DEFINING IDEALS OF THE CLOSURES OF THE CONJUGACY CLASSES AND REPRESENTATIONS OF THE WEYL GROUPS

Toshiyuki Tanisaki*

(Received March 9, 1982)

1. Introduction. Let G be a connected reductive algebraic group over the complex number field C and T be its maximal torus. We denote the Lie algebras of G and T by g and t, respectively. Let O_x be the G-orbit containing $x \in g$ under the adjoint action of G on g. Then the Weyl group W of (G, T) naturally acts on the coordinate ring $C[t \cap \overline{O}_x]$ of the scheme-theoretic intersection of t and the Zariski closure \overline{O}_x of O_x . We consider the following problem due to Kostant, Kraft, DeConcini and Procesi. (See [1] and [5].)

PROBLEM. Describe $C[t \cap \overline{O}_x]$ as a W-module for each nilpotent orbit O_x in g.

When x is regular nilpotent, \overline{O}_x is just the variety N consisting of all the nilpotent elements in g, and $C[t \cap N]$ is isomorphic to the regular representation of W (Cf. Kostant [4].).

DeConcini and Procesi [1] have shown that for G = GL(n, C), $C[t \cap \overline{O}_x]$ is isomorphic to the representation induced from the trivial representation of a certain subgroup of parabolic type. They also naturally identified $C[t \cap \overline{O}_x]$ with a certain representation of W constructed by Springer [11], [12] (Cf. §2 and §3 below for precise statements.). In [1] they conjectured that certain explicitly constructed polynomials form a generator system of the defining ideal of the variety \overline{O}_x and proved the above results using these polynomials.

In this note we first give another candidate for a generator system of the defining ideal of \overline{O}_x and show that the proof of the results in [1] can be a little simplified by replacing their polynomials by ours (§2, §3). Though some of the statements and the arguments in §2 and §3 are similar to those in [1], we include them for convenience of the readers.

For a general reductive group G the structure of $C[t \cap \overline{O}_x]$ is not yet clear. We secondly show that for a nilpotent orbit of a certain type

^{*} Partly supported by the Yukawa Foundation, the Sakkokai Foundation and the Grantin-Aid for Encouragement of Young Scientists, the Ministry of Education, Science and Culture, Japan.

in $g = \mathfrak{sp}(2n, \mathbb{C})$ (the Lie algebra of $Sp(2n, \mathbb{C})$), $\mathbb{C}[\mathfrak{t} \cap \overline{O}_x]$ is also isomorphic to the representation induced from the trivial representation of a subgroup of parabolic type (§4).

The first version of this paper contained the explicit descriptions of $C[t \cap \overline{O}_x]$ for C_2 , C_3 and G_2 except for one nilpotent orbit in the case of G_2 . We omit them because for C_2 and C_3 they are already contained in Kraft [5] and our result is incomlete for G_2 .

The author expresses his hearty thanks to Professors R. Hotta and T. Oshima for valuable suggestions. He would also like to thank the referee for useful suggestions.

2. Structure of $C[t \cap O_x]$ in the case of GL(n, C). In §2 and §3 we consider the case G = GL(n, C) and g = M(n, C). Then the set of nilpotent orbits in g is parametrized by the set of partitions of n. For a partition $\sigma = (b_0 \ge b_1 \ge b_2 \ge \cdots)$ of n we denote by O_σ the nilpotent orbit consisting of the nilpotent matrices so that the sizes of their Jordan blocks are given by the b_i 's. We set $p_{\sigma}(s) = b_{n-s} + b_{n-s+1} + \cdots$ for $s = 1, \dots, n$. For $x \in M(n, C)$ and $s = 1, \dots, n$ let $d_s^{*}(t)$ be the greatest common divisor of all the s-minors of the matrix $(tI - x) \in M(n, C[t])$.

LEMMA 1. (i) $x \in O_{\sigma}$ if and only if $d_s^{x}(t) = t^{p_{\sigma}(s)}$ for $s = 1, \dots, n$. (ii) $x \in \overline{O}_{\sigma}$ if and only if $t^{p_{\sigma}(s)} | d_s^{x}(t)$ for $s = 1, \dots, n$.

PROOF. (i) follows from the theory of elementary divisors. It is well known that for two partitions $\sigma = (b_0 \ge b_1 \ge \cdots)$ and $\tau = (b'_0 \ge b'_1 \ge \cdots)$ of *n* we have $\bar{O}_{\sigma} \supset O_{\tau}$ if and only if $b_0 \ge b'_0$, $b_0 + b_1 \ge b'_0 + b'_1$, \cdots . Thus (ii) follows from (i).

We define a family of polynomials $\{g_i^{\sigma}\}$ in the variables x_{ij} $(1 \leq i, j \leq n)$ to be the set of the coefficients of t^m in s-minors of $(tI - (x_{ij}))$ with $s = 1, \dots, n$ and $m \leq p_{\sigma}(s) - 1$.

COROLLARY. $x \in \overline{O}_{\sigma}$ if and only if $g_i^{\sigma}(x) = 0$ for all i.

Let T be a maximal torus of G consisting of diagonal matrices which belong to G. Then its Lie algebra t is given by

$$\mathbf{t} = \left\{ \begin{bmatrix} x_1 & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & x_n \end{bmatrix} \middle| x_i \in C
ight\}.$$

We define the dual partition $\check{\sigma} = (c_0 \ge c_1 \ge \cdots)$ of $\sigma = (b_0 \ge b_1 \ge \cdots)$ by $c_i = \#\{j | b_j \ge i+1\}$. Let $W_{\check{\sigma}}$ be the subgroup of the Weyl group $W = S_n$ defined by $W_{\check{\sigma}} = S_{c_0} \times S_{c_1} \times \cdots \subset S_n$. We prove the following theorem using $\{g_i^i\}$.

THEOREM 1 (DeConcini-Proceci [1]). $C[t \cap O_{\sigma}]$ is isomorphic to $\operatorname{Ind}_{W_{2}}^{W}(1_{W_{2}})$ as a W-module.

Let P_{σ} be the parabolic subgroup of G given by

$$P_{\sigma}^{\star} = \left\{ \begin{bmatrix} A_0 & * \\ & A_1 & \\ & 0 & \ddots \end{bmatrix} \middle| A_i \in GL(c_i, C)
ight\}.$$

The Richardson orbit corresponding to P_{σ}^{*} is O_{σ} and the subgroup of W corresponding to P_{σ}^{*} is W_{σ}^{*} . Since G^{*} is connected for $x \in O_{\sigma}$ and since \bar{O}_{σ} is normal by Kraft-Procesi [6], $C[t \cap \bar{O}_{\sigma}]$ contains $\mathrm{Ind}_{W_{\sigma}}^{W}(1_{W_{\sigma}})$ by Kraft [5; Proposition 4].

Set $\bar{A}_{\sigma}^{n} = C[x_{ij}]/((g_{i}^{\sigma}) + (x_{ij}|i \neq j))$. Then we have only to prove the following (#).

$$(\#) \qquad \dim \bar{A}^n_{\sigma} \leq \binom{n}{\check{\sigma}} := n!/(c_0! c_1! \cdots).$$

We set $A^n = C[x_1, \dots, x_n] = C[t]$. Let $\tilde{g}_i^r \in A^n$ be the polynomial obtained by specializing g_i^r by $x_{rr} \mapsto x_r$ and $x_{rs} \mapsto 0$ $(r \neq s)$. If we put $K_\sigma = (\tilde{g}_i^r)$, then $\bar{A}_\sigma^n = A^n/K_\sigma$ and K_σ is generated by the coefficients of t^m in $(t - x_{i_1})$ $\cdots (t - x_{i_s}) \in A^n[t]$ with s, m and i_1, \dots, i_s running through the integers satisfying $1 \leq s \leq n, 0 \leq m \leq p_\sigma(s) - 1$ and $1 \leq i_1 < \dots < i_s \leq n$. In other words K_σ is generated by the elementary symmetric functions in variables x_{i_1}, \dots, x_{i_s} with degree $\geq s + 1 - p_\sigma(s)$, where s and i_1, \dots, i_s are the integers satisfying $1 \leq s \leq n$ and $1 \leq i_1 < \dots < i_s \leq n$.

We prove (#) by induction on n. As the case n = 1 is trivial, we assume that $n \ge 2$ and (#) holds for n - 1 in the following.

DEFINITION. For a partition $\sigma = (b_0 \ge b_1 \ge \cdots)$ of n with $b_0 > i \ge 0$, we define a partition $\sigma_i = (b'_0 \ge b'_1 \ge \cdots)$ of n-1 as follows. If we set $t_0 = \max\{t \ge 0 \mid b_t > i\}$, then $b'_{i_0} = b_{i_0} - 1$ and $b'_j = b_j$ $(j \ne t_0)$.

Let $\Phi: A^n \to A^{n-1}$ be the algebra homomorphism defined by $\Phi(x_j) = x_j$ $(j \neq n)$ and $\Phi(x_n) = 0$.

LEMMA 2. $\Phi(K_{\sigma}) \subset K_{\sigma_i}$.

PROOF. We first remark that $p_{\sigma_i}(s)$ is given by

$$p_{\sigma_i}(s) = egin{pmatrix} p_{\sigma}(s+1) & ext{if} \quad c_i \leq n-1-s \ p_{\sigma}(s+1)-1 & ext{if} \quad c_i > n-1-s \ . \end{cases}$$

Set $(t - x_{i_1}) \cdots (t - x_{i_s}) = t^s + a_{s-1}t^{s-1} + \cdots + a_0$ for $1 \leq i_1 < \cdots < i_s \leq n$.

(i) In the case $i_s < n$ we have $t^s + \Phi(a_{s-1})t^{s-1} + \cdots + \Phi(a_0) = (t - x_{i_1}) \cdots (t - x_{i_s})$. If $m \leq p_{\sigma}(s) - 1$, then $m \leq p_{\sigma}(s) - 1 = p_{\sigma_i}(s - 1) - 1 \leq p_{\sigma_i}(s) - 1$ for $c_i \leq n - s$, and $m \leq p_{\sigma}(s) - 1 = p_{\sigma_i}(s - 1) = p_{\sigma_i}(s) - b'_{n-1-s} \leq p_{\sigma_i}(s) - i - 1 \leq p_{\sigma_i}(s) - 1$ for $c_i > n - s$.

(ii) In the case $i_s = n$ we have $\Phi(a_0) = 0$ and $t^{s-1} + \Phi(a_{s-1})t^{s-2} + \cdots + \Phi(a_1) = (t - x_{i_1}) \cdots (t - x_{i_{s-1}})$. If $m \leq p_o(s) - 1$, then $m - 1 \leq p_o(s) - 2 \leq p_{o_i}(s-1) - 1$.

Thus Φ induces a surjective homomorphism $\Phi_i: \overline{A}^n_{\sigma} \to \overline{A}^{n-1}_{\sigma_i}$.

LEMMA 3. (Ker Φ_i) $\cdot x_n^i \subset (x_n^{i+1})$ in \overline{A}_o^n .

PROOF. It is easy to see that Ker Φ_i is generated by x_n and the coefficients of t^m in $(t - x_{i_1}) \cdots (t - x_{i_s})$ with s, m and i_1, \cdots, i_s running through the integers satisfying $1 \leq s \leq n, 0 \leq m \leq p_{\sigma_i}(s) - 1$ and $1 \leq i_1 < \cdots < i_s \leq n - 1$. Set $(t - x_{i_1}) \cdots (t - x_{i_s}) = t^s + a_{s-1}t^{s-1} + \cdots + a_0 \in \overline{A}^n_o[t]$ for $1 \leq i_1 < \cdots < i_s \leq n - 1$. Then it is sufficient to prove that $a_m x_n^i \in (x_n^{i+1})$ in \overline{A}^n_σ for $m \leq p_{\sigma_i}(s) - 1$. Since the coefficient of t^m in $(t - x_{i_1}) \cdots (t - x_{i_s})(t - x_n)$ vanishes for $m \leq p_{\sigma}(s + 1) - 1$, we see that $-a_0 x_n = 0, a_0 - a_1 x_n = 0, \cdots, a_{p_\sigma(s+1)-2} - a_{p_\sigma(s+1)-1} x_n = 0$. Thus $a_m x_n^i = a_{m+1} x_n^{i+1}$ for $m \leq p_\sigma(s + 1) - 2$. We may thus assume that $s \leq n - c_i - 1$ and $m = p_\sigma(s + 1) - 1 = p_{\sigma_i}(s) - 1$. Since $p_\sigma(s + 1) - p_\sigma(s) \leq i$ and $a_{p_\sigma(s)-1} = 0$ in \overline{A}^n_σ , we have $a_{p_\sigma(s+1)-1} x_n^i = a_{p_\sigma(s+1)-2} x_n^{i-1} = \cdots = a_{p_\sigma(s)-1} x_n^{i-(p_\sigma(s+1)-p_\sigma(s))} = 0$ and we are done.

PROOF OF THEOREM 1. Let J_i be the principal ideal of \bar{A}^n_{σ} generated by x_n^i . Then since J_i/J_{i+1} is a cyclic $\bar{A}^{n-1}_{\sigma_i}$ -module by Lemma 3, we have

$$\dim \left(J_i/J_{i+1}
ight) \leq \dim ar{A}_{\sigma_i}^{n-1} \leq inom{n-1}{\sigma_i}$$
 .

Thus

$$\dim \bar{A}^n_{\sigma} = \sum_{i \ge 0} \dim \left(J_i / J_{i+1} \right) \le \sum_{i \ge 0} \binom{n-1}{\sigma_i} = \binom{n}{\sigma}.$$

This proves (\ddagger) for *n*, and so the proof of Theorem 1 is complete.

q.e.d.

3. Relations with Springer's representation. We first review the cohomology algebra of the flag variety. Set G = GL(n, C) = GL(V) $(V = C^n)$. We denote the projective variety consisting of all the complete flags of V by \mathcal{F} , that is,

$$\mathscr{F} = \{ (0 = V_0 \subset V_1 \subset \cdots \subset V_n = V) \mid \dim V_i = i \text{ for all } i \}.$$

Then the cohomology algebra $H^*(\mathcal{F}) = H^*(\mathcal{F}, C)$ can be described as

578

follows. Let \widetilde{V}_j be the subbundle of the trivial vector bundle $\mathscr{F} \times V$ over \mathscr{F} whose fiber at $(V_i) \in \mathscr{F}$ is just V_j . We denote the first Chern class of the line bundle $\widetilde{V}_i/\widetilde{V}_{i-1}$ by $\overline{x}_i \in H^2(\mathscr{F})$.

PROPOSITION 1 (cf. Kleiman [3]). (i) $H^*(\mathscr{F})$ is generated by $\bar{x}_1, \dots, \bar{x}_n$ as an algebra.

(ii) Define the algebra homomorphism π from the polynomial ring $C[t] = C[x_1, \dots, x_n]$ onto $H^*(\mathscr{F})$ by $\pi(x_i) = \overline{x}_i$. Then Ker π is generated as an ideal by the elementary symmetric functions f_1, \dots, f_n .

Thus we obtain an algebra isomorphism

$$\overline{\pi}: C[\mathfrak{t} \cap N] = C[x_1, \cdots, x_n]/(f_1, \cdots, f_n) \to H^*(\mathscr{F})$$
.

On the other hand the Weyl group $W = S_n$ acts on \mathscr{F} as follows. For any $(V_i) \in \mathscr{F}$, there exists $g \in U(n)$ so that $V_i = \bigoplus_{j=1}^i Cg(e_j)$, where $\{e_1, \dots, e_n\}$ is the canonical basis of $V = C^n$. Then the action of $w \in W = S_n$ on \mathscr{F} can be defined by

$$(V_i) \cdot w = (V'_i)$$
 with $V'_i = \bigoplus_{j=1}^i Cg(e_{w^{-1}(j)})$.

Thus W acts on $H^*(\mathscr{F})$. Then the algebra isomorphism $\overline{\pi}$ is also an isomorphism as W-modules.

Now for a partition η of n we fix an element $x_0 \in O_{\eta}$ and define a subvariety \mathscr{F}_{η} of \mathscr{F} by

$$\mathscr{F}_{\eta} = \{(V_i) \in \mathscr{F} \mid x_0(V_i) \subset V_{i-1} \text{ for all } i\}.$$

Springer [11], [12] defined a W-module structure on the cohomology algebra $H^*(\mathscr{F}_{\eta})$. Furthermore for $\eta_0 = (1 \ge 1 \ge \cdots)$ the W-module structure on $H^*(\mathscr{F}) = H^*(\mathscr{F}_{\eta_0})$ defined by Springer coincides with the ordinary one described above. (We are considering here the W-module structure obtained by tensoring the one-dimensional sign representation of W with the original one defined in [11], [12].) The natural algebra homomorphism $\rho_{\eta} \colon H^*(\mathscr{F}) \to H^*(\mathscr{F}_{\eta})$ induced by the inclusion $\mathscr{F}_{\eta} \hookrightarrow \mathscr{F}$ is known to be a homomorphism as W-modules (Cf. Hotta-Springer [2].).

THEOREM 2. (DeConcini-Procesi [1]). There exists a unique isomorphism j_{τ} as algebras and W-modules which makes the following diagram commutative;

$$egin{aligned} & m{C}[\mathfrak{t}\cap N] \stackrel{ar{\pi}}{\longrightarrow} H^*(\mathscr{F}) \ & p_{\check{\eta}} igg| & igcup_{
ho_{\eta}} \ & igcup_{
ho_{\eta}$$

Here $p_{\check{n}}$ is the natural algebra homomorphism.

From the cellular decomposition of \mathscr{F}_{η} given by Spaltenstein [9] (cf. also Hotta-Springer [2]), we have dim $H^*(\mathscr{F}_{\eta}) = \binom{n}{\eta}$. Thus dim $C[t \cap \overline{O}_{\eta}] = \dim H^*(\mathscr{F}_{\eta})$ by Theorem 1. Since p_{η} and ρ_{η} are surjective homomorphism, it is sufficient to prove that the images under $\rho_{\eta} \circ \overline{\pi}$ of the elements in the generator system of Ker $p_{\tilde{\mu}}$ vanish in $H^*(\mathscr{F}_{\eta})$.

In order to prove Theorem 2 we need some basic facts about the Grassmann and Scubert varieties. For $1 \leq s \leq n$ we denote by $Gr_s(V)$ the Grassmann variety consisting of all the s-dimensional subspaces of $V = C^n$. We fix a complete flag $(0 = U_0 \subset U_1 \subset \cdots \subset U_n = V)$ obtained by refining the flag $(\cdots \subset x_0^2(V) \subset x_0(V) \subset V)$ for a fixed $x_0 \in O_7$. For a sequence $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_s)$ of integers with $0 \leq \lambda_1 \leq \cdots \leq \lambda_s \leq n - s$, let Y_λ be the subvariety of $Gr_s(V)$ given by

$$Y_{\lambda} = \{T \in Gr_{s}(V) \mid \dim (T \cap U_{\lambda_{i}+i}) \geq i \quad (i = 1, \cdots, s)\}.$$

Then Y_{λ} is called the Schubert variety corresponding to λ . Let \geq be the ordering on $\{\lambda\}$ given by $\lambda \geq \mu$ iff $\lambda_i \geq \mu_i$ $(i = 1, \dots, s)$.

PROPOSITION 2 (cf. Kleiman [3]). (i) $Y_{\lambda} \supset Y_{\mu}$ if and only if $\lambda \ge \mu$.

(ii) If we set $\mathring{Y}_{\lambda} = Y_{\lambda} - \bigcup_{\mu \leq \lambda} Y_{\mu}$, then $Gr_{s}(V) = \coprod_{\lambda} \mathring{Y}_{\lambda}$, which gives a cellular decomposition of $Gr_{s}(V)$.

PROPOSITION 3. Let $p: \mathscr{F} \to Gr_s(V)$ be the natural projection given by $p((V_i)) = V_s$. Then we have $p(\mathscr{F}_{\eta}) \subset Y_{\lambda_0}$, where $\lambda_0 = (0, \dots, 0, n - s, \dots, n - s)$ with 0 repeated $p_{\eta}(s)$ -times and n - s repeated $(s - p_{\eta}(s))$ -times.

PROOF. From the definition of \mathscr{F}_{η} , we see that $V_s \supset x_0^{n-s}(V)$ for $(V_i) \in \mathscr{F}_{\eta}$. On the other hand $\dim x_0^{n-s}(V) = \operatorname{rank} x_0^{n-s} = p_i(s)$. Thus $x_0^{n-s}(V) = U_{p_{\gamma}(s)}$. Hence $\dim (V_s \cap U_i) = \dim U_i = i$ for $i \leq p_{\gamma}(s)$ and $\dim (V_s \cap U_{(n-s)+i}) \geq i$ for $i > p_{\gamma}(s)$, and we are done. q.e.d.

DEFINITION. For a sequence of integers $\lambda = (\lambda_1, \dots, \lambda_s)$ with $0 \leq \lambda_1 \leq \dots \leq \lambda_s$, we set

$$[\lambda_1, \cdots, \lambda_s] = \det(x_i^{\lambda_j+j-1})_{1 \leq i,j \leq s}$$
,

and $S_{\lambda}(x_1, \dots, x_s) = [\lambda_1, \dots, \lambda_s]/[0, \dots, 0].$ $(S_{\lambda}(x_1, \dots, x_s)$ is a symmetric polynomial which is called the Schur function.)

REMARK. Let $h_{s,j}$ be the *j*-th elementary symmetric polynomial in the variables x_1, \dots, x_s , that is,

$$(t - x_1) \cdots (t - x_s) = t^s - h_{s,1}t^{s-1} + \cdots + (-1)^s h_{s,s}$$

Then we have $h_{s,j} = S_{\mu_{s,j}}$, where $\mu_{s,j} = (0, \dots, 0, 1, \dots, 1)$ with 0 repeated

580

(s - j)-times and 1 repeated *j*-times.

PROPOSITION 4 (cf. Kleiman [3]). (i) Let $p^*: H^*(Gr_s(V)) \to H^*(\mathscr{F})$ be the homomorphism induced by $p: \mathscr{F} \to Gr_s(V)$. Then p^* is injective and its image is the set of all the symmetric polynomials in the Chern classes $\bar{x}_1, \dots, \bar{x}_s$. (Thus we identify $H^*(Gr_s(V))$ with a subalgebra of $H^*(\mathscr{F})$ in the following.)

(ii) $S_{\lambda}(\bar{x}_1, \dots, \bar{x}_s)$ is not zero if and only if $\lambda_s \leq n - s$.

(iii) $\{S_{\lambda}(\bar{x}_{1}, \dots, \bar{x}_{s}) \mid \lambda_{s} \leq n-s\}$ is the dual basis of the basis of the homology group $H_{*}(Gr_{s}(V))$ given by the cells \mathring{Y}_{λ} , that is, $(S_{\lambda}(\bar{x}_{1}, \dots, \bar{x}_{s}),$ $\mathring{Y}_{\mu}) = \delta_{\lambda\mu}$.

PROOF OF THEOREM 2. By the proof of Theorem 1, it is sufficient to prove that $\rho_{\gamma}(h_{s,j}(\bar{x}_{i_1}, \dots, \bar{x}_{i_s})) = 0$ for $1 \leq i_1 < \dots < i_s \leq n$ and $j \geq s - (p_{\breve{\gamma}}(s) - 1)$. Since ρ_{γ} is a homomorphism of W-modules, we may assume that $i_1 = 1, \dots, i_s = s$. Then by the remark above we have $h_{s,j}(\bar{x}_1, \dots, \bar{x}_s) = S_{\mu_{s,j}}(\bar{x}_1, \dots, \bar{x}_s)$. Since $p(\mathscr{F}_{\gamma}) \subset Y_{\lambda_0}$ by Proposition 3, we have a commutative diagram;

If $j \ge s - (p_{\tilde{\eta}}(s) - 1)$, then $\lambda_0 \not\ge \mu_{s,j}$. Thus $i^*(S_{\mu_{s,j}}(\bar{x}_1, \cdots, \bar{x}_s)) = 0$. Hence $\rho_n(S_{\mu_{s,j}}(\bar{x}_1, \cdots, \bar{x}_s)) = k^* \circ i^*(S_{\mu_{s,j}}(\bar{x}_1, \cdots, \bar{x}_s)) = 0$, and we are done.

4. Structure of $C[t \cap \overline{O}_x]$ for some \overline{O}_x in the case of Sp(2n, C). In this section we consider the case

$$G = Sp(2n, C) = \{g \in GL(2n, C) | {}^{t}gJg = J\} \text{ and} \\ g = \mathfrak{sp}(2n, C) = \{x \in M(2n, C) | {}^{t}xJ + Jx = 0\},\$$

where

$$J = \begin{bmatrix} 0_n & I_n \\ -I_n & 0_n \end{bmatrix}$$

Then

$$T = \left\{ \begin{bmatrix} h & 0 \\ 0 & h^{-1} \end{bmatrix} \middle| h: \text{ nonsingular diagonal matrix} \right\}$$

is a maximal torus of G whose Lie algebra is

and the Weyl group W of (G, T) is isomorphic to the semi-direct product of S_n and $(\mathbb{Z}/2\mathbb{Z})^n$, as is well known.

The nilpotent orbits in g are parametrized as follows. For a partition $\sigma = (b_0 \ge b_1 \ge \cdots)$ of 2n with the following condition (\bigtriangledown) let O_{σ} be the set of matrices in $\mathfrak{sp}(2n, \mathbb{C})$ with the Jordan type σ .

$$(\bigtriangledown)$$
 # $\{i | b_i = 2r - 1\} \equiv 0 \pmod{2}$ for each $r \in N$.

Then the following is well known.

LEMMA 4. If σ satisfies (∇) , then $O_{\sigma} \neq \emptyset$. Any nilpotent orbit in g coincides with some O_{σ} for a σ satisfying (∇) .

We determine the W-module structure of $C[t \cap \overline{O}_{\sigma}]$ for a special σ satisfying the following condition $(\nabla \nabla)$.

$$(\bigtriangledown \bigtriangledown)$$
 $\#\{i | b_i = 2r - 1\} = 0$ for each $r \in N$.

THEOREM 3. Let $\sigma = (b_0 \ge b_1 \ge \cdots)$ be a partition of 2n which satisfies $(\nabla \nabla)$. We denote the dual partition of $(\sigma/2) = ((b_0/2) \ge (b_1/2) \ge \cdots)$ by $\tau = (d_0 \ge d_1 \ge \cdots)$. Then $C[t \cap \overline{O}_a]$ is isomorphic to $\operatorname{Ind}_{W_{\tau}}^W(1_{W^{\tau}})$ as a W-module, where $W_{\tau} = S_{d_0} \times S_{d_1} \times \cdots \subset S_n \subset W$.

We prove this theorem in exactly the same manner as Theorem 1. Let P_{τ} be the parabolic subgroup given by

$$P_{\tau} = \left\{ \begin{bmatrix} x & y \\ 0 & {}^t x^{-1} \end{bmatrix} \in G \ \middle| \ x = \begin{bmatrix} A_0 & * \\ A_1 & \\ 0 & \cdot \end{bmatrix}, \quad A_i \in GL(d_i, C)
ight\}.$$

Then the Richardson orbit corresponding to P_{τ} is O_{σ} and the subgroup of W corresponding to P_{τ} is W_{τ} . Since $-\bar{O}_{\sigma}$ is normal by Kraft-Procesi [6] and $G^x = P^x$ for $x \in O_{\sigma}$ by Springer-Steinberg [10; III, 4.16], $C[t \cap \bar{O}_{\sigma}]$ contains $\operatorname{Ind}_{W_{\tau}}^{W}(1_{W_{\tau}})$ by Kraft [5; Proposition 4].

Let $h_i^{\sigma} \in C[g]$ be the restriction of $g_i^{\sigma} \in C[M(2n, C)]$ (cf. §3) to $g = \mathfrak{sp}(2n, C)$. Then the following is obvious.

LEMMA 5. $x \in \overline{O}_{\sigma}$ if and only if $h_i^{\sigma}(x) = 0$ for all i.

582

Set $B^n = C[t] = C[x_1, \dots, x_n]$. We denote the restriction of h_i^{σ} to t by $\tilde{h}_i^{\sigma} \in C[x_1, \dots, x_n]$. For $L_{\sigma} = (\tilde{h}_i^{\sigma})$ and $\bar{B}_{\sigma}^n = B^n/L_{\sigma}$ we have only to prove the following (##).

(##)
$$\dim \bar{B}^n_{\sigma} \leq 2^n \binom{n}{\tau}$$
.

We note that L_{σ} is generated by the coefficients of t^{m} in $\prod_{p=1}^{k} (t^{2}-x_{i_{p}}^{2}) \prod_{q=1}^{r} (t-\varepsilon_{q}x_{j_{q}})$ with $k, r, m, \varepsilon_{q}, i_{1}, \cdots, i_{k}, j_{1}, \cdots, j_{r}$ running through the integers satisfying $0 \leq k \leq n, 0 \leq r \leq n, 0 \leq m \leq p_{\sigma}(2k+r) - 1, \varepsilon_{q} = \pm 1, 1 \leq i_{1} < \cdots < i_{k} \leq n, 1 \leq j_{1} < \cdots < j_{r} \leq n, i_{p} \neq j_{q} (1 \leq p \leq k, 1 \leq q \leq r).$

We prove (##) by induction on *n*. The case n = 1 being trivial, we assume that $n \ge 2$ and (##) holds for n - 1.

DEFINITION. For a partition $\sigma = (b_0 \ge b_1 \ge \cdots)$ of 2n with $(\bigtriangledown \bigtriangledown)$ and an integer i with $b_0 > i \ge 0$, we define a partition $\sigma_{(i)} = (b'_0 \ge b'_1 \ge \cdots)$ of 2(n-1) which also satisfies $(\bigtriangledown \bigtriangledown)$ as follows. $b'_{t_0} = b_{t_0} - 2$ for $t_0 = \max\{t \mid b_t > i\}$, and $b'_j = b_j$ for $j \ne t_0$.

Let $\Psi: B^n \to B^{n-1}$ be the algebra homomorphism given by $\Psi(x_j) = x_j$ $(j \neq n)$ and $\Psi(x_n) = 0$. We fix a partition $\sigma = (b_0 \ge b_1 \ge \cdots)$ of 2n satisfying $(\nabla \nabla)$. Let $\check{\sigma} = (c_0 \ge c_1 \ge \cdots)$ be the dual partition of σ and let $\tau = (d_0 \ge d_1 \ge \cdots)$ be the partition of n as in the statements of Theorem 3. We can prove the following just in the same way as in the proof of Lemma 2. So we omit the proof.

LEMMA 6. $\Psi(L_{\sigma}) \subset L_{\sigma_{(s)}}$.

Thus Ψ induces a surjective homomorphism $\Psi_i: \overline{B}^n_{\sigma} \to \overline{B}^{n-1}_{\sigma_{(i)}}$.

LEMMA 7. $(\operatorname{Ker} \Psi_i) x_n^i \subset (x_n^{i+1})$ in \bar{B}_{σ}^n .

PROOF. It is easily seen that $\operatorname{Ker} \Psi_i$ is generated as an ideal by x_n and the coefficients of t^m in $\prod_{p=1}^k (t^2 - x_{ip}^2) \prod_{q=1}^r (t - \varepsilon_q x_{j_q})(t + x_n)$ with $k, r, m, \varepsilon_q, i_1, \cdots, i_k, j_1, \cdots, j_r$ running through the integers which satisfy $0 \leq k \leq n-1, 0 \leq r \leq n-1, 0 \leq m \leq p_{\sigma_{(i)}}(2k+r), \varepsilon_q = \pm 1, 1 \leq i_1 < \cdots < i_k \leq n-1, 1 \leq j_1 < \cdots < j_r \leq n-1$ and $i_p \neq j_q$ for any p and q. Set $\prod_{p=1}^k (t^2 - x_{ip}^2) \prod_{q=1}^r (t - \varepsilon_q x_{j_q})(t + x_n) = \sum_{s=0}^{2k+r+1} a_s t^s \in \overline{B}_{\sigma}^n[t]$.

Then the coefficient of t^m in $(\sum_{s=0}^{2k+r+1} a_s t^s)(t-x_n)$ vanishes for $m \leq p_{\sigma}(2k+r+2)-1$. Thus arguments similar to those in the proof of Lemma 6 show that $a_m x_n^i$ is contained in the ideal (x_n^{i+1}) of \overline{B}_{σ}^n for $m \leq p_{\sigma(i)}(2k+r)$, and we are done. q.e.d.

PROOF OF THEOREM 3. Let J_i be the principal ideal of \bar{B}^n_{σ} generated by x_n^i . Then since J_i/J_{i+1} is a cyclic $\bar{B}^{n-1}_{\sigma(i)}$ -module, we have $\dim(J_i/J_{i+1}) \leq \dim \bar{B}^n_{\sigma(i)} \leq 2^{n-1} \binom{n-1}{\tau(i)}$, where $\tau(i)$ is the dual partition of $(\sigma_{(i)})/2$. Thus

$$\dim ar{B}^n_\sigma = \sum\limits_i \dim \left(J_i/J_{i+1}
ight) \leq 2^{n-1} \sum\limits_i inom{n-1}{ au(i)} = 2^n inom{n}{ au}$$
 ,

which proves (##) for *n* and the proof of Theorem 3 is complete. q.e.d.

REMARK. $C[t \cap \overline{O}_x]$ is the direct sum of the subspaces $C[t \cap \overline{O}_x]_i$ of degree *i* which are *W*-invariant. For a partition $\sigma = (b_0 \ge b_1 \ge \cdots)$ of 2n satisfying $(\nabla \nabla)$ we set $d(\sigma) = (b_0/2)^2 + (b_1/2)^2 + \cdots$. Then it follows from the proof of Theorem 3 and Kraft [5; Proposition 2] that $C[t \cap \overline{O}_\sigma]_i =$ (0) for $i > d(\sigma)$ and $C[t \cap \overline{O}_\sigma]_{d(\sigma)}$ is the irreducible representation corresponding to $((0), \tau)$ where τ is a partition of *n* as in the statement of Theorem 3. (An irreducible representation of the Weyl group of $\mathfrak{sp}(2n, C)$ is characterized by an ordered pair of two partitions (λ, μ) with $|\lambda| +$ $|\mu| = n$. Cf. Mayer [8].)

References

- C. DECONCINI AND C. PROCESI, Symmetric functions, conjugacy classes and the flag variety, Invent. Math. 64 (1981), 203-219.
- [2] R. HOTTA AND T. A. SPRINGER, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), 113-127.
- [3] S. L. KLEIMAN, Rigorous foundations of Schubert's enumerative calculus, Proc. of Symp. in Pure Math. Vol. XXVIII (1976), 445-482.
- [4] B. KOSTANT, Lie group, representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404.
- [5] H. KRAFT, Conjugacy classes and Weyl group representations, Tableaux de Young et foncteurs de Schur en algèbre et géométrie (Conférence internationale, Toruń Polgne, 1980) Astérisque 87-88 (1981), 195-205.
- [6] H. KRAFT AND C. PROCESI, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), 227-247.
- [7] H. KRAFT AND C. PROCESI, On the geometry of conjugacy classes in classical groups, preprint Bonn/Rom (1980).
- [8] S. J. MAYER, On the characters of the Weyl group of type C, J. Algebra 33 (1975), 59-67.
- [9] N. SPALTENSTEIN, The fixed point set of a unipotent transformation on the flag manifold, Nederl. Akad. Wetensch. Proc. Ser. A 79 (1976), 452-456.
- [10] T. A. SPRINGER AND R. STEINBERG, Conjugacy classes, Seminar on algebraic groups and related finite groups (The Institute for Advanced Study, Princeton, N. J., 1968/69), Lecture Notes in Mathematics, Vol. 131. Springer-Verlag, Berlin (1970), 167-266.
- [11] T. A. SPRINGER, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207.

[12] T. A. SPRINGER, A construction of representations of Weyl groups, Invent. Math. 44 (1978), 279-293.

Mathematical Institute Tôhoku University Sendai, 980 Japan