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Introduction. Let M be a connected complex manifold with a
Hermitian metric dS%. We denote by Aut (M) the group of all biholo-
morphic transformations of M and by Iso (M) the group of all isometries
of M with respect to dS%. We put AI(M) = Aut (M) N Iso(M). As is
well-known, if M is hyperbolic in the sense of Kobayashi [6], then
Aut (M) as well as Iso (M) is a Lie transformation group on M.

In this note, we prove two mutually independent theorems on homo-
geneous hyperbolic complex manifolds. We first show the following
Theorem 1, which may be a supplement to Hano [3].

THEOREM 1. Let M = G/K be a hyperbolic complex manifold on which
a connected Lie subgroup G of Aut (M) acts transitively, where K denotes
the isotropy subgroup of G at a point p of M. Then M can be holomor-
phically and equivariantly immersed imto an N-dimensional complex
projective space Py(C) as an open subset of a complex homogeneous sub-
manifold G,/G_. In particular, M is a Kaehler manifold with respect
to the induced Kaehler metric.

An analogue for a homogeneous Siegel domain M = G/K is well-known
(cf. [4], [5], [8]). After some preliminaries in Section 1, the above theorem
will be proved in Section 2.

Let M be a connected complex manifold with a Hermitian metric
dS%. If M is hyperbolic, M admits no complex line, i.e., there is no
holomorphic mapping from C into M other than the constant mappings.
The converse to this assertion is not true in general by an example of
Eisenman and Taylor [6, p. 130]. But, it was proved by Brody [1] that
M is hyperbolic if and only if M admits no complex line, provided that
M is compact. By a simple modification of Brody’s proof, we obtain the
following theorem in Section 3.

THEOREM 2. Let M be a Hermitian complex manifold with compact
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quotient M/AI(M). Then M 1is hyperbolic if and only if M admits no
complex line.

As an immediate consequence of this fact, we have the following:

COROLLARY. Let M be a Hermitian complex manifold on which the
group AIL(M) of all holomorphic isometries acts transitively. Then M
18 hyperbolic if and only +f M admits no complex line.

The author would like to express his thanks to Professor H. Shima
for his valuable advice.

1. Preliminaries. For later purpose, we recall some notations in
Hano [3].

Let M = G/K be a complex manifold on which a connected Lie group
G acts transitively and effectively as a group of holomorphic transfor-
mations, where K denotes the isotropy subgroup of G at a point p of
M. We denote by g the Lie algebra of left invariant vector fields on
G and f the subalgebra corresponding to K. To the invariant complex
structure I on M, there corresponds a left invariant tensor field J on G
satisfying the following conditions [7]:

(1) J X=0 for Xef;
(2) J:X + Xet for Xeg;
(3) JAdk-X — Adk-J-Xet for keK, Xeg;
(4) JIXY]-[J-X,Y]-[X,J-Y]-J[J-X,J-Y]et
for X, Yeg.
Denote by g, (resp. f,) the complexification of g (resp. ¥), we put
(5) 8. = {XF1V -1J-X|Xeg}.
Then, both g, and g_ are complex subalgebras of g, and
(6) g.=¢g++¢., EL=g.Ng, Adkg. =g.
for all ke K. Finally, putting
(7) ng-) = {Xegl[X,g]Cg}
and
(8) h={Xeg|J[X, Y] - [X,J-Y]et for all Yeg},

we obtain the following:

LEMMA 1 ([3, Lemma 3]). The subspace Y is a J-stable subalgebra of
g and § =n(g_)Nag.



HOMOGENEOUS HYPERBOLIC COMPLEX MANIFOLDS 183

2. Proof of Theorem 1. We start with the following lemma, which
is an essential part of the proof.

LEMMA 2 (cf. [3, Lemma 5]). Let M = G/K be a homogeneous hyper-
bolic complex manifold as in Theorem 1. Then we have n(g_) = g_ and
H) =t Moreover, the group K is an open subgroup of the subgroup K,
in G consisting of all elements g such that Adg-g_ = g_.

PrROOF. Once it is shown that Y) = f, the rest can be proved by
exactly the same arguments as in [3, Lemma 5]. Now, supposing that
H) 2, we denote by H the analytic subgroup of G corresponding to §
and K, the identity component of K. Since f is an ideal of §, K, is an
invariant subgroup of H so that H/K, is a Lie group of positive dimen-
sion by our assumption. Moreover, as is remarked in [3, p. 1380], H/K,
is a complex Lie group by Lemma 1 and G/H admits an invariant com-
plex structure such that the principal fibre bundle G/K, over G/H with
structure group H/K, is holomorphic. Notice now that G/K, is hyper-
bolic, since it is a holomorphic covering space of the hyperbolic complex
manifold G/K. Then, being a complex submanifold of G/K,, the complex
Lie group H/K, is also hyperbolic. But, this is a contradiction, since
dim; H/K, > 0 and since the Kobayashi pseudo-distance of any complex
Lie group vanishes identically in general. g.e.d.

Now, we put dim;g_ = m and we denote by Gr(g,; m) the Grassman
manifold of all complex subspaces of complex dimension m in g, The
group G acts on Gr(g,; m) via its adjoint representation Ad. Since the
subgroup K of G leaves g_ invariant by (6), we can define a mapping @
of M = G/K into Gr(g,; m) by

(9) P(gK) = Adg-g_ for all geG.

It is obvious that Adg,-9(¢,K) = #(9,9.K). Moreover, denoting by K,
the isotropy subgroup of G at the point g_, we see by Lemma 2 that
K is an open subgroup of K,  Therefore, the mapping ¢: M = G/K —
(M) = G/K, c Gr(g,; m) is a G-equivariant immersion.

Let G, be the complex analytic subgroup of GL(g,; C) corresponding
to the subalgebra adg,, where ad denotes the adjoint representation of
g, Consider the G,orbit through g_ in Gr(g,;m). Let G_ be the
isotropy subgroup of G, at the point g_. Then the Lie algebra of G_
coincides with adg_ by Lemma 2. Now, since M = G/K is homogeneous
hyperbolic, we know by [6] that G has no nondiscrete center, i.e., the
center of g reduces to {0}. By using this fact, we can show by exactly
the same arguments as in [3, the proof of Proposition 1] that @(M) =
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G/K, is an open complex submanifold of the complex homogeneous space
G./G_ and ¢: M = G/K — G,/G_ is a G-equivariant holomorphic immersion.
Finally, by composing this ¢ and the standard Pliicker imbedding of
Gr (g,; m) into a complex projective space Py(C), we obtain a desired
projective immersion. q.e.d.

3. Proof of Theorem 2. We first fix some notations. Let 4(r) =
{zeC||z| < r} be the open disk of radius » with the normalized Poincaré-
Bergman metric w, = r*dz-dz/(r* — |z[)%. Let o be the distance function
on the unit disk 4 = 4(1) determined by w,. Given two complex mani-
folds X and Y, we denote by Hol (X, Y) the family of all holomorphic
mappings f: X — Y. For a given f e Hol(4(r), M), we put

(10) | f'(2o)| = | f4(0/02),=s, »
where | - | denotes a Hermitian metric in the complexified tangent bundle
of M. With these notations we have the following:

LEmMA 3 ([1, Lemma 1.1]). Let M be a complex manifold with
compact quotient M/AI(M). Then M 1is hyperbolic if and only if
sup, | f'(0)| < o, feHol(4, M).

ProoF. First we remark that there is a compact subset K of M
such that AI(M)-K = M. Indeed, since the natural projection 7: M —
M/AI (M) is a continuous open mapping and M/AI (M) is compact by our
assumption, we can see that there exists a compact subset K of M such
that 7(K) = M/AI(M). Clearly this implies AI(M)-K = M. Now, the
proof of the “if part” is identical to that of [1, Lemma 1.1].

Conversely, supposing that sup;|f’(0)| = -, we have a sequence {f,}
of holomorphic mappings f,: 4 — M with | f,(0)| 1 . Since M = AI(M)-K
with compact subset K as above, we can choose g, AI(M) in such a

way that (g,°f,)0)eK for all »n=1,2, ---. We put F,=g,f, for

m=1,2 ---. Then, replacing the sequence {f,} in [1, Lemma 1.1] by
our {F,}, we can show that M is not hyperbolic. q.e.d.
"~ LEMMA 4 ([1, Lemma 2.1]). Let M be a complex manifold with a

Hermitian metric |-|. Given an f e Hol(4d(r), M) with |f'(0)|=¢ =0,
there exists f e Hol (4(r), M) with

(14 sup | F'@)|-(* — |z = | F(0)] = o

LEMMA 5. Let M be a complex manifold with compact quotient
M/AI(M). Then M is a complete Hermitian manifold.

ProOF. We can prove this fact in the same way as [2, Lemma 2.1].
q.e.d.
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W now complete the proof of Theorem 2 along the same line as that
for [1, Theorem 4.1]. Let K be a compact subset of M such that
AI(M)-K = M as before. It is well-known (cf. [6]) that if M is hyper-
bolic, M admits no complex line.

Suppose that M is not hyperbolic. By Lemma 3 there exists a
sequence {f,} of holomorphic mappings f,: 4 — M with | £,(0)| T <, or equiv-
alently, we have a sequence {f,} of holomorphic mappings f,: 4(r,) — M
with | f,(0)] =1 and 7,7 . Applying Lemma 4, we now obtain a se-
quence of mappings f, € Hol (4(r,), M) satisfying

(15) sup | Fu@)]- 0% — [z = | Fi0)] = 1,
from which we have
(16) | fa(2)| < 4/3 on  A(r,/2).

Obviously, this implies that the sequence {f.},-. is equicontinuous on
4(r,/2) for arbitrarily fixed n. Moreover, M is a complete Hermitian
manifold by Lemma 5. We conclude therefore by Wu [9, Lemma 1.1]
that {fi};=. is a normal family on 4(r,/2). Changing f, for a suitable
holomorphic mapping of the form g,of,, g,€AI(M), if necessary, we
may assume that f,(0)e K, that is, f,{fohN K= @ foralln=1,2, .--.
Then, the normality guarantees that some subsequence {f,} of {fihizn
converges on 4(r,/2) to a holomorphic mapping of 4(r,/2) into M. By
tlie usual diagonal argument, we can now extract a subsequence { fni} of
{f.} which converges on 4(r,) to a holomorphic mapping F,: 4(r,) — M
for allw =1,2, ---. By means of this sequence {F',}, we can define a holo-
morphic mapping F: C — M by F(z) = F,(z) for all ze 4(r,), » =1,2, ---.
This mapping F cannot be constant, since |F’(0)| = limiqmlf;t(0)| =1.
Therefore we have shown that if M admits no complex line, then M is
hyperbolic. q.e.d.
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