Téhoku Math. Journ.
34 (1982), 509-523.

EXISTENCE OF SOLUTIONS AND GALERKIN APPROXIMATIONS
FOR NONLINEAR FUNCTIONAL EVOLUTION EQUATIONS

ATHANASSIOS G. KARTSATOS AND MARY E. PARROTT

(Received December 14, 1981)

1. Introduction—Preliminaries. In this paper we are concerned
with existence and approximation results for nonlinear functional evolution
equations in Banach spaces. Let X be a Banach space with norm ||,
and let C = C([—r, 0], X) be the Banach space of continuous functions
mapping the interval [—7, 0], for some » >0, into X with norm ||+ | =
SUPser—pall (@) ]. Let x,€C be defined by «,(0) = x(t + 6) for 6e[—7, 0].
In [9] we examined the existence of a unique strong solution of the
abstract initial value problem

(FDE) 2'(t) + A@)at) = G, %), tel0,T], x=9g,

where A(t): D(A(t)) = Dc X — X, G satisfies a global Lipschitz condition
with respect to both variables, and ¢ € C is such that ¢’ € C and ¢(0) € D.
Furthermore, we required that X*, the dual of X, be uniformly convex
and for each te[0, T'], A(t) be m-accretive (see definition below) and
satisfy a Kato time-dependence condition of the form

(%) |A®)x — A@)z]l = |t — s| L= DA + [| A(s)z )

for all ¢,s€[0, T] and xe D, where L: R, =[0, «)— R, is a given
increasing function.

By a “strong solution” of (FDE) on [0, T] we mean an absolutely
continuous X-valued function which, for almost all ¢ €[0, T'], is strongly
differentiable and satisfies (FDE). The unique strong solution x(f) of
(FDE), whose existence was known from previous results, was shown
in [9] to be the uniform limit of strongly continuously differentiable
solutions of approximating equations for (FDE) involving the Yosida
approximants of A(t). In [10] a method of lines for the approximation
of the solution x(¢) of (FDE) was developed.

Our purpose in this paper is two-fold. We first establish a local
existence result for a more general nonlinear abstract functional problem
of the type:

(DE) x'(t) + A, x)x(t) =0, telo,T), X =¢,
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where A(t, ¢)v is m-accretive in v for every (¢,¢)e[0,T) x C,, C, a
certain closed subset of C, and satisfies a local Lipschitz-type condition
int and ¢. As an important example of our result, we obtain the local
existence of a unique strong solution of (FDE) under the given condi-
tions, but with G satisfying now a local Lipschitz condition. This result
is still new if the Lipschitz condition is global, and an application of it
is given in Section 4.

Our second goal is to establish a Galerkin method for the approxima-
tion of the solutions of (FDE) for the case of a Hilbert space X, under the
additional assumptions that A(¢) be defined on the whole of X and map
bounded subsets of X into bounded sets. Our result, Theorem 2, is an
improvement of the corresponding result of Kartsatos [8], and is illustrated
in Section 4 by an example involving nonlinear partial elliptic operators
of order 2m.

For ze X, z* e X*, let (x, 2*) denote the number x*(x). We define
the “duality mapping” J: X — 2*" as follows:

Jr = {z* e X*; <x, 2*) = [[=]]* = [[=*[]%} .
The set Jx is nonempty by the Hahn Banach theorem. However, if
X* is uniformly convex, then the duality mapping J is single valued
and is uniformly continuous on bounded subsets of X. An operator
B: D(B)c X — X is called “accretive” if
Re (Bu — By, J(u — v)) =0

for every u,veD(B). An accretive operator B is “m-accretive” if
R(I + AB) = X for some (equivalently, all) A > 0. For further properties
of m-accretive operators the reader is referred to Kato [11]. We denote
by D the strong closure of the set Dc X.

2. Existence. In this section we give a local existence result for
the initial value problem
(DE) a'(t) + A, x)x(t) =0, te[0,T), @ =3¢
under the following assumptions:
(A.1) X* is uniformly convex.
(A.2) The domain of A(-, -, -) with A, +, v) = A(t, y)v is the set
[0, T) x C, x D, where D is a subset of X and C, consists of all feC
with fit)ye DU M, te[—r,0]. Here M = {¢(t); tc[—r, 0]}.
(A.8) For every (¢, ) €[0, T) x C,, A(t, ¥)v is m-accretive in v.
(A.4) For every t,s€[0, T), 4, ¥.€C,, veED,

”A(tr "#l)v - A(S, ’!Fz)””
= Wl lley 1velle, 1w IDD1E — 81X + [[AGs, y)v[) + 190 — ¥l
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where [: R} — R, is increasing in all three variables.
(A.5) ¢€C,isa given function with ¢(0) € D satisfying a Lipschitz con-
dition on [—7, 0] with Lipschitz constant K.

Our method in proving the existence of x(¢) follows that of Kartsatos
[7], where the equation 2'(t) + A(t, 2(t))x(t) = 0 was studied. We first
ensure the existence of the solution z,(t) of the problem

(DE), @'(t) + A, w)2(®) =0, @ =¢

on an interval [0, T], where w is taken from a suitable metric space S
of continuous functions. We then show that, for T, sufficiently small,
the operator U:wu — x, maps the space S into itself and is a strict
contraction. The resulting fixed point of this operator is the desired
unique strong solution of (DE).

THEOREM 1. Assume that Conditions (A.1)-(A.5) are satisfied. Then
there exists T, < T such that the initial value problem (DE) has a unique

strong solution x(t), t€[0, T,], which is also Lipschitz continuous on
[0, T,].

ProOF. Let N =1 + || A(0, ¢)$(0) || and L be a positive constant with
L/IN<T. Let T, be such that 0 < T, £ L/N. Consider the set

S = {u:[—7, T\l = D UM, u(t) is continuous, u(t) = ¢(t) for te[—r, 0]
and [[u(t,) — w(t)| = N|t, — t,| for ¢, ¢,€[0, T\]} .

S # @ because the function u(f) such that u(t) = 4(t) for te[—r, 0]
and u(t) = ¢(0) for t€[0, T,] belongs to S. Now, let u €S be given and
consider the problem (DE), on the interval [0, T\]. Let N, = max {N, K}.
The operator B,(t)v = A(f, u)v is m-accretive in » by Condition (A.3).
Also, by Condition (A.4),

( 1 ) “ Bu(t)v - Bu(s)'v H
< UWllwelloy [[wslley 10 IDIE — s[( + [ AGs, wv()) + llue — u,ll]

for every t€ [0, T,]. Now, in order to show that B, satisfies a condition
like () (in the introduction), we first observe that

llee = %l = sup lu(t + 6) — uls + 6)]]

for every ¢, s€[0, T\]. Suppose that ¢, s = . Then, for each d&[—7, 0],
[u(t + 6) — u(s + 0)|| < N|t —s| = N,|t —s|. Suppose that ¢ s<7.
Without loss of generality, assume that ¢ >s. If de[—r, —t], then
t+60¢€lt—r,0] and s+60€[s—r,s—t]. For such 0, ||u(t+0)—u(s+0)| =
lp(t+6)—d(s+0)|<K|t—s|<N,|t—s|. If 6e[—t, —s], then t+6€[0, t—s]
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and s+ 6e[s—t,0]. For such 4, ||u(t +6) —u(s + 6)| < ||ult + 0) —
w(0)]| + ||uw(0) —u(s +60)|| S N|t+60| + Kls+ 0| <Nt —s]. If 6be
[—s, 0], then ¢ + f€[t — s, t] and s + 6 €[0, s], which implies again that
the above inequality is true. Hence, for all ¢, s < » and §e[—7, 0], we
have SuPser_,.q||u(t + ) — u(s + 6)|| < N,|t — s|. The same inequality
holds if we assume that ¢ >» and s <»r. The proof of this fact is
similar to the above. It is therefore omitted.

In order to obtain a bound for u,, we observe that since ueS, we
have ||u(t + 6) — u(0)|| < Nt < L for every te [0, T,] and every 6 e [—r, 0]
such that ¢ + 6 = 0. Thus, for such ¢ and 6, ||u(t + 6)|| < ||¢(0)|| + L =
lé¢llc + L. For ¢t and @ such that ¢t 46 <0, ||ult+ 60) —40)]| <
ot + 0)| + ||¢(0)]] < 2]|¢]lc. It follows that for all t€[0, T,], 6[—, 0]
we have the bound:

luelle = 05[‘3?0] lut + 0)|| = 2||¢llc + L .

Using these estimates and (1), we obtain
(2) | Bu(t)v — Bu(syv |l = L(l|[v[)]t — s|(X + || Bu(s)v])) ,

where [,(||v]]) = @ + N)I@||¢|lc + L, 2||¢|lc + L, ||v]|). Consequently, the
conditions of Theorems 1 and 2 of Kato [11] are satisfied. Thus, the
problem (DE), has a unique strong solution x,(f) on [0, T,]. The funec-
tion «,(t) is also weakly continuously differentiable on [0, T\] and such
that A(t, u,)x,(t) is weakly continuous in {. Furthermore, x,(t) satisfies
(DE), everywhere on [0, T,] if 2'(t) denotes now the weak derivative of
2(t).

We are planning to show that the operator U:u — %, is a strict
contraction on S if T, is chosen sufficiently small. To this end, fix u€ S
and consider the approximating equations

(E)u 2(t) + A,z (8) =0,  x,, =9,

where A,(t) = A,(t, w) = A, w)[I + 1/n)AE, w)]™, »=1,2, ---, are the
Yosida approximants of A(¢, u,). The operators A,(t) are defined and
Lipschitz continuous on X with Lipschitz constants <2n. Moreover,
the operators J,(t) = [I + (1/n)A(t, u,)]™: X — D are also Lipschitz con-
tinuous on X with Lipschitz constants <1. Since B,(t) is m-accretive
for each te[0, T,], so are the operators A,(t) [11, Lemma 2.3]. Also,
as in Lemma 4.1 of the same reference, we obtain

| At — A (swll = LI T(v DIt — s|(X + || A.(s)v]]) .
Since, by (2),



NONLINEAR FUNCTIONAL EVOLUTION EQUATIONS 513

Am)[| A(s)vl < (1/n) || A()8(0) || + 2w — 4(0) |
= (| Au(s, u)g(0) [ + 2([[ ][ + [I8(0) D)
= [ A0, 9)s(0) || + LIl #(0) N(L/N)1 + || A0, 4)$(0)|])
+ 2(lv [l + [18(0)[)

=K, + 2|v||
and [|J.(sw| < llvll + @/n)|| A(s)v]], we finally arrive at
(3) | A.(t, udv — Au(s, uv || = || Au(t)v — A (s)v]|

S L(lwIDIt —s|@ + | As)v])

where L(||v]]) = L(8]|v| + K,). Hence each of the equations (E), has a
unique strongly continuously differentiable solution x,(¢) defined on [0, T]
and such that lim,, «,(¢) = x,(t) strongly and uniformly on [0, T.] (cf.
Kato [11]).

We shall show that the sequence {x,()}, » =1,2, ---, is uniformly
bounded and uniformly Lipschitz continuous on [0, T'] independently of
uw€S. To this end, using [11, Lemma 1.3], the accretiveness of A,(t)
and (3), we get
2||2,(t) — (0) ([ (d/dt) || %.(8) — ¢0) || = (d/d?) || 2. (t) — $(0)|*

= 2 Re {y(2), J(=,(t) — $(0)))

= —2Re (4,(H)z.(t) — A4, ()$(0), J(x,(t) — ¢(0)))

— 2 Re {A4,()¢(0), J(x,(¢) — (0)))

= 2[| A,(0)s(0) || [| a(8) — 8(0) ]|

= 2[[| 4., u)g(0) — A0, 6)(0) || + [| 4.0, ¢)(0) (1] .(2) — 4(0) ||

= 2[[| 4.0, 9)6(0) || + L(I[6(0) NT'(L + || 4400, ¢)6(0) D]l %) — (0) |

= 2[|| A0, $)a(0) || + L(|| #(0) [D(L/N XL + || A0, $)$(0) D]l #a(t) — (0) || .
This inequality holds a.e. in [0, 7\]. Dividing by 2| z.(t) — ¢(0)|| and
integrating from 0 to ¢ < T,, we obtain
(4) l2a(8) — ¢(0)|| = K. T

where K, = || A(0, $)3(0)|| + L.([| (0) [[)(L/N)1 + [| A0, $)$(0)|) is inde-
pendent of T, n and w€S. In order to find a uniform upper bound for
the derivatives «,(t), we consider the function z,(t) = z,(t + h) — x,(t),
0t t+ h<T,. Using again Lemma 1.3 of Kato [11], the accretive-
ness of A, (¢t + h), the uniform boundedness of {x,(¢)} from (4), and the
appraisal (3), we get

(1/2)(@/dt)[|2.(8) |I" = Re <a(t), J(2.(E)))
= —Re (A,(t + h)z.(t + k) — A()z,(8), J(2.())
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]

—Re (A, (t + h)x,(t + h) — A, (t + h)x,(t), J(2,(1)))
— Re (A,(t + h)z,(t) — A, (D)z.(2), J(2,(8)))
=< AL + By w2, (8) — AR, w)2a0) | |2, ]
= [h|L(l2.@) DA + [| Au@)2a @) [ [ 2.(2) |
< hL31g0)]] + KTHA + Jl2u®) D1 2.0)]] -
Dividing through by |h|||z.(t)||, integrating and then passing to the
limit as b — 0, we get

@)1 = 12| + | L8O + KT || ds + L6 | + KIT, -

Applying Gronwall’s inequality, we find
(5) len(®) || = (KT, + K,)e"s™ ,
where K; = I,(||$(0)|| + K,(L/N)) is independent of T,, » and €S, and
K, = || A0, #)¢(0)|]. From (4) and (5) we conclude that
2. = 160 + KTy, l2u(t) — 2. || = K|t — 2]

for every t, t,€[0, T\], where K, is the right hand side of (5).
Now, let u,, u,€ S be given and let xz,, x, be the corresponding solu-
tions of (DE),,, 1 =1,2. Then we have

(6) (1/2)(d/dt) || 2,(t) — a,(2) [|°

= —Re CA(t, u,)a,(t) — A, u,)2,(t) , J(@,(t) — 2,(1)))

= —Re (A, u,)x,(t) — AL, u.)7(0), J(@,(2) — 2,(1)))

= Wlw,lley 1%, lley 12(8) 1D 1101, — s, [l | 2:() — 2,(2) ||
from which, dividing by | ,(t) — 2.(¢)|| and then integrating, we arrive
at

|2.(8) — x,(t) || < K, sup ||u,, — uy, o »
te[0,7]

where K,=T\l(2|¢|lc+ L, 2||¢llc+ L, [|4(0)| + K(L/N)). Since sup;eg,zy
lwy, — %, |l ¢ = SUDieto,ry | ws(t) — us(t)||, we conclude that

tes[?})} Hxl(t) - xz(t) ” é Kﬂtes[}’l,?] Hu1(t) - uz(t)” .

Now, we choose T, so small that K; < N and K; < 1. Then the operator
U:uw— 2, is a strict contraction on a complete metric space. Let «(t),
te[0, T,] be the unique fixed point of U. Then x(t) is the desired solu-
tion of the problem (DE). Its uniqueness follows from (6) by replacing
u,, U, Oy %, x,, respectively.

The above result can be extended to include the infinite (unbounded)
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delay version of (DE). In fact, in that case we let C equal the space
of all bounded and uniformly continuous functions f:(—co, 0] > X with
the sup-norm. Moreover, we let C, be now the space of all fe C such
that f(t)e DU M, te(—o, 0], where M = {g(t); t€(— 0, 0]}. The proof
of this result follows as above and is therefore omitted.

3. Galerkin approximations. In this section we consider a Galerkin
approximation scheme for the solution of the abstract initial value

problem
(FDE) 2'(t) + At)x(t) = G, x,) , telo, T']

with X = H, a real Hilbert space, ¢ € C such that ¢’ € C and the operators
A(t) and G satisfying the following conditions:

(C.1) For each te[0, T], A(t): H— H is m-accretive.

(C.2) There exists a nondecreasing function L;: R, — R, such that

Az — Azl = [t — s| L[« DA + [|Als)z D) .

(C.83) A(0) maps bounded sets into bounded sets.

(C.4) There exists a constant & > 0 such that for every ¢, 4+€C, t€[0, T,
(C.5) There exists L,: R, — R,, nondecreasing and such that for every
s,t€[0, T], eC, [|G(¢, ¢) — G(s, )| = Lu(llg )|t — sl.

Under the assumptions (C.1), (C.2), (C.4) and (C.5) we have the
existence of a unique strong solution of (FDE) on [0, T], for example,
by [9, Theorem 2.1]. In what follows, the space H is separable. Let
e, e, -+ be a basis of H and let H, be the subspace of H spanned by
the vectors e, e, -+, e,. Let P, H— H, be the projection on H,. We
consider the (finite dimensional) approximating problems

(FDE), x,(t) + P,A(tx,(t) = P,G(t, x,), tel0, T],
2.(t) = P,g(t) , te[—r,0].

The Galerkin method has been already used by other authors to
obtain the existence and/or approximation of solutions of nonlinear
evolution equations. We should mention here the paper of Browder [3],
where the Galerkin method was used to obtain the existence of the
unique solution of the problem

xl(t) + A(t)x(t) =0 ’ te R+ ’

2(0) = 2, .
Here, A(%) is a continuous m-accretive (thus maximal monotone) operator
defined on the whole of H and mapping bounded sets into bounded sets.
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Gajewski and Zacharias established in [5] the convergence of the
Galerkin approximants for the unique strong solution of the perturbed
evolution equation

z'(t) + A()x(t) = G(t, »(t)), te[0, T],
2(0) =, .

Their results where extended by Kartsatos [8] to operators A(¢)
defined on a proper subset of H. Abstract semigroup theory has been
the setting for applying the Galerkin method in Banks [1], [2], Kappel
and Schappacher [6] and Webb [13]. These authors have considered
equations that fall into the type:

a'(t) = fit, @) +9(8), tel0, T].

Their approach in these papers is to consider an abstract equation in
the space of initial functions involving an operator which generates a
nonlinear semigroup on that space. The Galerkin approximations are
then given for that equation.

We note that, in our case, since A(t) is defined on the whole space,
it is demicontinuous, i.e., it is continuous from the strong topology of
H to the weak topology of H [12, p. 107].

In what follows the symbol (-, -)> denotes the inner product of H.
We should also remark that P,y(t) — y(t) strongly and uniformly as
n — oo for any continuous function y: [a, b]C[—7, T] — H.

THEOREM 2. Assume that Conditions (C.1)-(C.5) are satisfied. Then
the sequence {x,(t)} of the Galerkin approximants satisfying (FDE),
exists and converges strongly and uniformly to the unique solution x(t)
of (FDE).

PROOF. As we mentioned above, the unique strong solution x(t) of
(FDE) exists by [9, Theorem 2.1]. We note that in (FDE), the operator
P,A(t) is accretive on H,. Since it is also demicontinuous on H, it is
continuous on H,. Thus, by a well known result, P,A(t) is m-aceretive
on H, It is also easy to see that P,A(t) is Lipschitz continuous in ¢,
satisfying a condition similar, but not identical, to (C.3). Since the
projection P, has norm 1, the function P,G(t, ¢) satisfies the Lipschitz
conditions (C.4) and (C.5). With these facts established, the existence
of the unique strong solution of (FDE), is guaranteed by the following
argument. Consider the equations

(FDE)n,  tma(t) + PoAn(Otno(t) = PG, Un,) ,  t€[0, T],

umno = wno ’
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where z,(0) = 2,(0) = P,¢(0), 6&[—r,0], and A,(t) are the Yoshida
approximants of A(t). Following the proof of Lemma 2.3 of [9], we
can show that, for a fixed n, the (unique) solutions u,,(t) (Um.(t)€ H,,
m=1,2 ---, t€[0, T]) of the problems (FDE),, are uniformly bounded.
On the other hand, since P,A(f)x is continuous on the set [0, T] x H,,
it maps bounded subsets of it into bounded subsets of H,. Using this
fact, we can easily see that there exists a constant K, > 0 such that
| P, A, (t)Una(t) || < K, for every m =1,2, --- and every t€[0, T]. This
in turn implies that there exists a constant L, > 0 such that the functions
Unma(t), given by (FDE),., satisfy: ||um.(t)|| < L, for every m =1,2, ---
and every t€[0, T]. The uniform convergence of u,,,(t) and u,,(t) to z,(t)
and x,(t), for m — oo, respectively, follows now almost exactly as in [9].
Its proof is therefore omitted.

In order to show that the sequence {x,(¢)} is uniformly bounded, we
start with the inequality

(1/2)(d/dt) || x.(t) — P,g(0) || = <&(?), x.(t) — P,8(0))
= — (P, A)x,(t), 2.(t) — Pog(0)) + (P,G(2, 2,), 2.(t) — P,4(0))
= —CAR)x,(t), 2.(t) — Pag(0)) + <G(¢, %,,), 2.(t) — Pg(0))
= —(A@)x,(t) — A@)P,$(0), z,(¢) — P,g(0))
— CA@)P,4(0), z,(t) — P,g(0)y + (G(t, x,,), z.(t) — P,g(0))
= [JA@®P,$0) || [|2.(t) — Pog(0) || + [| G2, ®,,) — G(2, @) ||| 2,(8) — P,g(0) ||
+ |G(t, @) ||| 2,(2) — P.g(0) ||
= [[A(0)P,g(0) || | ,(2) — Prg(0) ||
+ TL(|| P.g(0) [NX + [| A0)P,8(0) ||} [| 2,(¢) — Pog(0) ||
+ 0| @, — Ty llol|2.(8) — Pag(O) || + [|G(E, @) || [|2(2) — Pog(0) ||
which implies
(d/dt) [|w.(t) - P.o(0)]|
< AO)P,g(0)]|+ TLIP.5 )L+ | AOP, SO+ G(t, .)l|+bl[zs, ~ sl
<K + b2, — 2o

a.e. in [0, T], where K is a positive constant. Here we have used the
boundedness of A(0) and G(t, z,,) on [0, T]. Integrating, we obtain

l2.(t) — Pp(©)| < KT + | |2, — 2 llods .
Thus, for any ¢, €[0, ¢}, we have

t
0

() = Pp(@)| = KT + 5" 12, — 2, ]l0ds



518 A. G. KARTSATOS AND M. E. PARROTT

< KT+ o, — ., ]l0ds

If t,e[—r, 0], then [a,(t) — Pg(0)|| < [|Pgt) |l + [[Pg(O)] = 2|8l
Hence

SID_[[2,(t + 6) = POl S KT +2/|5llo + b | 12, — 2, lods
which implies
100, = @nllo = sup ll2,(t +0) — @ ()]
= sup [l@.(t+06) — Pg(0)[ + sup [|Pg(0) — ]l

t
< KT + 4)/8||, + bSo | %,, — ay|lods

Applying Gronwall’s inequality above, we obtain the boundedness of
{®,, — %,), which implies the boundedness of {x,(t)}. We are now ready
to show the convergence of z,(t) to a(¢t) uniformly on [0, T]. We first
observe that

(7) C@n(t), 2 (t) — a(t)y + (P, A)x.(t), €, (t) — x(t))
= (P,G(t, x,,), z.(t) — x(£))
(8) &'(8), 2a(t) — a(t)) + CA)x(t), .(t) — x(t))
= <G(ty xt), xn(t) - x(t)> .
Subtracting (8) from (7), we find
(@n(t) — 2'(2), z.(t) — 2(t))
= —(A(t)x,(t), x.(t) — Pa(t)y + CA®(t), z.(t) — 2(t))
+ <G(t3 xnt)y xn(t) - an(t)> - <G(t1 xt)’ xn(t) - x(t)>
= — (A@)x,(8) — AR)a(t), x,(t) — 2(t)) — (A(t)x.(t), 2(t) — P,x(t))
+ (G(t, =,,) — G(t, z,), 2.(t) — x(t)) + {G(¢, ,,), 2(t) — Px(t)) ,
which implies
(1/2)(d/d?) || . (¢) — (@) [|*
<A@z @ |2®) — Pua(@®)ll + bllw,, — |l + |GE, ©,)|l[[x@) — Pax@)] .

Integrating this inequality, we arrive at
T 13
(9)  lla® — 2@ < | 2.0) — 2| + | hitrt + 26 |12, — . ds ,

where h(t) = 2[| A®)x.(8) | |2(t) — Paa@®)|| + 2] G, .|| | 2(€) — Paa(®) .
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Since the above inequality holds for any ¢,€][0,¢], and since, for
t,e[—nr, 0],

la(t) — et | = | Pustt) — s(t)]| = sup_ | P.g(0) — 50)]

we actually have
2.8) = a(®)]* < [12.(0) = () + sup_ [ Pg(6) ~ 6(6)I

+ "ot + 20 1o, - wlids,  tel-r,T1.
0 0

Consequently, by Gronwall’s inequality, we get

,5p_[2,(0) = 2(6)]
< [l2 — 1 + sup_1P.g(0) — (0 + | o)t Jo™

Now, ,(0) — 2(0) = P,$(0) — ¢(0) >0 as n— o and P,@) — ¢(0)—0
uniformly on [—7,0]. In addition, for the three normed expressions in
h(t) we have the following properties. From the boundedness of A(0)
and the inequality ||A®)z.(0)l| < 40, + TL (@I + A0z,
we obtain the uniform boundedness of {A(t)x,(t)}. The uniform bounded-
ness of {x,} implies the same property for {G(t, x,,)}. Finally, P,x(t) —
2(t) uniformly on [0, T]. Thus, an application of Lebesgue’s bounded
convergence theorem shows that

os[upO]Hxnt(ﬁ) —2,0)|| >0 as n— o,

which in turn shows that x,(t) — x(¢) uniformly on [0, T'].

It should be noted here that we do not assume that A(&)P,x — A(t)x
for every xe H. This assumption is actually included in the result of
Kartsatos [8] if the domain of A(¢) there is the whole of H. Also, the
constant b in (C.5) can be replaced by a Lebesgue integrable function
b:[0, T — R,.

4. Applications. As an example to which we can apply our result
of Section 8, we cite the nonlinear initial-boundary value problem:
(E) (9/otyu(z, t) + A(t, x, u(x, t)) = f(t, x, u(x,t — 7)), t€©0,T), xzc,
u(z, 0) = ¢z, 6) , reER, 6e[—r 0],
Du(z, t) =0, x€aR, te(0, T, lal < m,

where % is a real valued function, » is a positive constant, 2 is a
bounded open subset of R" (R = (— o0, =), n = 2) with sufficiently smooth
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boundary, A(t, x, u), f(t, x, w) are nonlinear elliptic partial differential
operators in divergence form:

Atz w) = 3 (~DbODAw, &w)
fity @, w) = 3 (~DDY L, 3, 6w,

and ¢: 2 X [—7,0]—> R is a given function. For a multi-index a =
(ay, - -+, a,) of nonnegative integers we adopt the notation

Ial:a1+"'+an9 D1=(a/axz)’ Daleal"'Df"-

By R"» we denote the space of all real vectors of the form &=
{¢s; lal = m}. Thus, &uw) = {D*u; |a| < m}.

For the results concerning such partial differential operators the
reader is referred, for example, to Browder [4] and Pascali and Shurlan
[12].

Now, let W™*Q2) be the Sobolev space of all real valued functions
u such that D*u € L*(RQ) for every a with |a| < m. W™*Q) is a separable
Hilbert space with inner product

<u, ’U>m = 'alzgm <D“u, Dav>L2(g) .

Let C3(2) be the space of all fe C*(2) with compact support. We denote
by Wm™*2) the closure of the space C3(2) in W™*2). The space W™*2)
is thus another separable Hilbert space. We let H denote this space
and we make the following additional assumptions:

(i) foreach a, A,: 2 x R"»— R satisfies the Caratheodory conditions
and there exists a function ge L*2) and a constant ¢ > 0 such that

|A(x, &) = clél + g®), (¢, &efl X R,

where [&] = (Xiqism 7™
(ii) For xe R and ¢, &€ R™» we have

3 [A(x, &) — A(w, )6, — € 2 0.

lal=m

(iii) Each b,:[0, T] — R, is Lipschitz continuous on [0, T'], ¢(-, 8)¢€
W) for every 6e[—nr, 0], #(x, ) is continuous and satisfies a Lipschitz
condition with respect to ¢ uniformly in x € Q.

(iv) The functions f,: [0, T] X 2 X R*» — R are continuous and such
that: there exists a nonnegative function ke L¥2) and a constant L > 0
with

|fat, 2, &) — F(T, %, &) < h(x)|¢t — ¢'| + L|& — ¢&|
for every t,t'€[0, T], x€ 2, and ¢, & € R,
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If for each te[0, T], u, ve W™*(R2) we let

@, 0) = 3 b(0) | A, sw@)D@)is,

laj=m

then a‘(u, v) is 2 bounded linear functional in v. By the Riesz represen-
tation theorem, there exists a nonlinear operator T(t): H— H such that

(T (t)yw, v)n = a'(u, v) , (w,v)eH x H.

The operator T(t) is continuous, m-accretive, and maps bounded
subsets of H into bounded sets for each te[0, T]. The proof of this
fact follows as in [12, p. 275]. It is also easy to see that T satisfies
the condition (C.2). Similarly, we can obtain an operator F(t): H— H
such that

FOu, = 3 | 1t 2, du@)Dv(z)ds

ajsm

for every te[0, T], u,ve W™*2). In order to show that F(t)u satisfies
a global Lipschitz condition on [0, T] x W™*2), we observe that

], 1., o, su@n) — £.62, 2, so@MD @)a]
= ([, 1t 2, s = £4#, 7, 60@)Tda) "+ [0]lns

fiA

S
(1, Bt = ¢1 + Ligui@) — &o@)Fdz) o]l
(

Q
1/2
2 1 _
< (], @)1t = 1 + Lllu = vl )19l
= (Klt - t'l + L”u - v”m.z)”v”m,z )

where |-||,, is the norm of W™*®) and K is an obvious constant.
Adding these inequalities, we obtain our assertion.
Now, we consider the abstract problem

(AE) w'@t) + TOw() = G@, w),  telo, T],
Uy = ¢ ’
where G(t, v) = F(t)y(—7r), for any 4 €C, and u'(t) denotes the weak

derivative of wu(t). Since the conditions (C.1)-(C.5) are satisfied, the

unique strong solution of (AE) can be approximated by the Galerkin
method.

As an application of Theorem 1, we consider the initial-boundary
value problem consisting of the equation

0/)u(zx, t) + A, x, u(z, t — 1), u(x, t)) =0, te,T), xe
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and the initial and boundary conditions in (E). We assume that the
initial and boundary conditions satisfy the hypotheses made above, and
we let the elliptic differential operator A have the form

A, =, w, v) = ,E (—=1)"Db,(¢, =, &) AL, &(v)) .

alsm
We assume, further, that the following conditions hold:
(1) Each A, satisfies (i) and (ii) above with g(x) constant and ¢ = 0.
(2) Each b, is defined and continuous on [0, T) X 2 X R™=, it has
values in R, and, for some constants K > 0, L > 0,

[0a(8, @, &) — b, (¥, , &) = K|t — t'| + L|¢ — &'

for every ¢, t'€[0, T), x€ R, & &€ R,
Now, let T(t, w)v be defined on W™*(2) from the equation

(T, up, W = 3, | 0.8, 0, w@))Aule, o@D w(@)ds

It is easy to see that T'(f, u)v is continuous, monotone and bounded
in v and satisfies the following Lipschitz condition:

| T, wyy — T, wW|lne < Kt — 8| + Ly||u — w||pe

for all ¢,¢'€[0, T), u, w’,ve W™*, where K,, L, are positive constants.
Setting T(t, ¢)v = T(t, ¢(—7))v for (¢, ¢, v)€[0, T) x C X W2, we see that
all the conditions of Theorem 1 are satisfied for the abstract problem

w'(t) + T(t, u)u(t) =0, tefo,T),

uo = ¢ .
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