DEFINING IDEALS OF THE CLOSURES OF THE CONJUGACY CLASSES AND REPRESENTATIONS OF THE WEYL GROUPS

Toshiyuki Tanisaki*

(Received March 9, 1982)

1. Introduction. Let G be a connected reductive algebraic group over the complex number field C and T be its maximal torus. We denote the Lie algebras of G and T by g and t, respectively. Let O_{x} be the G-orbit containing $x \in \mathfrak{g}$ under the adjoint action of G on \mathfrak{g}. Then the Weyl group W of (G, T) naturally acts on the coordinate ring $C\left[\mathrm{t} \cap \bar{O}_{x}\right]$ of the scheme-theoretic intersection of t and the Zariski closure \bar{O}_{x} of O_{x}. We consider the following problem due to Kostant, Kraft, DeConcini and Procesi. (See [1] and [5].)

Problem. Describe $\boldsymbol{C}\left[\mathrm{t} \cap \bar{O}_{x}\right]$ as a W-module for each nilpotent orbit O_{x} in g .

When x is regular nilpotent, \bar{O}_{x} is just the variety N consisting of all the nilpotent elements in g, and $C[t \cap N]$ is isomorphic to the regular representation of W (Cf. Kostant [4].).

DeConcini and Procesi [1] have shown that for $G=G L(n, C)$, $C\left[\mathrm{t} \cap \bar{O}_{x}\right]$ is isomorphic to the representation induced from the trivial representation of a certain subgroup of parabolic type. They also naturally identified $\boldsymbol{C}\left[\mathrm{t} \cap \bar{O}_{x}\right]$ with a certain representation of W constructed by Springer [11], [12] (Cf. §2 and §3 below for precise statements.). In [1] they conjectured that certain explicitly constructed polynomials form a generator system of the defining ideal of the variety \bar{O}_{x} and proved the above results using these polynomials.

In this note we first give another candidate for a generator system of the defining ideal of \bar{O}_{x} and show that the proof of the results in [1] can be a little simplified by replacing their polynomials by ours (§2, §3). Though some of the statements and the arguments in $\S 2$ and $\S 3$ are similar to those in [1], we include them for convenience of the readers.

For a general reductive group G the structure of $C\left[t \cap \bar{O}_{x}\right]$ is not yet clear. We secondly show that for a nilpotent orbit of a certain type

[^0]in $\mathfrak{g}=\mathfrak{B p}(2 n, \boldsymbol{C})$ (the Lie algebra of $S p(2 n, \boldsymbol{C})$), $\boldsymbol{C}\left[\mathrm{t} \cap \bar{O}_{x}\right]$ is also isomorphic to the representation induced from the trivial representation of a subgroup of parabolic type (§4).

The first version of this paper contained the explicit descriptions of $\boldsymbol{C}\left[\mathrm{t} \cap \bar{O}_{x}\right]$ for C_{2}, C_{3} and G_{2} except for one nilpotent orbit in the case of G_{2}. We omit them because for C_{2} and C_{3} they are already contained in Kraft [5] and our result is incomlete for G_{2}.

The author expresses his hearty thanks to Professors R. Hotta and T. Oshima for valuable suggestions. He would also like to thank the referee for useful suggestions.
2. Structure of $\boldsymbol{C}\left[\mathfrak{t} \cap \bar{O}_{x}\right]$ in the case of $G L(n, \boldsymbol{C})$. In $\S 2$ and $\S 3$ we consider the case $G=G L(n, \boldsymbol{C})$ and $\mathfrak{g}=M(n, \boldsymbol{C})$. Then the set of nilpotent orbits in \mathfrak{g} is parametrized by the set of partitions of n. For a partition $\sigma=\left(b_{0} \geqq b_{1} \geqq b_{2} \geqq \cdots\right)$ of n we denote by O_{σ} the nilpotent orbit consisting of the nilpotent matrices so that the sizes of their Jordan blocks are given by the b_{i} 's. We set $p_{a}(s)=b_{n-s}+b_{n-s+1}+\cdots$ for $s=1, \cdots, n$. For $x \in M(n, C)$ and $s=1, \cdots, n$ let $d_{s}^{x}(t)$ be the greatest common divisor of all the s-minors of the matrix $(t I-x) \in M(n, C[t])$.

Lemma 1. (i) $x \in O_{o}$ if and only if $d_{s}^{x}(t)=t^{p_{\sigma}(s)}$ for $s=1, \cdots, n$.
(ii) $x \in \bar{O}_{\sigma}$ if and only if $t^{p_{\sigma}(s)} \mid d_{s}^{x}(t)$ for $s=1, \cdots, n$.

Proof. (i) follows from the theory of elementary divisors. It is well known that for two partitions $\sigma=\left(b_{0} \geqq b_{1} \geqq \cdots\right)$ and $\tau=\left(b_{0}^{\prime} \geqq b_{1}^{\prime} \geqq \cdots\right)$ of n we have $\bar{O}_{\sigma} \supset O_{\tau}$ if and only if $b_{0} \geqq b_{0}^{\prime}, b_{0}+b_{1} \geqq b_{0}^{\prime}+b_{1}^{\prime}, \cdots$. Thus (ii) follows from (i). q.e.d.

We define a family of polynomials $\left\{g_{i}^{o}\right\}$ in the variables $x_{i j}(1 \leqq i, j \leqq n)$ to be the set of the coefficients of t^{m} in s-minors of $\left(t I-\left(x_{i j}\right)\right)$ with $s=1, \cdots, n$ and $m \leqq p_{\sigma}(s)-1$.

Corollary. $x \in \bar{O}_{\sigma}$ if and only if $g_{i}^{o}(x)=0$ for all i.
Let T be a maximal torus of G consisting of diagonal matrices which belong to G. Then its Lie algebra t is given by

$$
\mathrm{t}=\left\{\left.\left[\begin{array}{ccc}
x_{1} & & 0 \\
& \ddots & \\
0 & & x_{n}
\end{array}\right] \right\rvert\, x_{i} \in \boldsymbol{C}\right\}
$$

We define the dual partition $\check{\sigma}=\left(c_{0} \geqq c_{1} \geqq \cdots\right)$ of $\sigma=\left(b_{0} \geqq b_{1} \geqq \cdots\right)$ by $c_{i}=\#\left\{j \mid b_{j} \geqq i+1\right\}$. Let W_{σ}^{v} be the subgroup of the Weyl group $W=$ S_{n} defined by $W_{a}^{v}=S_{c_{0}} \times S_{c_{1}} \times \cdots \subset S_{n}$. We prove the following theorem using $\left\{g_{i}^{o}\right\}$.

Theorem 1 (DeConcini-Proceci [1]). $\quad C\left[\mathfrak{t} \cap \bar{O}_{\sigma}\right]$ is isomorphic to $\operatorname{Ind}_{W_{\grave{\sigma}}}^{W}\left(1_{W_{\grave{g}}}\right)$ as a W-module.

Let P_{a} be the parabolic subgroup of G given by

$$
P_{\check{\jmath}}=\left\{\left.\left[\begin{array}{cc}
A_{0} & \\
& \\
& A_{1} \\
0 & \\
0 & \\
\hline
\end{array}\right] \right\rvert\, A_{i} \in G L\left(c_{i}, C\right)\right\}
$$

The Richardson orbit corresponding to P_{σ} is O_{o} and the subgroup of W corresponding to P_{σ} is W_{σ}. Since G^{x} is connected for $x \in O_{\sigma}$ and since \bar{O}_{σ} is normal by Kraft-Procesi [6], $C\left[\mathrm{t} \cap \bar{O}_{\sigma}\right]$ contains $\operatorname{Ind}_{W_{\grave{\jmath}}}^{W}\left(1_{W_{\varsigma}}\right)$ by Kraft [5; Proposition 4].

Set $\bar{A}_{\sigma}^{n}=C\left[x_{i j}\right] /\left(\left(g_{i}^{o}\right)+\left(x_{i j} \mid i \neq j\right)\right)$. Then we have only to prove the following (\#).

$$
\operatorname{dim} \bar{A}_{\sigma}^{n} \leqq\binom{ n}{\check{\sigma}}:=n!/\left(c_{0}!c_{1}!\cdots\right)
$$

We set $A^{n}=\boldsymbol{C}\left[x_{1}, \cdots, x_{n}\right]=\boldsymbol{C}[\mathrm{t}]$. Let $\widetilde{g}_{i}^{\sigma} \in A^{n}$ be the polynomial obtained by specializing g_{i}^{σ} by $x_{r r} \mapsto x_{r}$ and $x_{r s} \mapsto 0(r \neq s)$. If we put $K_{o}=\left(\tilde{g}_{i}^{o}\right)$, then $\bar{A}_{\sigma}^{n}=A^{n} / K_{\sigma}$ and K_{σ} is generated by the coefficients of t^{m} in $\left(t-x_{i_{1}}\right)$ $\cdots\left(t-x_{i_{s}}\right) \in A^{n}[t]$ with s, m and i_{1}, \cdots, i_{s} running through the integers satisfying $1 \leqq s \leqq n, 0 \leqq m \leqq p_{o}(s)-1$ and $1 \leqq i_{1}<\cdots<i_{s} \leqq n$. In other words K_{σ} is generated by the elementary symmetric functions in variables $x_{i_{1}}, \cdots, x_{i_{s}}$ with degree $\geqq s+1-p_{\sigma}(s)$, where s and i_{1}, \cdots, i_{s} are the integers satisfying $1 \leqq s \leqq n$ and $1 \leqq i_{1}<\cdots<i_{s} \leqq n$.

We prove (\#) by induction on n. As the case $n=1$ is trivial, we assume that $n \geqq 2$ and (\#) holds for $n-1$ in the following.

DEFINITION. For a partition $\sigma=\left(b_{0} \geqq b_{1} \geqq \cdots\right)$ of n with $b_{0}>i \geqq 0$, we define a partition $\sigma_{i}=\left(b_{0}^{\prime} \geqq b_{1}^{\prime} \geqq \cdots\right)$ of $n-1$ as follows. If we set $t_{0}=\max \left\{t \geqq 0 \mid b_{t}>i\right\}$, then $b_{t_{0}}^{\prime}=b_{t_{0}}-1$ and $b_{j}^{\prime}=b_{j}\left(j \neq t_{0}\right)$.

Let $\Phi: A^{n} \rightarrow A^{n-1}$ be the algebra homomorphism defined by $\Phi\left(x_{j}\right)=$ $x_{j}(j \neq n)$ and $\Phi\left(x_{n}\right)=0$.

Lemma 2. $\Phi\left(K_{\sigma}\right) \subset K_{\sigma_{i}}$.
Proof. We first remark that $p_{\sigma_{i}}(s)$ is given by

$$
p_{o_{i}}(s)=\left(\begin{array}{llc}
p_{o}(s+1) & \text { if } \quad c_{i} \leqq n-1-s \\
p_{o}(s+1)-1 & \text { if } & c_{i}>n-1-s
\end{array}\right.
$$

$\operatorname{Set}\left(t-x_{i_{1}}\right) \cdots\left(t-x_{i_{s}}\right)=t^{s}+a_{s-1} t^{s-1}+\cdots+a_{0}$ for $1 \leqq i_{1}<\cdots<i_{s} \leqq n$.
(i) In the case $i_{s}<n$ we have $t^{s}+\Phi\left(a_{s-1}\right) t^{s-1}+\cdots+\Phi\left(a_{0}\right)=$ $\left(t-x_{i_{1}}\right) \cdots\left(t-x_{i_{s}}\right)$. If $m \leqq p_{o}(s)-1$, then $m \leqq p_{o}(s)-1=p_{o_{i}}(s-1)-$ $1 \leqq p_{o_{i}}(s)-1$ for $c_{i} \leqq n-s$, and $m \leqq p_{\sigma}(s)-1=p_{\sigma_{i}}(s-1)=p_{\sigma_{i}}(s)-$ $b_{n-1-s}^{\prime} \leqq p_{o_{i}}(s)-i-1 \leqq p_{o_{i}}(s)-1$ for $c_{i}>n-s$.
(ii) In the case $i_{s}=n$ we have $\Phi\left(a_{0}\right)=0$ and $t^{s-1}+\Phi\left(a_{s-1}\right) t^{s-2}+\cdots+$ $\Phi\left(a_{1}\right)=\left(t-x_{i_{1}}\right) \cdots\left(t-x_{i_{s-1}}\right)$. If $m \leqq p_{o}(s)-1$, then $m-1 \leqq p_{o}(s)-2 \leqq$ $p_{\sigma_{i}}(s-1)-1$.
q.e.d.

Thus Φ induces a surjective homomorphism $\Phi_{i}: \bar{A}_{\sigma}^{n} \rightarrow \bar{A}_{\sigma_{i}}^{n-1}$.
Lemma 3. $\left(\operatorname{Ker} \Phi_{i}\right) \cdot x_{n}^{i} \subset\left(x_{n}^{i+1}\right)$ in \bar{A}_{σ}^{n}.
Proof. It is easy to see that $\operatorname{Ker} \Phi_{i}$ is generated by x_{n} and the coefficients of t^{m} in $\left(t-x_{i_{1}}\right) \cdots\left(t-x_{i_{s}}\right)$ with s, m and i_{1}, \cdots, i_{s} running through the integers satisfying $1 \leqq s \leqq n, 0 \leqq m \leqq p_{\sigma_{i}}(s)-1$ and $1 \leqq$ $i_{1}<\cdots<i_{s} \leqq n-1$. Set $\left(t-x_{i_{1}}\right) \cdots\left(t-x_{i_{s}}\right)=t^{s}+a_{s-1} t^{s-1}+\cdots+a_{0} \in$ $\bar{A}_{\sigma}^{n}[t]$ for $1 \leqq i_{1}<\cdots<i_{s} \leqq n-1$. Then it is sufficient to prove that $a_{m} x_{n}^{i} \in\left(x_{n}^{i+1}\right)$ in \bar{A}_{σ}^{n} for $m \leqq p_{\sigma_{i}}(s)-1$. Since the coefficient of t^{m} in $\left(t-x_{i_{1}}\right) \cdots\left(t-x_{i_{s}}\right)\left(t-x_{n}\right)$ vanishes for $m \leqq p_{\sigma}(s+1)-1$, we see that $-a_{0} x_{n}=0, a_{0}-a_{1} x_{n}=0, \cdots, a_{p_{\sigma}(s+1)-2}-a_{p_{\sigma}(s+1)-1} x_{n}=0$. Thus $a_{m} x_{n}^{i}=a_{m+1} x_{n}^{i+1}$ for $m \leqq p_{o}(s+1)-2$. We may thus assume that $s \leqq n-c_{i}-1$ and $m=$ $p_{o}(s+1)-1=p_{\sigma_{i}}(s)-1$. Since $p_{o}(s+1)-p_{\sigma}(s) \leqq i$ and $a_{p_{o}(s)-1}=0$ in \bar{A}_{σ}^{n}, we have $a_{p_{\sigma}(s+1)-1} x_{n}^{i}=a_{p_{\sigma}(s+1)-2} x_{n}^{i-1}=\cdots=a_{p_{\sigma}(s)-1} x_{n}^{i-\left(p_{\sigma}(s+1)-p_{\sigma}(s)\right)}=0$ and we are done. q.e.d.

Proof of Theorem 1. Let J_{i} be the principal ideal of \bar{A}_{σ}^{n} generated by x_{n}^{i}. Then since J_{i} / J_{i+1} is a cyclic $\bar{A}_{\sigma_{i}}^{n-1}$-module by Lemma 3 , we have

$$
\operatorname{dim}\left(J_{i} / J_{i+1}\right) \leqq \operatorname{dim} \bar{A}_{o_{i}}^{n-1} \leqq\binom{ n-1}{\sigma_{i}}
$$

Thus

$$
\operatorname{dim} \bar{A}_{\sigma}^{n}=\sum_{i \geq 0} \operatorname{dim}\left(J_{i} / J_{i+1}\right) \leqq \sum_{i \geq 0}\binom{n-1}{\sigma_{i}}=\binom{n}{\sigma}
$$

This proves (\#) for n, and so the proof of Theorem 1 is complete.
q.e.d.
3. Relations with Springer's representation. We first review the cohomology algebra of the flag variety. Set $G=G L(n, C)=G L(V)$ ($V=\boldsymbol{C}^{n}$). We denote the projective variety consisting of all the complete flags of V by \mathscr{F}, that is,

$$
\mathscr{F}=\left\{\left(0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=V\right) \mid \operatorname{dim} V_{i}=i \text { for all } i\right\}
$$

Then the cohomology algebra $H^{*}(\mathscr{F})=H^{*}(\mathscr{F}, \boldsymbol{C})$ can be described as
follows. Let \tilde{V}_{j} be the subbundle of the trivial vector bundle $\mathscr{F} \times V$ over \mathscr{F} whose fiber at $\left(V_{i}\right) \in \mathscr{F}$ is just V_{j}. We denote the first Chern class of the line bundle $\tilde{V}_{i} / \widetilde{V}_{i-1}$ by $\bar{x}_{i} \in H^{2}(\mathscr{F})$.

Proposition 1 (cf. Kleiman [3]). (i) $H^{*}(\mathscr{F})$ is generated by $\bar{x}_{1}, \cdots, \bar{x}_{n}$ as an algebra.
(ii) Define the algebra homomorphism π from the polynomial ring $\boldsymbol{C}[\mathrm{t}]=\boldsymbol{C}\left[x_{1}, \cdots, x_{n}\right]$ onto $H^{*}(\mathscr{F})$ by $\pi\left(x_{i}\right)=\bar{x}_{i}$. Then $\operatorname{Ker} \pi$ is generated as an ideal by the elementary symmetric functions f_{1}, \cdots, f_{n}.

Thus we obtain an algebra isomorphism

$$
\bar{\pi}: C[\mathrm{t} \cap N]=C\left[x_{1}, \cdots, x_{n}\right] /\left(f_{1}, \cdots, f_{n}\right) \rightarrow H^{*}(\mathscr{F})
$$

On the other hand the Weyl group $W=S_{n}$ acts on \mathscr{F} as follows. For any $\left(V_{i}\right) \in \mathscr{F}$, there exists $g \in U(n)$ so that $V_{i}=\oplus_{j=1}^{i} \boldsymbol{C} g\left(e_{j}\right)$, where $\left\{e_{1}, \cdots, e_{n}\right\}$ is the canonical basis of $V=C^{n}$. Then the action of $w \in$ $W=S_{n}$ on \mathscr{F} can be defined by

$$
\left(V_{i}\right) \cdot w=\left(V_{i}^{\prime}\right) \quad \text { with } \quad V_{i}^{\prime}=\bigoplus_{j=1}^{i} \boldsymbol{C} g\left(e_{w^{-1}(j)}\right) .
$$

Thus W acts on $H^{*}(\mathscr{F})$. Then the algebra isomorphism $\bar{\pi}$ is also an isomorphism as W-modules.

Now for a partition η of n we fix an element $x_{0} \in O_{\eta}$ and define a subvariety \mathscr{F}_{η} of \mathscr{F} by

$$
\mathscr{F}_{\eta}=\left\{\left(V_{i}\right) \in \mathscr{F} \mid x_{0}\left(V_{i}\right) \subset V_{i-1} \text { for all } i\right\}
$$

Springer [11], [12] defined a W-module structure on the cohomology algebra $H^{*}\left(\mathscr{F}_{\eta}\right)$. Furthermore for $\eta_{0}=(1 \geqq 1 \geqq \cdots)$ the W-module structure on $H^{*}(\mathscr{F})=H^{*}\left(\mathscr{F}_{\eta_{0}}\right)$ defined by Springer coincides with the ordinary one described above. (We are considering here the W-module structure obtained by tensoring the one-dimensional sign representation of W with the original one defined in [11], [12].) The natural algebra homomorphism $\rho_{\eta}: H^{*}(\mathscr{F}) \rightarrow H^{*}\left(\mathscr{F}_{\eta}\right)$ induced by the inclusion $\mathscr{F}_{\eta} \hookrightarrow \mathscr{F}$ is known to be a homomorphism as W-modules (Cf. Hotta-Springer [2].).

Theorem 2. (DeConcini-Procesi [1]). There exists a unique isomorphism j_{η} as algebras and W-modules which makes the following diagram commutative;

Here p_{η} is the natural algebra homomorphism.
From the cellular decomposition of \mathscr{F}_{η} given by Spaltenstein [9] (cf. also Hotta-Springer [2]), we have $\operatorname{dim} H^{*}\left(\mathscr{F}_{\eta}\right)=\binom{n}{\eta}$. Thus $\operatorname{dim} C[\mathrm{t} \cap$ $\left.\bar{O}_{\eta}\right]=\operatorname{dim} H^{*}\left(\mathscr{F}_{\eta}\right)$ by Theorem 1. Since p_{η} and ρ_{η} are surjective homomorphism, it is sufficient to prove that the images under $\rho_{\eta} \circ \bar{\pi}$ of the elements in the generator system of $\operatorname{Ker} p_{\eta}$ vanish in $H^{*}\left(\mathscr{F}_{\eta}\right)$.

In order to prove Theorem 2 we need some basic facts about the Grassmann and Scubert varieties. For $1 \leqq s \leqq n$ we denote by $G r_{s}(V)$ the Grassmann variety consisting of all the s-dimensional subspaces of $V=\boldsymbol{C}^{n}$. We fix a complete flag ($0=U_{0} \subset U_{1} \subset \cdots \subset U_{n}=V$) obtained by refining the flag $\left(\cdots \subset x_{0}^{2}(V) \subset x_{0}(V) \subset V\right)$ for a fixed $x_{0} \in O_{\eta}$. For a sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right)$ of integers with $0 \leqq \lambda_{1} \leqq \cdots \leqq \lambda_{s} \leqq n-s$, let Y_{λ} be the subvariety of $G r_{s}(V)$ given by

$$
Y_{\lambda}=\left\{T \in G r_{s}(V) \mid \operatorname{dim}\left(T \cap U_{\lambda_{i}+i}\right) \geqq i \quad(i=1, \cdots, s)\right\} .
$$

Then Y_{λ} is called the Schubert variety corresponding to λ. Let \geqq be the ordering on $\{\lambda\}$ given by $\lambda \geqq \mu$ iff $\lambda_{i} \geqq \mu_{i}(i=1, \cdots, s)$.

Proposition 2 (cf. Kleiman [3]). (i) $Y_{\lambda} \supset Y_{\mu}$ if and only if $\lambda \geqq \mu$.
(ii) If we set $\stackrel{\circ}{Y}_{\lambda}=Y_{\lambda}-\mathrm{U}_{\mu \leqslant \lambda} Y_{\mu}$, then $G r_{s}(V)=\amalg_{\lambda} \stackrel{\circ}{Y}_{\lambda}$, which gives a cellular decomposition of $G r_{s}(V)$.

Proposition 3. Let $p: \mathscr{F} \rightarrow G r_{s}(V)$ be the natural projection given by $p\left(\left(V_{i}\right)\right)=V_{s}$. Then we have $p\left(\mathscr{F}_{\eta}\right) \subset Y_{\lambda_{0}}$, where $\lambda_{0}=(0, \cdots, 0, n-s, \cdots$, $n-s)$ with 0 repeated $p_{\dot{\eta}}(s)$-times and $n-s$ repeated $\left(s-p_{i}^{r}(s)\right)$-times.

Proof. From the definition of \mathscr{F}_{η}, we see that $V_{s} \supset x_{0}^{n-s}(V)$ for $\left(V_{i}\right) \in \mathscr{F}_{\eta}$. On the other hand $\operatorname{dim} x_{0}^{n-s}(V)=\operatorname{rank} x_{0}^{n-s}=p_{i}^{r}(s)$. Thus $x_{0}^{n-s}(V)=U_{p_{\eta}(s)}$. Hence $\operatorname{dim}\left(V_{s} \cap U_{i}\right)=\operatorname{dim} U_{i}=i$ for $i \leqq p_{\eta}(s)$ and $\operatorname{dim}\left(V_{s} \cap U_{(n-s)+i}^{\eta}\right) \geqq i$ for $i>p_{\eta}^{\prime}(s)$, and we are done. q.e.d.

Definition. For a sequence of integers $\lambda=\left(\lambda_{1}, \cdots, \lambda_{s}\right)$ with $0 \leqq$ $\lambda_{1} \leqq \cdots \leqq \lambda_{s}$, we set

$$
\left[\lambda_{1}, \cdots, \lambda_{s}\right]=\operatorname{det}\left(x_{i}^{\lambda_{i}^{j+j-1}}\right)_{1 \leq i, j \leq s},
$$

and $S_{\lambda}\left(x_{1}, \cdots, x_{s}\right)=\left[\lambda_{1}, \cdots, \lambda_{s}\right] /[0, \cdots, 0] . \quad\left(S_{\lambda}\left(x_{1}, \cdots, x_{s}\right)\right.$ is a symmetric polynomial which is called the Schur function.)

Remark. Let $h_{s, j}$ be the j-th elementary symmetric polynomial in the variables x_{1}, \cdots, x_{s}, that is,

$$
\left(t-x_{1}\right) \cdots\left(t-x_{s}\right)=t^{s}-h_{s, 1} t^{s-1}+\cdots+(-1)^{s} h_{s, s} .
$$

Then we have $h_{s, j}=S_{\mu_{s, j}}$, where $\mu_{s, j}=(0, \cdots, 0,1, \cdots, 1)$ with 0 repeated
($s-j$)-times and 1 repeated j-times.
Proposition 4 (cf. Kleiman [3]). (i) Let $p^{*}: H^{*}\left(G r_{s}(V)\right) \rightarrow H^{*}(\mathscr{F})$ be the homomorphism induced by $p: \mathscr{F} \rightarrow G r_{s}(V)$. Then p^{*} is injective and its image is the set of all the symmetric polynomials in the Chern classes $\bar{x}_{1}, \cdots, \bar{x}_{s}$. (Thus we identify $H^{*}\left(G r_{s}(V)\right)$ with a subalgebra of $H^{*}(\mathscr{F})$ in the following.)
(ii) $S_{\lambda}\left(\bar{x}_{1}, \cdots, \bar{x}_{s}\right)$ is not zero if and only if $\lambda_{s} \leqq n-s$.
(iii) $\left\{S_{\lambda}\left(\bar{x}_{1}, \cdots, \bar{x}_{s}\right) \mid \lambda_{s} \leqq n-s\right\}$ is the dual basis of the basis of the homology group $H_{*}\left(G r_{s}(V)\right)$ given by the cells $\stackrel{\circ}{Y}_{\lambda}$, that is, $\left(S_{2}\left(\bar{x}_{1}, \cdots, \bar{x}_{s}\right)\right.$, $\left.\stackrel{\circ}{Y}_{\mu}\right)=\delta_{\lambda \mu}$.

Proof of Theorem 2. By the proof of Theorem 1, it is sufficient to prove that $\rho_{r}\left(h_{s, j}\left(\bar{x}_{i_{1}}, \cdots, \bar{x}_{i_{s}}\right)\right)=0$ for $1 \leqq i_{1}<\cdots<i_{s} \leqq n$ and $j \geqq$ $s-\left(p_{\eta}(s)-1\right)$. Since ρ_{η} is a homomorphism of W-modules, we may assume that $i_{1}=1, \cdots, i_{s}=s$. Then by the remark above we have $h_{s, j}\left(\bar{x}_{1}, \cdots, \bar{x}_{s}\right)=S_{\mu_{s}, j}\left(\bar{x}_{1}, \cdots, \bar{x}_{s}\right)$. Since $p\left(\mathscr{F}_{\eta}\right) \subset Y_{\lambda_{0}}$ by Proposition 3, we have a commutative diagram;

If $j \geqq s-\left(p_{\eta}^{v}(s)-1\right)$, then $\lambda_{0} \nsupseteq \mu_{s, j}$. Thus $i^{*}\left(S_{\mu_{\varepsilon}, j}\left(\bar{x}_{1}, \cdots, \bar{x}_{s}\right)\right)=0$. Hence $\rho_{n}\left(S_{\mu_{s}, j}\left(\bar{x}_{1}, \cdots, \bar{x}_{s}\right)\right)=k^{*} \circ i^{*}\left(S_{\mu_{s, j}}\left(\bar{x}_{1}, \cdots, \bar{x}_{s}\right)\right)=0$, and we are done.
4. Structure of $\boldsymbol{C}\left[\mathrm{t} \cap \bar{O}_{x}\right]$ for some \bar{O}_{x} in the case of $S p(2 n, C)$. In this section we consider the case

$$
\begin{aligned}
& G=S p(2 n, C)=\left\{\left.g \in G L(2 n, C)\right|^{t} g J g=J\right\} \text { and } \\
& \mathfrak{g}=\mathfrak{ß p}(2 n, C)=\left\{\left.x \in M(2 n, C)\right|^{t} x J+J x=0\right\}
\end{aligned}
$$

where

$$
J=\left[\begin{array}{rr}
0_{n} & I_{n} \\
-I_{n} & 0_{n}
\end{array}\right]
$$

Then

$$
T=\left\{\left.\left[\begin{array}{ll}
h & 0 \\
0 & h^{-1}
\end{array}\right] \right\rvert\, h: \text { nonsingular diagonal matrix }\right\}
$$

is a maximal torus of G whose Lie algebra is

$$
\mathrm{t}=\left\{\left.\left[\begin{array}{|c|c|c}
x_{1} & & \\
& \ddots & \\
& & \\
& & \\
& & \\
& & -x_{n} \\
& & \\
& & \ddots \\
\hline
\end{array}\right] \right\rvert\, x_{i} \in \boldsymbol{C}\right\}
$$

and the Weyl group W of (G, T) is isomorphic to the semi-direct product of S_{n} and $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{n}$, as is well known.

The nilpotent orbits in g are parametrized as follows. For a partition $\sigma=\left(b_{0} \geqq b_{1} \geqq \cdots\right)$ of $2 n$ with the following condition (∇) let O_{o} be the set of matrices in $\mathfrak{s p}(2 n, C)$ with the Jordan type σ.

$$
\#\left\{i \mid b_{i}=2 r-1\right\} \equiv 0(\bmod 2) \quad \text { for each } \quad r \in N .
$$

Then the following is well known.
Lemma 4. If σ satisfies (∇), then $O_{\sigma} \neq \varnothing$. Any nilpotent orbit in g coincides with some O_{σ} for a σ satisfying (∇).

We determine the W-module structure of $C\left[\mathrm{t} \cap \bar{O}_{\sigma}\right]$ for a special σ satisfying the following condition $(\nabla \nabla)$.

$$
\#\left\{i \mid b_{i}=2 r-1\right\}=0 \quad \text { for each } \quad r \in N .
$$

THEOREM 3. Let $\sigma=\left(b_{0} \geqq b_{1} \geqq \cdots\right)$ be a partition of $2 n$ which satisfies $(\nabla \nabla)$. We denote the dual partition of $(\sigma / 2)=\left(\left(b_{0} / 2\right) \geqq\left(b_{1} / 2\right) \geqq \cdots\right)$ by $\tau=\left(d_{0} \geqq d_{1} \geqq \cdots\right)$. Then $C\left[\mathrm{t} \cap \bar{O}_{\sigma}\right]$ is isomorphic to $\operatorname{Ind}_{W_{\tau}}^{W}\left(1_{W \tau}\right)$ as a W-module, where $W_{\tau}=S_{d_{0}} \times S_{d_{1}} \times \cdots \subset S_{n} \subset W$.

We prove this theorem in exactly the same manner as Theorem 1.
Let P_{τ} be the parabolic subgroup given by

$$
P_{\tau}=\left\{\left[\begin{array}{cc}
x & y \\
0 & { }^{t} x^{-1}
\end{array}\right] \in G \left\lvert\, x=\left[\begin{array}{cc}
A_{0} & \\
& A_{1} \\
0 & \ddots
\end{array}\right]\right., \quad A_{i} \in G L\left(d_{i}, \boldsymbol{C}\right)\right\} .
$$

Then the Richardson orbit corresponding to P_{τ} is O_{σ} and the subgroup of W corresponding to P_{τ} is W_{τ}. Since \bar{O}_{σ} is normal by Kraft-Procesi [6] and $G^{x}=P^{x}$ for $x \in O_{\sigma}$ by Springer-Steinberg [10; III, 4.16], $C\left[t \cap \bar{O}_{\sigma}\right]$ contains $\operatorname{Ind}_{W_{\tau}}^{W}\left(1_{W_{\tau}}\right)$ by Kraft [5; Proposition 4].

Let $h_{i}^{\sigma} \in C[g]$ be the restriction of $g_{i}^{\sigma} \in C[M(2 n, C)]$ (cf. §3) to $g=$ $\mathfrak{g}(2 n, C)$. Then the following is obvious.

Lemma 5. $x \in \bar{O}_{\sigma}$ if and only if $h_{i}^{f}(x)=0$ for all i.

Set $B^{n}=\boldsymbol{C}[\mathrm{t}]=\boldsymbol{C}\left[x_{1}, \cdots, x_{n}\right]$. We denote the restriction of h_{i}^{σ} to t by $\tilde{h}_{i} \in C\left[x_{1}, \cdots, x_{n}\right]$. For $L_{o}=\left(\widetilde{h}_{i}^{o}\right)$ and $\bar{B}_{o}^{n}=B^{n} / L_{o}$ we have only to prove the following (\#\#).

$$
\operatorname{dim} \bar{B}_{a}^{n} \leqq 2^{n}\binom{n}{\tau}
$$

We note that L_{o} is generated by the coefficients of t^{m} in $\prod_{p=1}^{k}\left(t^{2}-x_{i_{p}}^{2}\right) \prod_{q=1}^{r}\left(t-\varepsilon_{q} x_{j_{q}}\right)$ with $k, r, m, \varepsilon_{q}, i_{1}, \cdots, i_{k}, j_{1}, \cdots, j_{r}$ running through the integers satisfying $0 \leqq k \leqq n, 0 \leqq r \leqq n, 0 \leqq m \leqq p_{\sigma}(2 k+r)-$ $1, \varepsilon_{q}= \pm 1,1 \leqq i_{1}<\cdots<i_{k} \leqq n, 1 \leqq j_{1}<\cdots<j_{r} \leqq n, i_{p} \neq j_{q}(1 \leqq p \leqq k$, $1 \leqq q \leqq r$.

We prove (\#\#) by induction on n. The case $n=1$ being trivial, we assume that $n \geqq 2$ and (\#\#) holds for $n-1$.

Definition. For a partition $\sigma=\left(b_{0} \geqq b_{1} \geqq \cdots\right)$ of $2 n$ with $(\nabla \nabla)$ and an integer i with $b_{0}>i \geqq 0$, we define a partition $\sigma_{(i)}=\left(b_{0}^{\prime} \geqq b_{1}^{\prime} \geqq \cdots\right)$ of $2(n-1)$ which also satisfies $(\nabla \nabla)$ as follows. $b_{t_{0}}^{\prime}=b_{t_{0}}-2$ for $t_{0}=$ $\max \left\{t \mid b_{t}>i\right\}$, and $b_{j}^{\prime}=b_{j}$ for $j \neq t_{0}$.

Let $\Psi: B^{n} \rightarrow B^{n-1}$ be the algebra homomorphism given by $\Psi\left(x_{j}\right)=x_{j}$ $(j \neq n)$ and $\Psi\left(x_{n}\right)=0$. We fix a partition $\sigma=\left(b_{0} \geqq b_{1} \geqq \cdots\right)$ of $2 n$ satisfying $(\nabla \nabla)$. Let $\check{\sigma}=\left(c_{0} \geqq c_{1} \geqq \cdots\right)$ be the dual partition of σ and let $\tau=\left(d_{0} \geqq d_{1} \geqq \cdots\right)$ be the partition of n as in the statements of Theorem 3. We can prove the following just in the same way as in the proof of Lemma 2. So we omit the proof.

Lemma 6. $\Psi\left(L_{\sigma}\right) \subset L_{\sigma_{(i)}}$.
Thus Ψ induces a surjective homomorphism $\Psi_{i}: \bar{B}_{o}^{n} \rightarrow \bar{B}_{\sigma_{(i)}}^{n-1}$.
LEMMA 7. $\left(\operatorname{Ker} \Psi_{i}\right) x_{n}^{i} \subset\left(x_{n}^{i+1}\right)$ in \bar{B}_{d}^{n}.
Proof. It is easily seen that $\operatorname{Ker} \Psi_{i}$ is generated as an ideal by x_{n} and the coefficients of t^{m} in $\prod_{p=1}^{k}\left(t^{2}-x_{i p}^{2}\right) \prod_{q=1}^{r}\left(t-\varepsilon_{q} x_{j_{q}}\right)\left(t+x_{n}\right)$ with $k, r, m, \varepsilon_{q}, i_{1}, \cdots, i_{k}, j_{1}, \cdots, j_{r}$ running through the integers which satisfy $0 \leqq k \leqq n-1,0 \leqq r \leqq n-1,0 \leqq m \leqq p_{\sigma_{(i)}}(2 k+r), \varepsilon_{q}= \pm 1,1 \leqq i_{1}<\cdots<$ $i_{k} \leqq n-1,1 \leqq j_{1}<\cdots<j_{r} \leqq n-1$ and $i_{p} \neq j_{q}$ for any p and q. Set

$$
\prod_{p=1}^{k}\left(t^{2}-x_{i_{p}}^{2}\right) \prod_{q=1}^{r}\left(t-\varepsilon_{q} x_{j_{q}}\right)\left(t+x_{n}\right)=\sum_{s=0}^{2 k+r+1} a_{s} t^{s} \in \bar{B}_{\sigma}^{n}[t]
$$

Then the coefficient of t^{m} in $\left(\sum_{s=0}^{2 k+r+1} a_{s} s^{s}\right)\left(t-x_{n}\right)$ vanishes for $m \leqq p_{o}(2 k+$ $r+2)-1$. Thus arguments similar to those in the proof of Lemma 6 show that $a_{m} x_{n}^{i}$ is contained in the ideal $\left(x_{n}^{i+1}\right)$ of \bar{B}_{σ}^{n} for $m \leqq p_{\sigma_{(i)}}(2 k+r)$, and we are done.
q.e.d.

Proof of Theorem 3. Let J_{i} be the principal ideal of \bar{B}_{σ}^{n} generated by x_{n}^{i}. Then since J_{i} / J_{i+1} is a cyclic $\bar{B}_{o_{(i)}}^{n-1}$ module, we have $\operatorname{dim}\left(J_{i} / J_{i+1}\right) \leqq$ $\operatorname{dim} \bar{B}_{\sigma_{(i)}}^{n} \leqq 2^{n-1}\binom{n-1}{\tau(i)}$, where $\tau(i)$ is the dual partition of $\left(\sigma_{(i)}\right) / 2$. Thus

$$
\operatorname{dim} \bar{B}_{\sigma}^{n}=\sum_{i} \operatorname{dim}\left(J_{i} / J_{i+1}\right) \leqq 2^{n-1} \sum_{i}\binom{n-1}{\tau(i)}=2^{n}\binom{n}{\tau},
$$

which proves (\#\#) for n and the proof of Theorem 3 is complete. q.e.d.
Remark. $\quad C\left[t \cap \bar{O}_{x}\right]$ is the direct sum of the subspaces $C\left[t \cap \bar{O}_{x}\right]_{i}$ of degree i which are W-invariant. For a partition $\sigma=\left(b_{0} \geqq b_{1} \geqq \cdots\right)$ of $2 n$ satisfying $(\nabla \nabla)$ we set $d(\sigma)=\left(b_{0} / 2\right)^{2}+\left(b_{1} / 2\right)^{2}+\cdots$. Then it follows from the proof of Theorem 3 and Kraft [5; Proposition 2] that $C\left[t \cap \bar{O}_{\sigma}\right]_{i}=$ (0) for $i>d(\sigma)$ and $C\left[\mathrm{t} \cap \bar{O}_{\sigma}\right]_{d(\sigma)}$ is the irreducible representation corresponding to ($(0), \tau)$ where τ is a partition of n as in the statement of Theorem 3. (An irreducible representation of the Weyl group of $\mathfrak{s p}(2 n, C)$ is characterized by an ordered pair of two partitions (λ, μ) with $|\lambda|+$ $|\mu|=n$. Cf. Mayer [8].)

References

[1] C. DeConcini and C. Procesi, Symmetric functions, conjugacy classes and the flag variety, Invent. Math. 64 (1981), 203-219.
[2] R. Hotta and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), 113-127.
[3] S. L. Kleiman, Rigorous foundations of Schubert's enummerative calculus, Proc. of Symp. in Pure Math. Vol. XXVIII (1976), 445-482.
[4] B. Kostant, Lie group, representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404.
[5] H. Kraft, Conjugacy classes and Weyl group representations, Tableaux de Young et foncteurs de Schur en algèbre et géométrie (Conférence internationale, Toruń Polgne, 1980) Astérisque 87-88 (1981), 195-205.
[6] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), 227-247.
[7] H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups, preprint Bonn/Rom (1980).
[8] S. J. Mayer, On the characters of the Weyl group of type C, J. Algebra 33 (1975), 59-67.
[9] N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold, Nederl. Akad. Wetensch. Proc. Ser. A 79 (1976), 452-456.
[10] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on algebraic groups and related finite groups (The Institute for Advanced Study, Princeton, N. J., 1968/69), Lecture Notes in Mathematics, Vol. 131. Springer-Verlag, Berlin (1970), 167-266.
[11] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207.
[12] T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), 279-293.

Mathematical Institute
TôHoku University
Sendai, 980
Japan

[^0]: * Partly supported by the Yukawa Foundation, the Sakkokai Foundation and the Grant-in-Aid for Encouragement of Young Scientists, the Ministry of Education, Science and Culture, Japan.

