^ 0, we define a partition σw = (&ί ^ 61 ^ •)
of 2(w — 1) which also satisfies (VV) as follows. b'tQ = btQ — 2 for ί0 =
max{ί I 6f > i}, and 5̂  = bά for j ^ ί0.

Let Ψ: Bn -> β7 1"1 be the algebra homomorphism given by Ψ(x0) — xά

(j Φ n) and Ψ{xn) = 0. We fix a partition σ = (60 ^ 6X ^ •) of 2w
satisfying (VV). Let σ = (c0 ^ ex ^ •) be the dual partition of σ and
let τ = (do ŝ  di ^ •) be the partition of w as in the statements of
Theorem 3. We can prove the following just in the same way as in
the proof of Lemma 2. So we omit the proof.

LEMMA 6. Ψ(Lσ)(zLσ^.

Thus Ψ induces a surjective homomorphism Ψ^B1^-^ j?^"1.

LEMMA 7. (Ker ΨM c (4+1) in B:.

PROOF. It is easily seen that Ker 2^ is generated as an ideal by xn

and the coefficients of tm in Π?=i (t2 — tip) Πί=i (* ~ εQxiq)(t + χn) with
k, r, m, 6qf ilf , i t, jl9 , i r running through the integers which satisfy
0 ^k^n-1, 0 ^ r ^ w - l , O ^ m ^ -Pa(O(2Ai + r), eff = ± 1 , 1 ^ ix < <
i* ^ ^ — 1,1 £= ii < < Jr ^ ^ — 1 and ip ^ i<? f° r a n y P a n ( i Q- Set

fc r 2fc+r+i _

Π (ί2 - < ) Π (ί - v J ( i + *.) = Σ α.ί s e5;[ί] .

Then the coefficient of tm in (Σ«=+or+1 a8t
s)(t - xn) vanishes for m ^ pσ(2A: +

r + 2) — 1. Thus arguments similar to those in the proof of Lemma 6
show that amxi is contained in the ideal (xi+1) of B? for m ^ pσ(ί)(2k + r),
and we are done. q.e.d.
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PROOF OF THEOREM 3. Let Jt be the principal ideal of Bn

σ generated
by x*n. Then since Jt/Jt+ι is a cyclic ί?£~*-module, we have άim(Ji/Ji+1) ^

dim£?(<) <: 2n-1(n7i,
1\ where τ(i) is the dual partition of (σw,)/2. Thus

dim 5 ; = Σ dim (JJJi+1) ^ 2 Σ ( 7^) 2 ί

which proves (##) for w and the proof of Theorem 3 is complete, q.e.d.

REMARK. C[t n Oβ] is the direct sum of the subspaces C[t n Ox\ of
degree £ which are W-invariant. For a partition σ = (60 ^ δx ^ •) of
2w satisfying (VV) we set d(σ) = (60/2)2 + (δ^) 2 + . Then it follows
from the proof of Theorem 3 and Kraft [5; Proposition 2] that C[t Π Oa\ =
(0) for i > d(σ) and C[t Π Oσ]d(σ) is the irreducible representation corre-
sponding to ((0), τ) where τ is a partition of n as in the statement of
Theorem 3. (An irreducible representation of the Weyl group of $p(2n, C)
is characterized by an ordered pair of two partitions (λ, μ) with | λ | +
\μ\=n. Cf. Mayer [8].)
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