ALGEBRAIC CYCLES ON ABELIAN VARIETIES WITH MANY REAL ENDOMORPHISMS

Fumio Hazama

(Received July 1, 1982)

1. Main results. Let A be an abelian variety of dimension g defined over C. We denote by End A the endomorphism ring of A and put $\operatorname{End}^{\circ} A=$ End $A \otimes \boldsymbol{Q}$. In the present paper we investigate algebraic cycles on an abelian variety with many real endomorphisms. More precisely, we consider an abelian variety such that $\operatorname{End}^{\circ} A$ contains a product F of totally real fields with $[F: Q]=\operatorname{dim} A$. Our main result is the following:

Theorem (1.1). Let A be as above. Suppose that no simple component of A (up to isogeny) is of CM-type of dimension greater than one. Then $\mathscr{B}^{*}(A)$ is generated by $\mathscr{B}^{1}(A)$. In particular, the Hodge conjecture holds for such A.

Here we denote by $\mathscr{B}^{*}(A)=\bigoplus_{d=0}^{q} \mathscr{B}^{d}(A)$ the Hodge ring, where $\mathscr{B}^{d}(A)=H^{2 d}(A, \boldsymbol{Q}) \cap H^{d, d}(A)$. As an application of this result, we have the following theorem on algebraic cycles on the jacobian variety $J_{1}(N)$ of the modular curve $X_{1}(N)$ (see $\S 4$ for the definition):

Theorem (1.2). $\mathscr{B}^{*}\left(J_{1}(N)\right)$ is generated by $\mathscr{B}^{1}\left(J_{1}(N)\right)$. In particular, the Hodge conjecture holds for $J_{1}(N)$.

Remark. After this paper was prepared, Professor Shioda informed the author that V. P. Murty obtained the above (1.2) independently ([7]).
2. Preliminaries. Here we recall some properties of the Hodge group of an abelian variety.

Proposition (2.1) (Mumford [4]). Let A be an abelian variety. Let $\mathrm{Hg}(A)$ denote the Hodge group of A. Then

$$
\operatorname{End}^{0} A \cong \operatorname{End}_{\mathrm{Hg}(A)} H^{1}(A, \boldsymbol{Q}), \quad \mathscr{B}^{d}(A)=\left[H^{2 d}(A, \boldsymbol{Q})\right]^{\mathrm{Hg}(A)}
$$

Here we use the following notations: For a group G and a G-module V we denote by $\operatorname{End}_{G} V$ the set of G-endomorphisms of V and we denote by $[V]^{G}$ the set of G-invariant elements in V.

Proposition (2.2) (Tankeev [10, Lemma (1.4)]). If the center of the

Q-algebra $\mathrm{End}^{0} A$ is a product of totally real fields, then the Hodge group $\mathrm{Hg}(A)$ is semi-simple.

For the Hodge group and the Hodge ring of a product of elliptic curves the following theorems are known to hold:

Theorem (2.3). Let E be an elliptic curve. Then

$$
\mathscr{L}_{\mathscr{i}}\left(\mathrm{Hg}(E)_{c}\right) \cong \begin{cases}\mathfrak{H l}_{2} & \text { if } E \text { has no complex multiplication }, \\ C & \text { if } E \text { has complex multiplications } .\end{cases}
$$

Theorem (2.4) (Imai [3]). Let E_{1}, \cdots, E_{k} be elliptic curves which are mutually non-isogenous. Then

$$
\mathrm{Hg}\left(E_{1}^{n_{1}} \times \cdots \times E_{k}^{n_{k}}\right) \cong \operatorname{Hg}\left(E_{1}\right) \times \cdots \times \operatorname{Hg}\left(E_{k}\right) .
$$

Theorem (2.5) (Tate [11], Murasaki [6]). For a power E^{n} of an elliptic curve E, the Hodge ring $\mathscr{B}^{*}\left(E^{n}\right)$ is generated by $\mathscr{B}^{1}\left(E^{n}\right)$.

The following general proposition is frequently used when we compute the Hodge group of some product of abelian varieties:

Proposition (2.6) (Ribet [8]). Suppose that $\mathfrak{ß}_{1}, \cdots, \mathfrak{I}_{d}$ are simple finite-dimensional Lie algebras and that \mathfrak{u} is a subalgebra of the product $\mathfrak{F}_{1} \times \cdots \times \mathfrak{F}_{d}$. Assume that whenever $1 \leqq i<j \leqq d$ the projection of \mathfrak{u} to $\mathfrak{\mathfrak { F }}_{i} \times \mathfrak{\mathfrak { F }}_{j}$ is surjective. Assume also that the i-th projection maps \mathfrak{u} onto $\mathfrak{\Xi}_{i}$ for each i. Then $\mathfrak{u}=\mathfrak{I}_{1} \times \cdots \times \mathfrak{I}_{d}$.

Next we note that abelian varieties satisfying the condition of Theorem (1.1) can be classified as follows:

Theorem (2.7) (Giraud [2]). Let A be an abelian variety which satisfies the condition of (1.1), and consider a decomposition of A into isotypic components up to isogeny. Then each isotypic component is one of the following:
(1) A_{1}^{n}, where A_{1} is a simple abelian variety of type I under Albert's classification (Mumford [5, §21, Th. 2]) such that $\mathrm{End}^{0} A_{1} \cong a$ totally real field of degree g / n.
(2) A_{2}^{n}, where A_{2} is a simple abelian variety of type II such that End $^{0} A_{2} \cong a$ totally indefinite quaternion algebra over a totally real field of degree $g / 2 n$.
(3) E^{g}, where E is an elliptic curve of CM-type.
3. Proof of Theorem (1.1). First we determine the Lie algebra of $\mathrm{Hg}(A)_{c}$ for $A=A_{1}^{n}$ (resp. $A=A_{2}^{n}$) appearing in the case (1) (resp. (2)) of (2.7). Put $\operatorname{dim} A_{1}=g_{1}=g / n$. Put $\rho(A)=$ rank of the Néron-Severi group of A. If A is of type (1),
$\operatorname{End}^{0} A \underset{\boldsymbol{Q}}{\otimes} \boldsymbol{R} \cong M_{n}\left(\operatorname{End}^{0} A_{1}\right) \underset{\mathbb{Q}}{ } \boldsymbol{R} \cong M_{n}(\boldsymbol{R}) \times \cdots \times M_{n}(\boldsymbol{R}) \quad\left(\boldsymbol{g}_{1}\right.$ times $)$.
Moreover we have

$$
\rho(A)=n \rho\left(A_{1}\right)+(n(n-1) / 2) \text { rank End }{ }^{0} A_{1}=n(n+1) g_{1} / 2
$$

If A is type (2), then

$$
\begin{aligned}
\operatorname{End}^{0} A \underset{\boldsymbol{Q}}{\otimes} \boldsymbol{R} & \cong M_{n}\left(M_{2}(\boldsymbol{R}) \times \cdots \times M_{2}(\boldsymbol{R})\right) & & \left(g_{1} / 2 \text { times }\right) \\
& \cong M_{2 n}(\boldsymbol{R}) \times \cdots \times M_{2 n}(\boldsymbol{R}) & & \left(g_{1} / 2 \text { times }\right)
\end{aligned}
$$

Moreover we have $\rho(A)=n(2 n+1) g_{1} / 2$. We denote by \mathfrak{h} the Lie algebra of $\mathrm{Hg}(A)_{c}$, which is semi-simple by Proposition (2.2). Then in both cases by the isomorphism $\operatorname{End}^{0} A \otimes_{Q} C \cong \operatorname{End}_{\mathrm{Hg}_{(4)}\left(H^{1}(A, C)\right.}$ (cf. (2.1)) and Schur's lemma we have a decomposition of the \mathfrak{h}-module $H^{1}(A, C)$:

$$
H^{1}(A, \boldsymbol{C}) \cong\left(V_{1} \oplus \cdots \oplus V_{1}\right) \oplus \cdots \oplus\left(V_{k} \oplus \cdots \oplus V_{k}\right)
$$

where $k=g_{1}$ (resp. $g_{1} / 2$) if A is of type (1) (resp. (2)) and $V_{i}(1 \leqq i \leqq k)$ are mutually non-isomorphic \mathfrak{y}-modules each of them occurring s times. Note that $s=n$ (resp. 2n) if A is of type (1) (resp. (2)). We claim that $\operatorname{dim}_{c} V_{i}=2$ for all i. Suppose on the contrary that there exists an i such that $\operatorname{dim}_{c} V_{i} \neq 2$. Then since $\sum \operatorname{dim}_{c} V_{i}=2 s k$ and one-dimensional \mathfrak{G}-modules are isomorphic, we see that there exists a unique j such that $\operatorname{dim}_{c} V_{j}=1$. We may assume (renumbering V_{i} 's, if necessary) that $\operatorname{dim}_{c} V_{1}=3, \operatorname{dim}_{c} V_{2}=1, \operatorname{dim}_{c} V_{i}=2$ for $i \geqq 3$. Put $W_{1}=V_{1}$ and $W_{2}=$ \oplus \{the other components\}. Then

$$
\left[\mathbf{\Lambda}^{2} V\right]^{5} \cong\left[\mathbf{\Lambda}^{2} W_{1}\right]^{5} \oplus\left[\mathbf{\Lambda}^{2} W_{2}\right]^{6} \oplus\left[W_{1} \otimes W_{2}\right]^{5}
$$

If $s=1$, then we get $\left[W_{1} \otimes W_{2}\right]^{\natural} \cong \operatorname{Hom}_{\mathfrak{\xi}}\left(W_{1}^{*}, W_{2}\right)=0$ since W_{2} has no irreducible component of dimension three. Therefore

$$
\left[\mathbf{\Lambda}^{2} V\right]^{5} \cong\left[\mathbf{\Lambda}^{2} W_{1}\right]^{5} \oplus\left[\mathbf{\Lambda}^{2} W_{2}\right]^{5}
$$

We denote by ω the element in $\left[\Lambda^{2} V\right]^{5}$ corresponding to the skew symmetric non-degenerate bilinear form on the \mathfrak{y}-module V. According to the above decomposition, ω can be written $\omega=\omega_{1}+\omega_{2}$, where $\omega_{1} \in\left[\Lambda^{2} W_{1}\right]^{5}, \omega_{2} \in\left[\Lambda^{2} W_{2}\right]^{5}$. On the one hand we have $\Lambda^{g} \omega \neq 0$ by the non-degeneracy of the bilinear form. On the other hand, $\Lambda^{g} \omega=$ $\sum_{i+j=g} \Lambda^{i} \omega_{1} \otimes \Lambda^{j} \omega_{2}=0$, since $\Lambda^{i} \omega_{1}=0$ for $i \geqq 2$ and $\Lambda^{j} \omega_{2}=0$ for $j \geqq g-1$, a contradiction. Therefore $s \neq 1$. Then by a similar argument we get $V_{1} \cong V_{1}^{*}$. This is possible only if $p_{1}(\mathfrak{h}) \cong \mathfrak{g l}_{2}$ and $V_{1} \cong S^{2}\left(C^{2}\right)(=$ the space of symmetric tensors of degree two over C^{2}) by the representation theory of semi-simple Lie algebras (Bourbaki [1, Chaps. VII and VIII]). Here we denote by p_{i} the i-th projection: End $V \rightarrow$ End $V_{i}(1 \leqq i \leqq k)$.

As for $V_{i}(i \geqq 3)$, we see that $p_{i}(\mathfrak{G}) \cong \mathfrak{g l}_{2}$ and $V_{i} \cong C^{2}$ (the natural representation). Then we are able to compute $\operatorname{dim}_{c}\left[\Lambda^{2} V\right]^{4}$ as follows:

$$
\operatorname{dim}_{c}\left[\Lambda^{2} V\right]^{5}= \begin{cases}n(n+1)\left(g_{1}-2\right) / 2+n^{2} & \text { in case }(1), \\ n(2 n+1) g_{1} / 2-2 n & \text { in case }(2) .\end{cases}
$$

Since $\operatorname{dim}_{c}\left[\Lambda^{2} V\right]^{5}=\rho(A)$, this contradicts the above computation of $\rho(A)$. Thus we see that $\operatorname{dim}_{c} V_{i}=2$ for all $i \geqq 1$, and $p_{i}(\mathfrak{h}) \cong \mathfrak{S L}_{2}$.

Now we claim that

$$
\mathfrak{h} \cong \mathfrak{m l}_{2} \times \cdots \times \mathfrak{m l}_{2} \quad(k \text { times }),
$$

where the i-th component acts on $V_{i} \oplus \cdots \oplus V_{i}$ diagonally. To show this we use the following:

Lemma (3.1). Let \mathfrak{G} be a semi-simple subalgebra of $\mathfrak{S l}_{2} \times \mathfrak{S l}_{2}$ such that $p_{i}(\mathfrak{h})=\mathfrak{L l}_{2}(i=1,2)$, where p_{i} denotes the i-th projection. Then \mathfrak{G} must be equal to $\mathfrak{S l}_{2} \times \mathfrak{h l}_{2}$ or the graph of an automorphism of $\mathfrak{L l}_{2}$.

Proof of (3.1). This is an easy consequence of "Goursat's lemma" (cf. [7, Lemma (5.2.1)]).

We apply this to $p_{i j}(\mathfrak{h}) \subset \mathfrak{H}_{2} \times \mathfrak{H}_{2}$, where $p_{i j}$ denotes the projection: End $V \rightarrow$ End $V_{i} \times$ End $V_{j}(1 \leqq i<j \leqq k)$. By the assumption, the \mathfrak{b} modules V_{i} and V_{j} are not isomorphic, hence it follows from (3.1) that $p_{i j}(\mathfrak{G})=\mathfrak{L l}_{2} \times \mathfrak{S l}_{2}$. Therefore the claim above follows from (2.6).

Now suppose that an abelian variety A satisfies the condition of Theorem (1.1). Then by (2.7),

$$
A \underset{\text { isog. }}{\sim} A_{1} \times A_{2} \times \cdots \times A_{s} \times C_{1}^{m_{1}} \times \cdots \times C_{t}^{m_{t}},
$$

where $A_{i}(1 \leqq i \leqq s)$ are of type (1) or (2) in (2.7) and $C_{j}(1 \leqq j \leqq t)$ are elliptic curves of CM-type with $C_{j} \nsim C_{k}$ for $j \neq k$. Here we use the following lemmas which are proved easily:

Lemma (3.2). Let A be an abelian variety whose Hodge group is semi-simple and let B be an abelian variety of CM-type. Then $\mathrm{Hg}(A \times B) \cong$ $\mathrm{Hg}(A) \times \mathrm{Hg}(B)$.

Lemma (3.3). Let G, H be groups and let V (resp. W) be a Gmodule (resp. H-module). Then $[V \otimes W]^{a \times H}=[V]^{G} \otimes[W]^{H}$.

Let \mathfrak{G} be the Lie algebra of $\mathrm{Hg}(A)_{c}$. Then by the above argument and the lemmas, we see the representation of \mathfrak{h} in the space $H^{1}(A, C)$ is equivalent to the representation of the Lie algebra of the Hodge group of some product of elliptic curves $E_{1}^{n_{1}} \times \cdots \times E_{u}^{n_{u}}$ ($E_{i} \nsim E_{j}$ for $i \neq j$). Therefore the proof is reduced to showing that the Hodge ring
$\mathscr{B}^{*}\left(E_{1}^{n_{1}} \times \cdots \times E_{u}^{n_{u}}\right)$ is generated by $\mathscr{B}^{1}\left(E_{1}^{n_{1}} \times \cdots \times E_{u}^{n_{u}}\right)$. But this follows immediately from (2.4), (2.5) and (3.3).

Remark. In case (1) of (2.7), we have $\mathrm{Hg}\left(A_{1}^{n}\right) \cong \mathrm{Hg}\left(A_{1}\right) \cong \mathrm{SL}_{2}\left(F_{1}\right)$, where we denote $\operatorname{End}^{0} A_{1}$ by F_{1}, and $V_{i} \cong H^{1}(A, Q) \otimes_{F_{1}, \sigma} C$ for some embedding σ of F_{1} into C. This fact was pointed out to us by the referee. Such a viewpoint will be investigated in our forthcoming paper on "stable non-degeneracy" of abelian varieties.
4. Proof of Theorem (1.2). For an arbitrary positive integer N, put

$$
\begin{aligned}
& \Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(Z) ; c \equiv 0 \bmod (N)\right\}, \\
& \Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(N) ; a \equiv 1 \bmod (N)\right\} .
\end{aligned}
$$

We denote by $X_{0}(N)$ (resp. $X_{1}(N)$) the non-singular projective curve defined over \boldsymbol{Q}, which is associated to $\Gamma_{0}(N)$ (resp. $\Gamma_{1}(N)$). More precisely, the group $\Gamma_{0}(N)\left(\right.$ resp. $\left.\Gamma_{1}(N)\right)$ acts on the Poincaré half-plane \mathfrak{b}. We denote by \mathscr{S}^{*} the union of \mathscr{S} and the cusps of $\Gamma_{0}(N)$ (resp. $\Gamma_{1}(N)$). The quotient of \mathscr{S}^{*} by the action of $\Gamma_{0}(N)$ (resp. $\Gamma_{1}(N)$) is a compact Riemann surface. It is known that the algebraic curve over \boldsymbol{C} thus obtained is defined over \boldsymbol{Q}. We consider algebraic cycles on the jacobian variety $J_{0}(N)$ (resp. $J_{1}(N)$) of the curve $X_{0}(N)$ (resp. $X_{1}(N)$). We note that these abelian varieties satisfy the condition of Theorem (1.1) as is shown in [9]. Therefore we have Theorem (1.2). Moreover we have:

Corollary (4.1). Let B be an abelian variety which is obtained as a quotient variety of $J_{1}(N)$. Then the Hodge ring $\mathscr{B}^{*}(B)$ is generated by $\mathscr{B}^{1}(\boldsymbol{B})$.

Proof. Each simple component of the abelian variety B is a simple component of $J_{1}(N)$ up to isogeny. Hence we have the assertion of the corollary by the same argument as that in the proof of Theorem (1.1).

References

[1] N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1960.
[2] J. Giraud, Modules des variétés abéliennes et variétés de Shimura, Variétés de Shimura et founctions L, Publications Mathématiques de L'Université de Paris, VII, 6, 1981, 21-42.
[3] H. Imai, On the Hodge groups of some abelian varieties, Kodai Math. Sem. Rep. 27 (1976), 367-372.
[4] D. MUMFORD, A note on Shimura's paper "Discontinuous groups and abelian varieties,"

Math. Ann. 181 (1969), 345-351.
[5] D. Mumford, Abelian varieties, Tata Inst. and Oxford Univ. Press, 1970.
[6] T. Murasaki, On rational cohomology classes of type (p, p) on an abelian variety, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 10 (1969), 66-74.
[7] V. P. Murty, Algebraic cycles on abelian varieties, Ph. D. thesis, Harvard Univ., 1982.
[8] K. A. Ribet, Galois action on division points of abelian varieties with many real multiplications, Amer. J. Math. 98 (1976), 751-804.
[9] G. Shimura, On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J. 43 (1971), 199-208.
[10] S. G. Tankeev, On algebraic cycles on abelian varieties, II. Izv. Akad. Nauk SSSR. 43 (1979), 418-429.
[11] J. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, 93-110.

Department of Mathematical Science
College of Science and Engineering
Tokyo Denki University
hatoyama-cho, Hiki-gun
Saitama 350-03
Japan

