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1. Introduction—Preliminaries. In this paper we are concerned
with existence and approximation results for nonlinear functional evolution
equations in Banach spaces. Let X be a Banach space with norm || ||,
and let C = C([—r, 0], X) be the Banach space of continuous functions
mapping the interval [—r, 0], for some r > 0 , into X with norm ||^||(7 =
sup*e[_r>0] ||ψ(θ) ||. Let xt e C be defined by xt(θ) = x(t + θ) for θ e [-r, 0].
In [9] we examined the existence of a unique strong solution of the
abstract initial value problem

( F D E ) x\t) + A(t)x(t) = G(ί, x t ) , te [0, Γ ] , x0 = φ ,

where A(t): D(A(t)) = ΰ c l - > l , G satisfies a global Lipschitz condition
with respect to both variables, and φ e C is such that φr 6 C and 0(0) e D.
Furthermore, we required that X*, the dual of X, be uniformly convex
and for each t e [0, T]9 A(t) be m-accretive (see definition below) and
satisfy a Kato time-dependence condition of the form

(*) \\A(t)x - A{s)x\\ i£ | t - s\L{\\x\\){l

for all t, se[0, T] and xeD, where L: R+ = [0, oo)-> R+ is a given
increasing function.

By a "strong solution" of (FDE) on [0, T] we mean an absolutely
continuous X-valued function which, for almost all t e [0, T], is strongly
differentiable and satisfies (FDE). The unique strong solution x(t) of
(FDE), whose existence was known from previous results, was shown
in [9] to be the uniform limit of strongly continuously differentiate
solutions of approximating equations for (FDE) involving the Yosida
approximants of A(t). In [10] a method of lines for the approximation
of the solution x(t) of (FDE) was developed.

Our purpose in this paper is two-fold. We first establish a local
existence result for a more general nonlinear abstract functional problem
of the type:

(DE) x\t) + A(t, xt)x(t) = 0 , t e [0, T) , x0 = Φ ,
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where A(t, φ)v is m-accretive in v for every (t, φ) e [0, T) x Co, Co a
certain closed subset of C, and satisfies a local Lipschitz-type condition
in t and φ. As an important example of our result, we obtain the local
existence of a unique strong solution of (FDE) under the given condi-
tions, but with G satisfying now a local Lipschitz condition. This result
is still new if the Lipschitz condition is global, and an application of it
is given in Section 4.

Our second goal is to establish a Galerkin method for the approxima-
tion of the solutions of (FDE) for the case of a Hubert space X, under the
additional assumptions that A(t) be defined on the whole of X and map
bounded subsets of X into bounded sets. Our result, Theorem 2, is an
improvement of the corresponding result of Kartsatos [8], and is illustrated
in Section 4 by an example involving nonlinear partial elliptic operators
of order 2m.

For xeX, α*eX*, let (x, x*) denote the number x*(x). We define
the "duality mapping" J:X—>2X* as follows:

Jx = {x*eX*;(x, z*> = ||a>||2 = | |α*| | 2}.

The set Jx is nonempty by the Hahn Banach theorem. However, if
X* is uniformly convex, then the duality mapping J is single valued
and is uniformly continuous on bounded subsets of X An operator
B:D(B)(zX->X is called "accretive" if

Re (Bu - Bv, J(u -v))^0

for every u, ve D(B). An accretive operator B is "m-accretive" if
R(I + XB) — X for some (equivalently, all) λ > 0. For further properties
of m-accretive operators the reader is referred to Kato [11]. We denote
by D the strong closure of the set DaX.

2. Existence. In this section we give a local existence result for
the initial value problem

(DE) x\t) + A{t, xt)x(t) = 0 , t e [0, Γ) , x0 = Φ

under the following assumptions:

(A.I) X* is uniformly convex.
(A.2) The domain of A^ , , •) with A^t, ψ, v) — A(t, f )v is the set
[0, T) x Co x D, where ΰ is a subset of X and Co consists of all fe C
with f(t) eDUM, te [-r, 0]. Here M = {φ(t); t e [-r, 0]}.
(A.3) For every (ί, ψ) e [0, T) x Cof A(t, ψ)v is m-accretive in v.
(A.4) For every ί, se [0, T), ψl9 f2e Co, veD,

,irt)v\\

IIV .IU IMI)[ | ί - β | ( i + \\A(8, ψ2)v\\) + | | ^ - ψ2\\c],
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where I: R\ —• R+ is increasing in all three variables.
(A.5) φeC0 is a, given function with φ(0)eD satisfying a Lipschitz con-
dition on [—r, 0] with Lipschitz constant K.

Our method in proving the existence of x(t) follows that of Kartsatos
[7], where the equation x'(t) + A(t, x(t))x(t) = 0 was studied. We first
ensure the existence of the solution xu(t) of the problem

(DE). x'(t) + A(t9 ut)x(f) = 0 , Xo = Φ

on an interval [0, ΓJ, where u is taken from a suitable metric space S
of continuous functions. We then show that, for T1 sufficiently small,
the operator U:u-*xu maps the space S into itself and is a strict
contraction. The resulting fixed point of this operator is the desired
unique strong solution of (DE).

THEOREM 1. Assume that Conditions (A.1)-(A.5) are satisfied. Then
there exists Tx < T such that the initial value problem (DE) has a unique
strong solution x(t)9 te[O, ΓJ, which is also Lipschitz continuous on
[0, ΓJ.

PROOF. Let N = 1 + || A(0, ψ)φ(O) || and L be a positive constant with
L/N < T. Let Tx be such that 0 < Tx ^ L/N. Consider the set

S = {u: [-r, ΓJ -> D \JM; u(t) is continuous, u(t) = ^(ί) for ί e [~r, 0]

and \\u(tt) - w(«2)|| ^ N\U - ί2| for ίlf t2e [0, ΓJ} .

S Φ <Z) because the function w(ί) such that u(t) = ^(ί) for ί e[—r, 0]
and w(ί) = ^(0) for te[0, ΓJ belongs to S. Now, let ^ e S be given and
consider the problem (DE)U on the interval [0, ΓJ. Let Nλ = max {N9 K).
The operator Bu(t)v = A(t, ut)v is m-accretive in v by Condition (A.3).
Also, by Condition (A.4),

( 1 ) \\Bu(t)v - Bu{s)v||

^ KIN.Ik IN.Ik INI|)[|t — β|(l + II A{8, u8)v\\) + \\ut - M.||d

for every £ 6 [0, ΓJ. Now, in order to show that Bu satisfies a condition
like (*) (in the introduction), we first observe that

IN* - u.Wc = sup |N( ί + θ) - u(s + θ)\\
0e[-r,O]

for every t, s e [0, ΓJ. Suppose that t, s ^ r. Then, for each θ e [—r, 0],

|N(t + θ)- u(s + 0)11 ̂  iSΓ|ί - s | ^ JVJί - s|. Suppose that ί, s < r.
Without loss of generality, assume that t > s. If 0 e [ — r , —ί], then

- r , 0] and s+θe[s-r, s-t]. For such 0, \\u(t + θ) — u(8 + θ)\\ =
-8|. If ίe[-ί, -β],
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and s + θ 6 [s - ί, 0]. For such θ, \\u{t + θ) - u(s + θ)\\ <> \\u(t + θ) -
M(0)|| + ||u(0) -w(« + 0)|| £ # | t + θ\ + K\s + Θ\ £Nx\t-s\. If 0e
[—s, 0], then £ + θ e [ί — s, t] and s + 0 6 [0, s], which implies again that
the above inequality is true. Hence, for all t, s < r and θe[—r, 0], we
have sup*β[_ri0] \\u(t + θ) - u(s + 0)|| ^ iVJί - s\. The same inequality
holds if we assume that t ^ r and s ^ r. The proof of this fact is
similar to the above. It is therefore omitted.

In order to obtain a bound for ut, we observe that since ueS, we
have || u(t + θ) - u(0) \\ ^ Nt ^ L for every ί 6 [0, TJ and every ^ ε [-r, 0]
such that ί + θ ^ 0. Thus, for such t and 0, \\u(t + θ)\\ ^ ||^(0)|| + L ^

σ + L . For t and 0 such that t + θ < 0, ||%(ί + 0) - 0(0) || ^

+ 0) II + II Φ(0) [I ^ 2II φ \\c. It follows that for all t ε [0, ΓJ, 0 e [-r, 0]
we have the bound:

\\ut\\o= sup ||tt(t + ί ) | |
/9e[-r,0]

Using these estimates and (1), we obtain

(2) \\BJf)v - Bu(s)v\\ ^ U\\v\\)\t - β|

where U\\v\\) = (1 + iVΊ)i(2||0||σ + L, 2| |0| | c + L, | |t;| |). Consequently, the
conditions of Theorems 1 and 2 of Kato [11] are satisfied. Thus, the
problem (DE)tt has a unique strong solution xu(t) on [0, ΓJ. The func-
tion xu(t) is also weakly continuously differentiable on [0, ΓJ and such
that A(t, ut)xu(t) is weakly continuous in t. Furthermore, xu(t) satisfies
(DE)tt everywhere on [0, ΓJ if x\t) denotes now the weak derivative of
x{t).

We are planning to show that the operator U: u —> xu is a strict
contraction on S if Tx is chosen sufficiently small. To this end, fixueS
and consider the approximating equations

(E). x'n(t) + An(t)xn(t) = 0 , xno = φ ,

where An(t) = An(t, ut) = A(t, ut)[I + (l/n)A(t, ut)Y\ n = 1, 2, , are the
Yosida approximants of A(t, ut). The operators An(t) are defined and
Lipschitz continuous on X with Lipschitz constants ^2n. Moreover,
the operators Jn(t) = [/ + (l/n)A(t, M*)]"1: X-*D are also Lipschitz con-
tinuous on X with Lipschitz constants <^1. Since Bu(t) is m-accretive
for each t e [0, ΓJ, so are the operators An(t) [11, Lemma 2.3]. Also,
as in Lemma 4.1 of the same reference, we obtain

\\An(t)v - A m (β)t> | | = Wll Jn(s)v\\)\t -s\(l + \\An(s)v\\) .

Since, by (2),



NONLINEAR FUNCTIONAL EVOLUTION EQUATIONS 513

(lln)\\An(s)v\\ ^ (1M)|| An(s)0(O)|| + 2\\v - φ(0)\\

, 0)0(0) || + U\\Φ(0)\\)(LIN)(l + \\A(0, 0)0(0) ||)

+ 2(\\v\\ + \\φ(0)\\)

= £x + 2||t;||

and ||/„(«>» || ^ ||v|| + (l/«)||An(8>||, we finally arrive at

( 3) || An{t, ut)v - An(s, u.)v || = || AJfiv - An(s)v ||

where Ϊ2(||v||) = ϊi(3||r| | + Kt). Hence each of the equations (E)n has a
unique strongly continuously differentiable solution xn(t) defined on [0, TJ
and such that limn^0O xn{t) = xu(t) strongly and uniformly on [0, ΓJ (cf.
Kato [11]).

We shall show that the sequence {xn(t)}, n = 1, 2, , is uniformly
bounded and uniformly Lipschitz continuous on [0, ΓJ independently of
UBS. TO this end, using [11, Lemma 1.3], the accretiveness of An(t)
and (3), we get

21|*,,(«) - φ(O)\\(d/dt)\\xπ(t) - Φ(0)\\ = (d/dt)\\xn(.t) - ί>(0)||2

= 2Re (x'n(t), J(xn(t) - Φ(0))}

= - 2 Re <AB(ίK(ί) - AJM0), J(xn(t) - ί»(0))>

- 2 Re <An(*M0), J(xn(t) - φ(0)))

£2\\An(t)Φ(0)\\\\xn(t) - Φ(0)\\

^ 2[\\An(t, ut)φ(0) - AJfi, Φ)Φ(O)\\ + 114.(0, Φ)Φ(0)\\]\\xM - Φ(0)\\

^ 2[\\An(0, φ)φ(O)\\ + «||φ(0)\\)m + 114.(0, #)jKO)||)]||*m(ί) - φ(0)\\

^ 2[\\A(0, φ)φ(O)\\ + h(\\Φ(0)\\XL/N)(l + || A(0, ^ ( O ) ! ! ) ] ! ! ^ ) - ^0)11 .

This inequality holds a.e. in [0, ΓJ. Dividing by 21| »„(*) —0(0) || and
integrating from 0 to t ^ Γ u we obtain

(4) \\xn(t) - Φ(0)\\ ^ K2T,,

where K2 = || A(0, ^ 0 ) || + Z2(||0(0) ||)(L/ΛΓ)(1 + || A(0, 0)0(0) ||) is inde-
pendent of Tlt n and ueS. In order to find a uniform upper bound for
the derivatives x'n(t), we consider the function zn{t) = xn(t + h) — xn(t),
0 ^ t, t + h < 2\. Using again Lemma 1.3 of Kato [11], the accretive-
ness of An(t + h), the uniform boundedness of {xn(t)} from (4), and the
appraisal (3), we get

m(t)||* = Re (z'n(t), J(zn(φ

= -Re (An(t + h)xn(t + h) - An(t)xM, J(zn(t))>
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= - R e (An(t + h)xn(t + h)- Aπ{t + h)xn(t),

- Re <An(ί + h)xn(t) - An(t)Xn(t), J(

S ll-A.Ce + h, ut+h)xn(t) - An(t, ut)xn(t)\\

^ \h\uum\\ + JTO(i + l
Dividing through by \h\ ||zn(ί)ll> integrating and then passing to the
limit as h —> 0, we get

Applying GronwalΓs inequality, we find

(5) l|aj;(ί)ll^(Jε,r1 +

where K3 = Z2(||^(0)|| + K2(L/N)) is independent of 2\, n and ueS, and
K, = || A(0, ^V(0)||. From (4) and (5) we conclude that

|| xu(t) || ^ || 0(0) || + K2T,, II sΛίO - xu(t2) II ^ ί β I ίx - ί, I

for every tx, £2e [0, ΓJ, where ίΓ5 is the right hand side of (5).
Now, let uu u2eS be given and let xί9 x2 be the corresponding solu-

tions of (DE)W., i = 1, 2. Then we have

(6) (limidt)\\iφ) - X&) II2

- - R e

^ - R e

from which, dividing by Wx^t) — x2(t)\\ and then integrating, we arrive
at

ll&i(*) - x2(t)\\ ^ K6 sup I I ^ - u2t\\c ,

where iΓ6 = r x i(21 |^ ||c + L, 21|^ | |c + L, ||^(0) || + K2(L/N)). Since sup ί 6 [ 0 , Γ l ]

II^iί — u2t\\c = sup ί e[ 0,Γ l] | |^i(ί) — t^2(*)IU w e conclude t h a t

sup Ha^t) - ^(011 ^ iΓ8 sup | |^(t) -

Now, we choose Tx so small that Kδ^ N and KQ < 1. Then the operator
U:u-^> xu is a strict contraction on a complete metric space. Let x(t),
16 [0, ΓJ be the unique fixed point of U. Then x(t) is the desired solu-
tion of the problem (DE). Its uniqueness follows from (6) by replacing
u19 u2 by χ19 x2, respectively.

The above result can be extended to include the infinite (unbounded)
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delay version of (DE). In fact, in that case we let C equal the space
of all bounded and uniformly continuous functions /: (— oô OJ-̂ JXΓ with
the sup-norm. Moreover, we let Co be now the space of all fe C such
that f(t) e D U M, t e ( - o o f θ ] , where M = {φ(t); t e (-00, 0]}. The proof
of this result follows as above and is therefore omitted.

3. Galerkin approximations. In this section we consider a Galerkin
approximation scheme for the solution of the abstract initial value
problem

(FDE) x\t) + A(t)x(t) = G(t9 x t ) , te [0, T]

with X = H, a real Hubert space, φeC such that φ'eC and the operators
A(t) and G satisfying the following conditions:
(C.I) For each ίe[0, Γ], A(t):H-+H is m-accretive.
(C.2) There exists a nondecreasing function L{. R+ -> R+ such that

\\A(t)x - A(s)x\\ :g |ί - βlJWIIaliκi + \\A(s)x\\) .

(C.3) A(0) maps bounded sets into bounded sets.
(C.4) There exists a constant 6 > 0 such that for every φ,ψeC,te [0, T]f

\\G(t,φ)-G(t,ψ)\\^b\\φ-ψ\\c.
(C.5) There exists L2: R+^ R+, nondecreasing and such that for every
s, te [ 0 , Γ ] , φeC, \\G(t, ψ) - G(s, φ)\\ ^ Xr2(||^||σ)|ί - β|.

Under the assumptions (C.I), (C.2), (C.4) and (C.5) we have the
existence of a unique strong solution of (FDE) on [0, T]f for example,
by [9, Theorem 2.1]. In what follows, the space H is separable. Let
βi, e2, '' be a basis of H and let Hn be the subspace of H spanned by
the vectors el9 e2, , en. Let Pn: H-> Hn be the projection on Hn. We
consider the (finite dimensional) approximating problems

(FDE)π x'n{t) + PnA(t)xn(t) - PnG{t, xnt) , t e [0, T] ,

xn(t) = PnΦ(t) , ί e [ - r , 0 ] .

The Galerkin method has been already used by other authors to
obtain the existence and/or approximation of solutions of nonlinear
evolution equations. We should mention here the paper of Browder [3],
where the Galerkin method was used to obtain the existence of the
unique solution of the problem

x\t) + A(t)x(t) = 0 , t e R+ ,

x(0) = x0 .

Here, A(t) is a continuous m-accretive (thus maximal monotone) operator
defined on the whole of H and mapping bounded sets into bounded sets.
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Gajewski and Zacharias established in [5] the convergence of the
Galerkin approximants for the unique strong solution of the perturbed
evolution equation

x\t) + A(t)x{t) = G(t, x(t)) , t e [0, Γ] ,

x(0) = Xo.

Their results where extended by Kartsatos [8] to operators A(t)
defined on a proper subset of H. Abstract semigroup theory has been
the setting for applying the Galerkin method in Banks [1], [2], Kappel
and Schappacher [6] and Webb [13]. These authors have considered
equations that fall into the type:

x\t) = M xt) + g(t) , ίe[0, Γ].

Their approach in these papers is to consider an abstract equation in
the space of initial functions involving an operator which generates a
nonlinear semigroup on that space. The Galerkin approximations are
then given for that equation.

We note that, in our case, since A(t) is defined on the whole space,
it is demicontinuous, i.e., it is continuous from the strong topology of
H to the weak topology of H [12, p. 107].

In what follows the symbol < , •> denotes the inner product of H.
We should also remark that Pny{t) —> y{t) strongly and uniformly as
n —> co for any continuous function y: [a, b] c [—r, T] —> H.

THEOREM 2. Assume that Conditions (C.1)-(C5) are satisfied. Then
the sequence {xn(t)} of the Galerkin approximants satisfying (FDE)n

exists and converges strongly and uniformly to the unique solution x(t)
of (FDE).

PROOF. AS we mentioned above, the unique strong solution x(t) of
(FDE) exists by [9, Theorem 2.1]. We note that in (FDE)n the operator
PnA(t) is accretive on Hn. Since it is also demicontinuous on H, it is
continuous on Hn. Thus, by a well known result, PnA(t) is m-accretive
on Hn. It is also easy to see that PnA(t) is Lipschitz continuous in ί,
satisfying a condition similar, but not identical, to (C.3). Since the
projection Pn has norm 1, the function PnG(t, φ) satisfies the Lipschitz
conditions (C.4) and (C.5). With these facts established, the existence
of the unique strong solution of (FDE)n is guaranteed by the following
argument. Consider the equations

(FDE) m n uf

mn(t) + PnAm(t)umn(t) = PnG(t, umnt) , t e [0, T] ,
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where xno(θ) = xn(θ) = Pnφ(θ), θe[-r, 0], and AJf) are the Yoshida
approximants of A(t). Following the proof of Lemma 2.3 of [9], we
can show that, for a fixed n, the (unique) solutions umn(t) (umn(t)eHnf

m = 1, 2, , t e [0, T]) of the problems (FDE)mn are uniformly bounded.
On the other hand, since PnA(t)x is continuous on the set [0, T] x Hn,
it maps bounded subsets of it into bounded subsets of Hn. Using this
fact, we can easily see that there exists a constant Kn > 0 such that
\\PnAJt)umn{t)\\ ^ Kn for every m = 1, 2, and every t e [0, T]. This
in turn implies that there exists a constant Ln > 0 such that the functions
<n(t), given by (FDE)mn, satisfy: | | i4n(t)| | ^ Ln for every m = 1, 2, .
and every ί 6 [0, T], The uniform convergence of umn(t) and <,„(<) to xn(t)
and flci(t), for m—• ©o, respectively, follows now almost exactly as in [9].
Its proof is therefore omitted.

In order to show that the sequence {xn(t)} is uniformly bounded, we
start with the inequality

(l/2)(d/dt)\\xn(t) - P^(0)||2 = « ( ί ) , xn(t) - Pnφ(0))

= -<PmA(ί)a?.(t), a?m(t) - P^(0)> + (PnG{t, xnt\ xn(t) - P n ί

= -<A(t)* m (t) f a?m(ί) - Pw^(0)> + <G(ί, »mf)f »,(*) - Pnφ(0))

= -<A(t)»m(t) - A(ί)P^(0), *,(«) - Pwί3(0)>

- <A(ί)Pm^0), xjf) - ^ ( 0 ) > + <G(ί, xnt\ xn{t) - P n ^

^ || A(t)Pnφ(0) || || *,(«) - Pnφ(0) || + II G(ί, ^ - (?(ί, ^ || || χn(t) - P n ^

| ^ ( ί ) - Pnφ{0)\\

+ b\\xnt - xno\\c\\xn(t) - P^(0) | | + ||G(ί, xno)\\ \\xn(t) - P ^

which implies

id/dt)\\xJt) - Puφ(0)\\

^ ||ii(0)Pmίfr(0)|| + TL1(||P^(0)||)(l+ HA(0)Prf(0)||)+ \\G(t,xnQ)\\ + b\\xnt-xJc

t^K+ b\\xnt - xno\\c ,

a.e. in [0, Γ], where if is a positive constant. Here we have used the
boundedness of A(0) and G(ί, xnQ) on [0, T]. Integrating, we obtain

K(t) - P^(0)|| ^ KT + b Γ IK - αg|cds .
Jo

Thus, for any t, e [0, ί], we have

JΓΓ + 6 j] 11|x n s - xnQ\\cds
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If ίχ6[-r , 0], then ||xn(it) - Pnφ(0)\\ ^ \\PΛφ(ti\\ +
Hence

s u p II xn(t + θ ) - Pnφ(0) \ \ ^ K T + 2\\φ\\c + b [ \ \ x n s - x n o \\cds ,
06[-r,O] Jo

which implies

- xj\c =j\c

S sup \\χn(t + θ) - Pnφ(0)\\ + sup ||Pnί>(O)-a;no|

+ b ^ \\x.t - xno\\ods .

Applying GronwalΓs inequality above, we obtain the boundedness of
{xnt — xno}, which implies the boundedness of {*„(£)}. We are now ready
to show the convergence of xn(ί) to x(t) uniformly on [0, T]. We first
observe that

(7) (x'M, xn(t) - x(φ + (PnA(t)xn(t), xn(t) - x(φ

= {PnG{t, Xn), Xn(t) ~

(8) <*'(«), xn(t) - x(t)) + (A(t)x(t), xn(t) - x(t)}

= (G(t, xt), xn(t) -

Subtracting (8) from (7), we find

(x'M - x'(t), xn{t) - x(t))

= -(A(t)xn(t), xn(t) - Pnx(Φ + <A(t)x(t), xn(t) - x(φ

+ (G(t, xn), xn(t) - Pnx{Φ - <G(t, xt), xn(t) - x(Φ

= -(A(t)xn(t) - A(t)x(t), xn(t) - x(φ - <A(t)xn(t), x(t) ~ Pnx(Φ

+ (G(t, xnt) - G(t, xt\ xn(t) - x(φ + (G(t, xnt), x(t) - Pnx{Φ ,

which implies

^\\A(t)xn(t)\\ \\x(t) - PΛt)\\ + 6 I K - xt\\% + \\G{t, xnt)\\ \\x{t) - Pnx(t)\\ .

Integrating this inequality, we arrive at

( 9) || xjfi) - x(t) ||2 ^ || xn(Q) - x(0) ||2 + Vh(t)dt + 26 Γ || xn, - x, \\lds ,
Jo Jo

where h(t) = 21| A(t)xn(t) || || x{t) - Pnx(t) || + 21| G(t, xn) \\ || x{t) - Pnx(t) ||



NONLINEAR FUNCTIONAL EVOLUTION EQUATIONS 519

Since the above inequality holds for any ̂  e [0, ί], and since, for
ί ie[-r ,0] f

^ SUP \\Pnφ(θ) - φ(θ)\\ ,
0e[-r,O]

we actually have

II xn(t) - x(t) ||2 ^ II xn(0) - x(0) ||2 + sup || Pnφ(θ) - φ{θ) ||2
0e[-r,O]

+ \Th(t)dt + 26 Γ ||a? - x,\\%ds , te[-r, T] .
Jo Jo

Consequently, by Gronwall's inequality, we get

SUP \\xnt(θ) - Xt(θ)\\
0e[-r,O]

^ Γ||asn(O) - s(0)||2 + sup \\Pnφ{θ) - ^ ) | | 2 + Γ h(t)dt\e
L θε\-r,0] JO J

Now, xjfi) - x(Q) = P^(0) - 0(0) -^0 as n -> oo and Pn0(^) - 0(0) -> 0
uniformly on [—r, 0]. In addition, for the three normed expressions in
hit) we have the following properties. Prom the boundedness of A(0)
and the inequality \\A(t)xn{t)\\ ^ l|A(0)am(t)|| + TLφJM)<X + 11 (̂0)̂ (011)
we obtain the uniform boundedness of {A(t)xn(t)}. The uniform bounded-
ness of {xnt} implies the same property for {G(t, xnt)}. Finally, Pnx(t) ->
x(t) uniformly on [0, Γ]. Thus, an application of Lebesgue's bounded
convergence theorem shows that

sup II xnt(θ) - xt(θ) || -> 0 as n -> oo ,

which in turn shows that xn(t) —> x(t) uniformly on [0, T].

It should be noted here that we do not assume that A(t)Pnx —> A(t)x
for every x e H. This assumption is actually included in the result of
Kartsatos [8] if the domain of A(t) there is the whole of H. Also, the
constant b in (C.5) can be replaced by a Lebesgue integrable function

δ:[0,T]->Λ+.

4. Applications. As an example to which we can apply our result
of Section 3, we cite the nonlinear initial-boundary value problem:

(E) (d/dt)u(x, t) + A(t, x, u(x, t)) = f(t, x, u(x, t-r)) , t e (0, Γ) , x e Ω ,

u(x, θ) = φ(x, θ) , xeΩ , 0 6 [ - r , 0],

Dau(x, 0 = 0, x e 3Ω , t e (0, T] , | a \ < m ,

where u is a real valued function, r is a positive constant, Ω is a
bounded open subset of Rn (R = (— °oy <χ>), w ̂  2) with sufficiently smooth
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boundary, A(t, x, u), f(t, x, u) are nonlinear elliptic partial differential
operators in divergence form:

\cc\£m

fit, x,u)= Σ (-l)""I>α/α(ί, x, ζ(u)),
Iα|sm

and φ: Ω x [—r, 0] —> R is a given function. For a multi-index α =
(<*!, , an) of nonnegative integers we adopt the notation

\a\ = αx + + an , A = (3/3α,) , £ α = A"1 #.*• .

By ϋ!71™ we denote the space of all real vectors of the form ξ =

{£«; \a\^m). Thus, ζ(u) = {Dα^; | α | ^ m}.
For the results concerning such partial differential operators the

reader is referred, for example, to Browder [4] and Pascali and Sburlan
[12].

Now, let Wm>2(Ω) be the Sobolev space of all real valued functions
u such that D"ue L\Ω) for every a with | a \ ̂  m. Wm>\Ω) is a separable
Hubert space with inner product

<u, v)m = Σ <Dau, D«v)LhΩ) .

Let Cc(Ω) be the space of all fe C°°(Ω) with compact support. We denote
by W?'\Ω) the closure of the space GS(Ω) in Wm>\Ω). The space Wo

m'\Ω)
is thus another separable Hubert space. We let H denote this space
and we make the following additional assumptions:

( i ) for each a, Aa: Ω x Rn™-^R satisfies the Caratheodory conditions
and there exists a function g e L\Ω) and a constant c > 0 such that

\Aa(x, ξ)\ ^ c\ξ\ + g(x) , (a?, ξ)eΩ x Λ»« ,

where \ς\ = (Σ, α i^5 2 J 1 / 2 .
( i i) For a? e i2 and f, f' 6 Rn™ we have

Σ [Aa(x, ξ) - Aβ(a?f ί')](fα - f«) *£ 0 .

(iii) Each 6β: [0, T]->.B+ is Lipschitz continuous on [0, T], Φ( ,θ)e
W™>2(Ω) for every θ e [—r, 0], 0(#, β) is continuous and satisfies a Lipschitz
condition with respect to θ uniformly in xeΩ.

(iv) The functions fa: [0, T] x Ω x Rnm —• i? are continuous and such
that: there exists a nonnegative function h e L2(ώ) and a constant L > 0
with

l/.(ί, *, ί) - /«(*', *, ί')l ^ *(»)|ί - «Ί + L\ξ - ί Ί

for every ί, ί'6 [0, Γ], a e β , and f, f'eRn™.
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If for each t e [0, T], u,ve Wr>\Ω) we let

<ϊ(u,v)= Σ K(t)\ Aa(x, ξ{u{x)))D«v{x)dx ,
l l JΩJΩ

then a\u, v) is a bounded linear functional in v. By the Riesz represen-
tation theorem, there exists a nonlinear operator T(t):H—>H such that

(T(t)u, v)m = a\u, v) , (u,v)eH x H.

The operator T{t) is continuous, m-accretive, and maps bounded
subsets of H into bounded sets for each 1e [0, T], The proof of this
fact follows as in [12, p. 275]. It is also easy to see that T satisfies
the condition (C.2). Similarly, we can obtain an operator F(t):H-±H
such that

(F(t)u, v)m = Σ \ fa(t, x, ζ{u{x)))Dav(x)dx
lαl^m JΩ

for every t e [0, T], u,ve W?-\Ω). In order to show that F(t)u satisfies
a global Lipschitz condition on [0, T] x W?'\Ω), we observe that

I \a [Lit, x, ξ(u(x))) - /α(ί', x, ξ(v(x)))]D"v(x)dx

^ (\a [fa(t, x, ξ(u(x))) - fa(t', x, ζ(v(x)))YdxJ2- \\υ\\mΛ

where || |L,2 is the norm of W?'\Ω) and K is an obvious constant.
Adding these inequalities, we obtain our assertion.

Now, we consider the abstract problem

(AE) u\t) + T(t)u(t) = G(ί, ut), te [0, T],

where G(t, ψ) = F(t)f(—r), for any ψeC, and u'(ί) denotes the weak
derivative of u(t). Since the conditions (C.1)-(C5) are satisfied, the
unique strong solution of (AE) can be approximated by the Galerkin
method.

As an application of Theorem 1, we consider the initial-boundary
value problem consisting of the equation

(d/d)u(x, t) + A(t, x, u(x, t - r), u{x, t)) = 0 , 16(0, T), xeΩ
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and the initial and boundary conditions in (E). We assume that the
initial and boundary conditions satisfy the hypotheses made above, and
we let the elliptic differential operator A have the form

A(t, x, u,v)= Σ (-l) | α lJ5α6α(ί, x, ξ(u))Aa(x, ζ(v)).
|α|Sm

We assume, further, that the following conditions hold:
(1) Each Aa satisfies (i) and (ii) above with g(χ) constant and c = 0.
(2) Each δα is defined and continuous on [0, T) x Ω x Rn™, it has

values in R+ and, for some constants K > 0, L > 0,

\K(tf x, ξ) - 6β(f, x, f')| ^ K\t - t'\ + L\ξ - ζ'\

for every ί, t' 6 [0, Γ), xefl, f, f'ei2n».
Now, let Γ(ί, w)v be defined on W?y\Ω) from the equation

<T(t, iθv, w>» = Σ

It is easy to see that T(t, u)v is continuous, monotone and bounded
in v and satisfies the following Lipschitz condition:

|| T(t, u)v - T(t\ u')v\\mt2 ^KAt-t'l+L^u- u'\U

for all t, tf e [0, Γ), u, u\ v e TFo

m'2, where jBd, L t are positive constants.
Setting T(t, φ)v = Γ(t, ^(-r))v for (t, ^, v) e [0, Γ) x C x TFo

m'2, we see that
all the conditions of Theorem 1 are satisfied for the abstract problem

u'(t) + Γ(ί, wt)w(t) = 0 , 16 [0, Γ) ,
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