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In [13], Takahashi and Oharu have proved a convergence theorem
for sequences of semigroups of Oharu's classes (C{k)) which extends the
"continuous" Trotter theorem [15]. We establish a discrete version of
this result (Theorem 1), i.e., with the approximating sequence of semi-
groups replaced by a sequence of powers of bounded linear operators.
This is applied to two particular sets of (C(1))-semigroups, one originating
in the theory of approximation with exponential orders [7], the other
coming from a discretization of a certain Cauchy problem [12], [13; Ex.
5.4]. Instead of a semi-discrete version of the latter problem we now
consider its full discretization and show, e.g., that the weakened stability
condition of Theorem 1 applies in this case. Moreover it will be shown
that the two examples are not of class (A), in general, and a summary
of further approximation properties will, be given.

1. A discrete convergence theorem for semigroups of class (C(fc)).
The classes (C(fc)) of semigroups have been introduced by Oharu [11; p.
250] in connection with abstract Cauchy problems. They have been
investigated futher in [13]. To define them we need the following
notations.

Let X be a Banach space, [X] the space of bounded linear operators
from X into itself, and {T(t), t > 0} a semigroup of operators in [X],
Let ω0 = lim^oo t~ι log || Γ(t) || be the type of the semigroup, and Σ = {/ e X;
lim^0+ || T{t)f - / | | = 0} its continuity set. Supposing {T(ί), t > 0} to be
strongly continuous on (0, oo), we denote by J?0(λ) the Laplace transform

(1.1) i?0(λ)/ = Γ e~xtT{t)fdt (λeC)
Jo

whenever the right hand side exists as a Bochner integral. Let Ao be
the infinitesimal operator of the semigroup and set Xo = U t > 0 T(t)(X).

Following Oharu [11] one says that the semigroup belongs to class
(C(k)) if it satisfies the following conditions:
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(C.I) XQ = X,

(C.2) there exists ωλ > ω0 such that for each λ e C with Re (λ) > ωx there
is an operator R(X)e[X] with R(X)\Zo = R0(X)\XQ,

(C.3) if R(X)f = 0 for X > <*)„ then / = 0,

(C.4) there exists keP such that R(X0)
k(X) c Σ for some λ0 > ωx.

Here P denotes the set of non-negative integers. A semigroup satisfying
(C.1)-(C3) has a closable and densely defined infinitesimal operator Ao.
Its closure A, the infinitesimal generator, satisfies

{λ; Re (λ) > ωj c p(A) , R(X, A) = i?(λ) for Re (λ) > ωx.

Here |θ(A) denotes the resolvent set of A and R(X, A) the resolvent of
A at λG|θ(A). Thus condition (C.4) can be replaced by

(C.4)' there exists keP such that D(Ak) cΣ.

For k e P, k ^ 1, the classes (C(W) properly contain the familiar classes
[9; p. 320] of semigroups; in particular, (1, A) c (0, A) c (C(1)) and (A) c
(C(2)), whereas (Co) = (C(o)), cf. [11; pp. 256-259].

A convergence theorem for (C(A0)-semigroups has been established by
Takahashi and Oharu [13; Cor. 3.8.], i.e., a theorem giving sufficient
conditions upon a sequence {Tn(t)}neN of (C(fc))-semigroups in order that
there exists a limiting semigroup Γ(ί) of class (C(W) such that

lim || Tn{t)f - T(t)f || = 0 for each t > 0 .
n—* oo

For A; = 0, this result contains Trotter's well-known theorem [15; Thm.
5.2]. Discrete versions of Trotter's theorem, dealing with the sequence
of powers of an operator Qn e [X] instead of {Tn(t)9 t > 0}, have been
given, e.g., in [15; Thm. 5.3], [10; Thm. (2.13)], [1; Satz 2.4]. There the
limiting semigroup always belongs to (Co), and the stability hypothesis
implies in particular that the sequence {Qn}nes has to be uniformly bounded
in norm. The following extension of the discrete Trotter type theorem
admits limiting semigroups which are of class (C(W) only, and sequences
{Qn)nBN which are not necessarily approximation processes. To formulate
this theorem we need the following notations.

Given a positive null sequence {hn}neN, a sequence {QJnejv of operators
in [X] will be said to satisfy property

(Dl) if there exists an ωeR such that

sup \\R(X, An)\\u} < oo
neJV



OPERATOR SEMIGROUPS 541

for each λ > α>, where An = h~\Qn - I), with / the identity operator,

(D2)fc if, for some keP, there exist constants M, K, n0 such that

for all / e l , j , neN, n ^ n0, where \\f\\k,n = Σ t o \\Anf\\x,

(D3) if
sup \\exv{tAn}\\ίxl < oo
neN

uniformly in t on each compact interval [α, 6]c(0, °°),

(D4) if

uniformly in t on each compact interval [α, δ]c(0, oo). Here [a] denotes
the integral part of a e R.

Given a closed linear operator A with domain D{A) c X and range
R(A)aXf a set DaD(A) is called a core of A if the closure of A\D is
A. We then say that {Qn}neN and A satisfy property

(D5)fc if, for some keP, there is a core D of A with flcΰ(ifc+1) such
that, for the ω of condition (Dl),

p(A) Π {λ; λ > a)} :£ 0 , D(A) is dense in X , and
lim ||Aif - A'/H = 0 for each feD and each ί = 1, 2, , & + 1 .
TO—*OO

Conditions (D1)-(D3) are our substitutes for conditions (I), (Πθxp),
(IV)' of [13; Cor. 3.8], respectively, and condition (D5)Λ corresponds to
their consistency condition (III)'. Conditions (D2)fc and (D4) together are
the substitutes for the stability type condition of the classical Trotter
theorem.

THEOREM 1. Given a sequence {Qn}nBN c [X] and a closed linear opera-
tor with D(A) c X, R(A) c X, suppose that there exists a positive null
sequence {hn}neN such that, for some keP, conditions (Dl), (D2)fc, (D3),
(D4), and (D5)k are satisfied. Then

( i ) A generates a (C^-semigroup {T(t); t > 0},
(ii) l i m n _ | | Q ^ ] / - T{t)f\\ =0

for each feX, uniformly in t on each compact interval [α, 6]c(0, oo).

For the proof the auxiliary semigroup operators

(1.2) Tn(t) = exp (tAn) (ί > 0, n e N)

will be used. Proceeding as in [10; p. 363] and using (D2)fc one readily
obtains:
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LEMMA 1. Given [a, δ]c(0, oo) and εe(0,1), there exists n^eN such
that, under the hypotheses of Theorem 1,

\\Tn(t)f- Q W H z ^ 2Meb^){hnε->a-i\\f\\k,n + (36s + K)\\Anf\\k,n}

holds for each f eX, n^ nlf te [a, b].

PROOF OF THEOREM 1. For each n e N, {Tn(t); t > 0} forms a (Co)-
semigroup and hence belongs to (Cik)) for each he P. The convergence
theorem of Takahashi and Oharu [13; Cor. 3.8] can be applied to these
semigroups. Indeed, the hypotheses (I), (III)', and (IV) of that theorem
are obviously satisfied in view of (Dl), (D3), and (D5)fc, so that only
condition (ΠθχP) remains to be verified, i.e., constants ω^ ω and Mι are
to be found such that for each / e D(Ak

n) and each t > 0

(1.8) IIΓ^/II^ΛIiβ-i H/IU,,.

Using (D2)fc and observing that D(An) = X = D(Ai)f one has for each
n ^ n0, t > 0, feX

\\τn(t)f\\ =«-"*• Σtf/W'tf!)-1^^
j=o II j = o

For n < nQ one has || Γn(ί) || ^ Λfn exp {ωnί} with constants ωn and Mn.
Choosing

a>! = max {sup (eKhn — 1)/Λn, α>, max ωn] and Λfx = max {M, Mn] ,

which are finite, inequality (1.3) follows. Hence the Takahashi-Oharu
theorem implies the existence of a (C(A;))-semigroup {T(t); t > 0} which is
generated by the operator A and satisfies

(1.4) lim || Tn{t)f - T(t)f\\ =0 ( / e l ) ,
71->OO

uniformly in t on each compact interval [α, δ]c(0, oo). This proves
assertion (i). Using (1.4), assertion (ii) will follow by

||Qc /*.y- Tit)f\\ ̂  || 2 W - Tn{t)f\\

= o(l)+\\Tn(t)f-Qί:/hnV\\,

if we show that, for each / e l ,

(1.5)

uniformly in t on each compact subinterval of (0, oo).
First we consider functions feD. By (D5)k there exists a constant
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n2f independent of i, such that for all n ^ n2

if 1 <; i <; k + 1. Thus An||/lk» = o(l), n-> ©o, as well as

hn\\AJ\\k,n = fcn£ U^fW
i0

for each feD. Therefore, given any compact interval [a, 6]c(0, oo),
Lemma 1 yields

\\TMf- Q?'* ]/H = o(l) + O(e\\Anf\\ktn) = 6-0(1) , n-> ~

uniformly in ί on [α, &]. Since ε can be arbitrarily small, (1.5) follows.
Now let / e l By (D3), (D4), and (1.2) the family of operators

{Γn(ί) - Qψ^ neN, te[a, b]} is uniformly bounded on X Since D is
dense in X, the Banach Steinhaus theorem yields (1.5) on all of X, and
the proof is complete.

We remark that the assumptions of Theorem 1 in case k = 0 are
identical with those of the known discrete version of Trotter's theorem,
but the conclusion of the latter is somewhat stronger since it admits to
choose a — 0. For keN, however, there is in general no uniform con-
vergence on intervals of the form [0, 6].

2. Approximation of particular semigroups of class

2.1. The semigroups {Tφ(t)\ t > 0}. In this section we consider an
application of Theorem 1 with is = 1 to a particular set of operators Qn

on the space C2π of continuous, 2ττ-periodic functions, and obtain an inter-
esting set of (C(1))-semigroups whose properties will then be studied in
more detail. For the Qn we choose the general typical means Rφ>n of
the Fourier series of an / 6 C2π, where

(2.1) Rψtn(f; x)= Σ (1 ~ 9(1 m | ) / φ + l ) ) Γ ( m y - (n e N, x e R) ,

with /"(m) denoting the Fourier coefficient of / of order meZ = {0, ± 1 ,
±2, •} and φ being any function of class Ω below. Denoting by Cr(0, oo)
the space of functions with continuous r-th derivative on (0, oo), we define

#o = {ψ\ φ- [0, oo) -> Rf φ(0) = 1, φ 6 C\0, oo), φ\χ) > 0 V X > 0 ,

limbos) = +00} ,

(2.2) Ω = {φ 6 ΩQ; φ(x) = eg(x), fir 6 C3(0, 00), 3 xQ > 0 with g"(χ) ^ 0 ,

ff'"(αθ ̂ O V ^ X o , and lim sup | g"(χ) \(g'(x))-2 < 1} .
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These classes have been introduced in connection with exponential rates
of approximation (see, e.g., [6], [7]), and the approximation behavior of
typical means with φ e Ω has been studied in [4, II]. One of the general
results there implies that, if φ grows faster than any polynomial, i.e.,
φ 6 Ωlf where

(2.3) Ω^iφe Ω; lim | g'\x) \(g\x)Γ = 0} ,
3C-+OO

then the corresponding operators Rψt7l are no longer uniformly bounded
in n on C2π. In fact, for each φeΩ one has ([4, II; Thm. 4.1])

(2.4) | | R φ , n \\ίθ2χl ~ (4/ r2) log {ng\n)} , n -> - ,

where an ~ bni n —> °° denotes two sequences with an = 0(6 J and bn — O(an)
as n-+oo. Nevertheless, on a suitable set of "smooth" functions the
Rφ>n yield the same rate of approximation as the trigonometric poly-
nomials of best approximation of degree n.

On the other hand, if φ e Ω\Ωlf then g\n) = O(l/n), n -> °o ([4, I;
Lemma 4.1]) and thus ||ϋ^,J|[(727C] = 0(1), n—> ©o, by (2.4). So there is an
essential distinction between the two cases φeΩ1 and φ e Ω\ΩX which will
also be called "exponential" and "classical" orders, respectively. Such a
distinction will also be important for the properties of the limiting
semigroup {Tφ(t); t > 0} obtained from the Rψ>n via Theorem 1.

We apply Theorem 1 with X — C2πy equipped with the maximum-norm,
Qn = Rψin for some φeΩ, and A = Aψ where Aψ is defined by

(2.5) (AΨfT(m)= -φ(\m\)Γ{m) (meZ)

(2.6) D(AΨ) = {/6Cv; 3heC2π with φ(\m\)Γ(m) = hT{m) VmeZ) .

Obviously Aφ is a closed operator. Moreover we choose

K = l/φ(n + 1) , Aφ,n = φ(n + l)(Λ,,n - I) .

As is easily checked, conditions (D2)k and (D5)4 are satisfied with k = 1
for each φeΩ. In particular, the set P2π of all trigonometric polynomials
is a core of Aφ, and ω may be taken to be 0. Condition (D4) is satisfied
since for each t e [α, b] c (0, <χ>) and each / 6 G2π

Σ (1 - 9{\m\)lφ{n + l)ψ*™
\m\rgn

, + Σ (1 - Ψ(m)/φ(n + l)) *< +»-Λ
m=τiQ /

+ Σ exp{-φ(m)(aφ(n + 1) - l ) / φ + 1)})

where n0 is chosen such that aφ(n + 1) > 1 V n^n0, and the latter
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sum is bounded as n —> oo since limsup^*,(logx)/g(x) < 1 for each φeΩ
and therefore φ{k) ^ k for k large enough. Similarly one obtains that
|| exp {&£,,,„}/H^ ^ C 2 | | / | | with a constant C2 independent of / and t, for
each t e [a, b] c (0, oo), whence (D3) is satisfied. Using (D3) and the fact
that {exp {tAψtn}; t > 0} is a (C0)-semigroup on C2JΓ for each neN, one has,
for each λ > 0, neN

|| R(X, AψJf \\a2ίC = Γ β-» exp {ίi^,.}/dί ^ || / \\σJc9 + C2 Γ e-"dt)
Jo c2^ \ Jo /

with a constant C3, thus (Dl) holds with ω = 0, and Theorem 1 now
yields:

COROLLARY 1. For each φeΩ, the operator Aφ is the infinitesimal
generator of a (Ca))-semigroup {T9(t); t > 0} on C2π. Moreover,

(2.7) lim | |Λ&<»+»y - Tφ{t)f ||,2jr = 0
n—»oo

for each f e X, uniformly in t on compact subintervals of (0, oo).

Using a uniqueness theorem of Oharu [11; p. 250], an explicit repre-
sentation of the operators Tφ(t) is obtained:

(2.8) TΨ(t)(f; x) = Σ e-w™rWm (/e C2,; ί > 0)
eZ

they are also called generalized Abel-Cartwright means. In case φ e Ω\Ω1

it can be shown that the Tφ(t) belong to (Co). But for φeΩ1 they are
no longer in (Co), as has been shown in [7; p. 170], already. Thus, rela-
tion (2.7) cannot be deduced from the discrete version of the classical
Trotter theorem. Moreover one has:

PROPOSITION 1. For each φ e Ωlf the semigroup defined by (2.8) does
not belong to the class (A).

PROOF. For each ψeΩx one has (log x)/g(x) = o(l), x —> oo ([7; Lemma
1]), thus there exists xt > 0 such that φ(x) ^ x2 for each x ^ xx. Using
this one obtains

(2.9) || Γ f(ί) ||[C7te] ^ Σ z e ^ ( | m | ) ^ 2 ^ + 1

for each t > 0, and consequently the operator i??(λ) defined by

(2.10) Rψ(\)f=[°e-λtTΨ(t)fdt (feCv)
Jo

belongs to [C2π], if Re (λ) > 0. In view of the definition of (A) [9; p. 322]
and the uniform boundedness principle, the assertion follows if we can
show that



546 E. GΰRLICH AND D. PONTZEN

(2.11) lim sup || \Rφ(\) || W t e J = + oo .

For this purpose the familiar test functions

(2.12) fn(x) = 2 sin (n + l)x Σ m"1 sin raα (neN, xeR) ,
m = l

can be used, which are uniformly bounded in x and n (cf. [18; p. 61]).
Setting n(\) = [^"'(λ)] and α(λ) = 1 + [W(9>~W)] for λ ^ 1 one has

) lk ^ I Σ Λ
meZ

= Σ (λ/i){(λ + φ(n(X) + 1 - i))"1 - (λ + φ(n(X) + 1 + j))"1}

() ()

^ Σ (λ/i)(λ + 9(w(λ) + l - i))-1 - Σ V(M»00 + l + Λ)
y=α(.ί)+l i=α(^)+l

= /x - I2 , say.

By (2.2) there is a constant d such that g\x) ^ d for all x ^ 0. Thus
we have

I, ^ λ(λ + ^(ζp-^λ) - α(λ)))-1 Σ i"1 ^ (1/2) x-1 dx
3 = aU)+l JαU) + l

+ 1)) ,

and, since φ 6 i2x implies that lim^oo xg\x) = oo ([7; Lemma 1]), it follows
that

(2.13) lim sup I, = +oo .

For I2 we use the convexity of φ for large arguments and obtain

nU) n(X)

1^ Σ (λ/Λ(λ + 3<pr{φ-\\))Tι ^ Σ M
J = α(R)+l (A

^ 1 ,

which, together with (2.13), proves (2.11).

Without proof we state that, in the present case, beyond the mere
convergence property (2.7), there is a rather high rate of approximation
available, namely:

PROPOSITION 2. For each φeΩ and a > 0,

|| &Z{n+in - Tφ(t) \\ίC2πl = 0(l/φ(n + 1)) , n->oo ,

uniformly in t for a ^ t < oo.
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2.2 The semigroups {Tg(t); t > 0}. To introduce another typical
example of a (C(fc))-semigroup which is encountered as a limit in Theorem
1, we consider the following initial value problem. For the sake of
consistency with the usual notations in the theory of difference methods
for initial value problems we will use in this subsection the letters h
and k as step parameters of difference operators though they have
another meaning in the rest of the paper.

Let L\R) = L\R) x L\R) with elements / = (/lf /2) and norm | | / 1 | =

(ll/illi + ll/.lli)1/2 where [| jTx ||2 denotes the usual norm

WΛW* = ((2πri/2\\Λ(x)\2dxJ2 ,

and let qeP, 0 ^ q ^ 4. The problem is to determine a vector valued
function u{x9 t) = {ux{x91), u2(x, ί)) of the variables x e iJ, ί > 0 such that
u( , t) 6 Z/2(JR) for each ί > 0, and w solves the Cauchy problem

(2.14) dujdt = d2ujdx2 + i~q dgujdxg , St^/Sί = d2ujdx2

with initial condition w(#, 0) = f(x) for a given / e L\R). This is a
slightly modified version of an example by Sunouchi [12; p. 403, 405],
who considered a discretization of this problem with respect to the space
variable x in connection with his generalization of the continuous Trotter
theorem. We now consider the discretization of this problem both in the
space and time variables in connection with Theorem 1.

Denoting by Pq>Q the differential operator defined by the right hand
side of (2.14), PqtQ is not necessarily closed (in fact, it is closed for
q = 0, 1, 2, not for q — 3, 4) but it has a closure which will be denoted
by Pq (cf. [17; p. 78]). So we consider the abstract Cauchy problem (cf.
[12; p. 403, (A.2)])

(2.15) dujdt = Pqu , u(x, 0) = f(x) .

To set up the corresponding discrete problem, Pq will now be replaced
by an operator Aq>h which is obtained by replacing the derivatives
du(x, t)jdx on the right hand side of (2.14) by central difference quotients
(2h)~1(u(x + h,t) — u(x — h, t)) with increment h, and du/dt will be
replaced by the forward difference quotient k~\u(xf t + k) — u(x, t)).
The increments h and k will always be related by

(2.16) k/h* = μ

where μ > 0 is assumed to be fixed number, μ <̂  2, and M = max {2, q).
So the discrete solution uk(x,t) satisfies

k-\uk(x, t + k)- uk(x, ί)) = (Aqthuk)(x, t) , uk(x, 0) = f{x).
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To be explicit, we reformulate this as

(2.17) uk(x, ί + ft) = (Eq>kuk)(x, t) , uk(xy 0) = f(x) ,

where

(2.18) Eqtk = kAqth + I

and apply the Fourier transform with respect to x. Then the matrix
Eqtk turns into

/I — k(h~x sin hvf k(h~ι sin hv)q \
(2.19) E~k =

\ 0 1 — k(h 1 sin hvfj

where veR, and the transformed problem consists in determining
uk(v, t) 6 L\R) such that

uk(v, ί + ft) = E~ku2(v, t) , v£(v9 0) = f~(v) .

Using Theorem 1, the solution of (2.15) can now be obtained from the
Eqtk when ft tends to zero.

COROLLARY 2. For each qeP, q <̂  4, there exists a (C a))semigroup
{Tq(t); t > 0} such that u{x, t) = Tq{t)f{x) is a solution o/(2.15). Moreover,

(2.20) \im\\El%kV-Tq{t)f\\ =0
k-*0+

for each feL\R), uniformly on compact subintervals of (0, °o).

PROOF. Let {ftn} be a fixed null sequence of positive numbers and
define hn by ftn = μh* (cf. (2.16)). In Theorem 1 we take X = L2(iί),
QΛ = Eg,kn, A = P9 with JD(Pf) = {̂  6 Z2(Λ); P g ^ e L2(Λ)}, and ft = 1. More-
over we replace the sequence {hn} in Theorem 1 by the sequence {ftj.
Condition (Dl) of the theorem is then satisfied with ω = 0 since
sup^o %q(λ + #2)~2 < °° for each λ > 0. To verify condition (D2)x it has
to be shown that

(2.21) \\ELnu|| ^ Meκk«>'{\\u\\ + \\ Aq,hnu||}

for each u 6 L\R), j, neN, n^ n0. This can be proved by observing
that

,EikT = (o- -
\

and therefore

\\EUu\\

h(h sin hv))3

0

= \\(Eikni-.

<: sup | (Elky(I

jkQr1 sm hv)q(l —

Λ )~~ (£ —— A ill

- A^-'Kikii + IIAq,hu\
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which implies (2.21). Conditions (D3) and (D4) are satisfied since
su])x^0x

9/2e~x<oo. In order to verify (D5)x we use as a core of Pq the set
D of functions u e L\R) for which vΓ has compact support. In view of

o -vη

one obviously has D c D(Pl). For X > 0 the resolvent R(\ P,) is given by

/(λ + vT1 -v"

(2.22) i?(λ,P,Γ =

I 0 0
it is bounded on L\R), and thus {λ; λ > 0} c p(Pg). It remains to prove
that, for each ueD, j = 1, 2,
(2.23) lim \\AΪ,hnu - P{u || = 0 .

71—+OO

If w 6 D and v0 is chosen such t h a t uΓ{y) = 0 V | v \ > vQ, one has
I(/r 1 s i n h v ) r - vr\^> h2rvr

0

+2/6 for each \v\^vQ. The assertion (2.23) for
j = 1 now follows by

- (fe-1 sin fet;)2 (Ẑ "1 sin
^ sup .

i I \ 0 v2 — (/r1 sm

which tends to zero as h —• 0, and similarly for j = 2. Hence all the
hypotheses of Theorem 1 are satisfied, and, since {kn} is an arbitrary
null sequence, the proof is complete.

To give an explicit representation of Tq(t)9 let

Xt(x) = (2£)-1/2e-*2/4ί (t > 0, xe i ί )

denote the Weierstraβ kernel, and let

where (g) denotes the g-th derivative. With the usual notation (/ * g){x) —

(2ττ)-1/2 Γ f(x - u)g(u)du for convolution, Tq(t)f for an / = (/x, /,) 6 L\R)
J_oo

is given by

(2.24) Γ f(ί)/ =

For g ^ 2 these semigroups belong to (Co) since their norm in this case is

|Γ,(ί)|| =sup|exp{ίPΓ}| = sup
0

= 0(1) ,
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as £-»0 + , and the convergence \\Tq(t)f — f\\-+0 as £—•()+ is trivial
for each feD. For q = 3 or 4, however, the resolvent can be estimated
from below by

, Pq)\\ ̂  λsup \v\q/(X + vj =

with a constant C(q) only depending on q. Therefore,

PROPOSITION 3. For q e {3, 4} the semigroup {Tq(t), t > 0} does not
belong to class (A).

3. Further properties of semigroups of class (C(W). In conclusion
we summarize some further properties of the two sets of (C(1))-semi-
groups, which will be proved in a forthcoming paper [8]. The rate of
approximation of a semigroup T(t)f to / a s t—>0+ can, generally, be
derived via interpolation from its saturation properties, i.e., from a
characterization of the set S({Γ(ί)}) = { / e I ; || T(t)f - f \\ = O(ί), t-> 0 + },
which is called the saturation class of {T(t)}. Therefore one is interested
to know whether the classical characterization for (C0)-semigroups remains
valid, namely (see [4; p. 224], [2]), for a general Banach space X,

(3.1) S({T(f)}) = D{A)~*

and, in case X is reflexive, also

(3.2) S({T(t)}) = D(A) .

Here D(Ayx denotes the relative completion of the Banach subspace D(A)
with respect to X, cf. [2; p. 14]. It can be shown that this result extends
to (0, d)-semigroups. But for (C(fc))-semigroups, k ̂  1, this is no longer
true.

Indeed, for the semigroups {Tφ(t)f t > 0} with φeΩι and X — C2π one
can show the following relations

φ S({Tφ(t)}) = {fεC2π; \\Rφ>nf-f\\ - O( l/φ + 1)), Λ-> ~}
(3.3) D(Aψt0) n H mr

where A9f0 denotes the infinitesimal operator, and D(Aφ)^C2π = {/ e C2π;
3 # e L £ with φ(\m|)/"(m) = flrΛ(m) VmeZ}. In particular, (3.1) no longer
holds.

For our second example {Tq(t)9 t > 0}, q = 3, 4, we have, in the re-
flexive space L\R),

D(Pg>0) C S({Γf(ί)})
 2

so that (3.2) is incorrect, too.
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Moreover, it can be shown that, for a (C(fc))-semigroup {T(t), t > 0}
on a Banach space X, which is not in (0, CJ and whose operator norm
satisfies | |Γ(ί) | | [ z ] = O(rα), £-+0 + , for some a < 1, one generally has

O S({T(t)}) ^
D(A0) H D{ATX .

^ D{A) <>
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