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1. Main results. Let A be an abelian variety of dimension g defined
over C. We denote by End A the endomorphism ring of A and put
End°A =End A® Q. In the present paper we investigate algebraic
cycles on an abelian variety with many real endomorphisms. More
precisely, we consider an abelian variety such that End’ A contains a
product F of totally real fields with [F:Q] = dim A. Our main result
is the following:

THEOREM (1.1). Let A be as above. Suppose that no simple component
of A (up to isogeny) s of CM-type of dimension greater than one. Then
B*(A) 1s generated by F'(A). In particular, the Hodge conjecture
holds for such A.

Here we denote by Z#*(A) = @i-, ZF*(A) the Hodge ring, where
BYA) = HYA, Q N H**(A). As an application of this result, we have
the following theorem on algebraic cycles on the jacobian variety J,(IN)
of the modular curve X,(N) (see §4 for the definition):

THEOREM (1.2). Z*(J(N)) is generated by Z*(J,(N)). In particular,
the Hodge comjecture holds for J,(N).

REMARK. After this paper was prepared, Professor Shioda informed
the author that V. P. Murty obtained the above (1.2) independently ([7]).

2. Preliminaries. Here we recall some properties of the Hodge
group of an abelian variety.

PROPOSITION (2.1) (Mumford [4]). Let A be an abelian variety. Let
Hg (A) denote the Hodge group of A. Then

End’ A = Enduy H'(4,Q),  FA) = [H*4, Q= .

Here we use the following notations: For a group G and a G-module
V we denote by End; V the set of G-endomorphisms of V and we denote
by [V]¢ the set of G-invariant elements in V.

PROPOSITION (2.2) (Tankeev [10, Lemma (1.4)]). If the center of the
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Q-algebra End® A is a product of totally real fields, then the Hodge group
Hg (A) is semi-simple.

For the Hodge group and the Hodge ring of a product of elliptic
curves the following theorems are known to hold:

THEOREM (2.3). Let E be an elliptic curve. Then

8l, +f E has mo complex multiplication ,

Zz (Hg (H)e) =
(He (E)c) C if E has complex multiplications .

THEOREM (2.4) (Imai [3]). Let K, ---, E, be elliptic curves which are
mutually non-isogenous. Then

Hg (B X -+ x Eg¥) = Hg (E)) X --- X Hg (E,) .

THEOREM (2.5) (Tate [11], Murasaki [6]). For a power E™ of an
elliptic curve E, the Hodge ring Z*(E") 1s generated by FZ(E™).

The following general proposition is frequently used when we com-
pute the Hodge group of some product of abelian varieties:

PrOPOSITION (2.6) (Ribet [8]). Suppose that 3, ---,8; are simple
finite-dimensional Lie algebras and that u is a subalgebra of the product
8, X ++-X%X8;. Assume that whenever 1 <1 < j < d the projection of u to
8, X 8; 18 surjective. Assume also that the i-th projection maps u onto
8, for each 1. Then u =38 X --+ X 8;.

Next we note that abelian varieties satisfying the condition of
Theorem (1.1) can be classified as follows:

THEOREM (2.7) (Giraud [2]). Let A be an abelian wvariety which
satisfies the condition of (1.1), and consider a decomposition of A into
180typic components up to isogeny. Then each isotypic component is one
of the following:

(1) A7, where A, is a simple abelian variety of type I under Albert’s
classification (Mumgford [5, §21, Th. 2]) such that End’ A, = a totally
real field of degree g/n.

(2) Az, where A, is a simple abelian variety of type II such that
End’ A, = a totally indefinite quaternion algebra over a totally real field
of degree g/2n.

(8) E* where E is an elliptic curve of CM-type.

3. Proof of Theorem (1.1). First we determine the Lie algebra of
Hg (A)c for A = A} (resp. A = A?) appearing in the case (1) (resp. (2))
of (2.7). Put dim A4, =g, = g/n. Put p(A) = rank of the Néron-Severi
group of A. If A is of type (1),
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EndA®Q R = M, (End" 4, @ R=M(R) X --- X M, (R) (g, times).
Q

Moreover we have

0(A) = np(4) + (n(n — 1)/2) rank End’ 4, = n(n + 1)g,/2 .
If A is type (2), then

End’ A (? R = M,(M,R) X -+ X M,R)) (9./2 times)

= M,(R) X --+ X M,,(R) (g./2 times) .

Moreover we have p(A) = n(2n + 1)g,/2. We denote by §) the Lie algebra
of Hg (A);, which is semi-simple by Proposition (2.2). Then in both
cases by the isomorphism End’ A ®, C = Endg, 4, H'(4, C) (cf. (2.1)) and
Schur’s lemma we have a decomposition of the §)-module H*(A, C):

HA,O=(V,@---QV)D--- DV :--- DV,

where k = g, (resp. ¢,/2) if A is of type (1) (resp. () and V, 1 <15 k)
are mutually non-isomorphic )-modules each of them occurring s times.
Note that s = » (resp. 2n) if A is of type (1) (resp. (2)). We claim that
dim,V; =2 for all 7. Suppose on the contrary that there exists an 4
such that dim. V; # 2. Then since >, dim; V,; = 2sk and one-dimensional
§-modules are isomorphic, we see that there exists a unique 5 such that
dim;V; =1. We may assume (renumbering V,’s, if necessary) that
dimcV, =38, dim¢V, =1, dim;V; =2 for ¢ =3. Put W, =V, and W, =
@ {the other components}. Then

[NV =[NWIDINWID[W. QW] .

If s =1, then we get [W,® W,]° = Hom, (W}, W,) = 0 since W, has no
irreducible component of dimension three. Therefore
NV = [NWIDIA W] .

We denote by w the element in [A®*V]' corresponding to the skew
symmetric non-degenerate bilinear form on the §)-module V. According
to the above decomposition, @ can be written w = w, + w,, where
0, €[NW], w,e[A*W,]'. On the one hand we have A‘w =0 by
the non-degeneracy of the bilinear form. On the other hand, A‘w =
Surice NP0, Q AP, =0, since A‘w, =0 for ¢ =2 and A/w, =0 for
j=g—1, a contradiction. Therefore s#1. Then by a similar argument
we get V,=V¥*. This is possible only if p,(§)=8l, and V,=S¥C?* (=the
space of symmetric tensors of degree two over C?) by the representation
theory of semi-simple Lie algebras (Bourbaki [1, Chaps. VII and VIII]).
Here we denote by p, the i-th projection: End V—-EndV, 1 £ 1 £ k).
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As for V, (1 =8), we see that p,(0)) =8, and V,= C* (the natural
representation). Then we are able to compute dim;[A? V]* as follows:
n(n + 1)(g, — 2)/2 + n’ in case (1),

n2n + 1)g,/2 — 2n in case (2).

Since dim¢[A? V]* = p(4), this contradicts the above computation of p(A).

Thus we see that dim¢V, =2 for all ¢ = 1, and p,(H) = 3L.
Now we claim that

h=38, x ... x 8, (k times) ,
where the i-th component acts on V,p --- @V, diagonally. To show
this we use the following:

LEMMA (8.1). Let 9§ be a semi-simple subalgebra of 3, x 8l, such
that ,(9) = 8L, (1 =1, 2), where p, denotes the i-th projection. Then §
must be equal to 3!, X 8l, or the graph of an automorphism of 8.

dime [A’ VT =

ProoF OF (3.1). This is an easy consequence of “Goursat’s lemma”
(ef. [7, Lemma (5.2.1)]).

We apply this to p,;(h) 8, x 8l,, where p,; denotes the projection:
EndV—->EndV, xEndV; 1<i<j=<k). By the assumption, the b-
modules V; and V; are not isomorphic, hence it follows from (3.1) that
:;(§) = 81, x 8l,. Therefore the claim above follows from (2.6).

Now suppose that an abelian variety A satisfies the condition of
Theorem (1.1). Then by (2.7),

Am"; A XA, X -+ XA, XCm X .. XCM,

where 4; (1 £ i < s) are of type (1) or (2) in (2.7) and C; A1 £ j < t) are
elliptic curves of CM-type with C; +~ C, for j = k. Here we use the
following lemmas which are proved easily:

LEMMA (3.2). Let A be an abelian variety whose Hodge group is
semi-simple and let B be an abelian variety of CM-type. Then Hg (A X B)=
Hg (A) x Hg (B).

LEMMA (3.3). Let G, H be groups and let V (resp. W) be a G-
module (resp. H-module). Then [VQR WIF = [VIFQ [W]~

Let Y be the Lie algebra of Hg (A)c. Then by the above argument
and the lemmas, we see the representation of ) in the space H'(A4, C)
is equivalent to the representation of the Lie algebra of the Hodge
group of some product of elliptic curves E™ x .- x E (E, # E; for
1 # j). Therefore the proof is reduced to showing that the Hodge ring
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B*(EM X --- X Hr) is generated by ZYE™ x --- x Er). But this
follows immediately from (2.4), (2.5) and (8.3).

REMARK. In case (1) of (2.7), we have Hg (A7) = Hg (4,) = SL, (F),
where we denote End’A, by F,, and V,= H'(4, Q) Qy,,C for some
embedding ¢ of F, into C. This fact was pointed out to us by the
referee. Such a viewpoint will be investigated in our forthcoming paper
on “stable non-degeneracy” of abelian varieties.

4. Proof of Theorem (1.2). For an arbitrary positive integer N,
put

I'y(N) = {(: db> e SL(Z); ¢ = 0 mod (N)} ,

I'(N) = {(: b) eI'(N); a = 1 mod (N)} .

d
We denote by X,(N) (resp. X,(N)) the non-singular projective curve
defined over @, which is associated to I'y(N) (resp. I'(N)). More
precisely, the group I'(N) (resp. I',(N)) acts on the Poincaré half-plane
). We denote by $* the union of $ and the cusps of I'(N) (resp. I',(N)).
The quotient of $* by the action of I'(N) (resp. I'(N)) is a compact
Riemann surface. It is known that the algebraic curve over C thus
obtained is defined over Q. We consider algebraic cycles on the jacobian
variety Jy(N) (resp. J,(N)) of the curve X (N) (resp. X,(N)). We note
that these abelian varieties satisfy the condition of Theorem (1.1) as is
shown in [9]. Therefore we have Theorem (1.2). Moreover we have:

COROLLARY (4.1). Let B be an abelian variety which is obtained
as a quotient variety of J.(N). Then the Hodge ring <Z*(B) is gener-
ated by <#'(B).

ProOF. Each simple component of the abelian variety B is a simple
component of J,(N) up to isogeny. Hence we have the assertion of the
corollary by the same argument as that in the proof of Theorem (1.1).
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