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1. Introduction. Let (Ω, F, P) be a complete probability space
equipped with an increasing, right continuous family &~ of complete
sub-σ-fields (Ft)t^0 such that F = Vî o^V Let us denote, by ^ > (^ r "),
^r'{^r) and ^ , the ^'-optional αvfield, the class of all ^-stopping times
and the set of .^"-progressively measurable processes u = {u(t); t ^ 0}
with values in a σ-compact subset of Rd, respectively. We define a
stopped process us of u at time S e J7~{^r), ^ ( u , S), a restriction SΛ

of S to an ..^-measurable set A and a concatenation u-S-v as follows:

u8 = {tt(t Λ S ) ; ^ 0 } , ^/(U, S) = {v e <&; vs = us},

π (S on 4 Ί r τS 4 = ] and u S'V = ulίos] + v/]s«,[ for u,ve%f.
(oo o n i c '

Now we consider a subclass £& of ^ as an admissible control. £^
is assumed to be stable for a stopping and a concatenation. Further-
more, we put the following assumptions on £&\

(A.I) For each admissible control u of ^ , there exists a right
continuous (^~f P)-local martingale Nu such that its jumps are strictly
greater than - 1 and Nu(0) = 0.

(A.2) Nu(t ΛS) = i\Γv(ί Λ S) if ve&(u, S) = &n&(u, S) and

Nu'8'w(t V S ) - iSΓ Ŝ) = iNΓv s w(ί V S) - iSΓv(S) for

%, v, w e ̂ , Se ̂ "{jr) .

(A.3) Let zu be an exponential local martingale with respect to Nu>
i.e.,

z\t) = ϊ?(Nu)(t) = exv{Nu(t) - (1/2) < (Nu)c > (ί)} Π (1

where <(iSΓw)c> is the ^'-predictable increasing process associated with
the continuous part (Nu)e of Nu and JNu(s) = iSΓ̂ s) - Nu(s-). Then there
exists a constant p > 1 such that supw6^ HsupJ^t)! ||LP(P) < °°
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From (A.3), zu is a strictly positive and uniformly P-integrable
martingale and we can define the probability measure Pu which has
density zu with respect to P and which is equivalent to P for each
ue&. We define the cost associated with ue&. Let cu = {cu(t); t ^ 0}
be a right continuous .^adapted Pw-integrable increasing process. We
consider cu(°°) as the loss function, cu(t) as the evolution cost associated
to the policy of control u. We suppose the following conditions on cu:

(C.I) c\t A S) = c\t A S) if ve&(u,S) and

c '8 »(t V S) - cu(S) = cυ's'w(t V S) - c\S) for

w, v, w 6 ^

(C.2) sup u β ^ S [c (8) - cMOo)]-*0 as s > s0 and s->s 0 where Eu[ ]
denotes the expectation with respect to P \

(C.3) The difference of cu is exponentially uniformly bounded in
S e y ( ^ ) and in ue£2?, i.e., there exist constants α > 0 and C(α),
which depends on α, such that 0 ^ cM(oo) — cw(S) ̂  C(a)e~aS.

The cost Γ(u), the conditional cost Γ(w, S) and the conditional minimal
cost J(u, S) are then defined as follows:

Γ(u) = ^ t t[cw(oo)], Γ(u, S) = Eu[cu(oo)\Fs] and

J(u, S) = ess inf{Γ(v, S); v 6 ̂ ( u , S)} .

Under some suitable assumptions on Nu and cM, Benes [1], Bremaud
[3] and Duncan-Varaiya [5] showed that there exists an optimal control
u* 6 3F, i.e., Γ(u*) ^ Γ(u) for all ue&,or equivalents, J(u*f S) = Γ(u*9 S)
for all S e ^ ( j ? n . It is known (see El-Karoui [6; Chap. 3]) that there
exists a right continuous ̂ ^-optional process W, called the value process,
such that W(S) = essinf^ fc^c^) - cu(S)\Fs];ue&} P-a.s. on {S < oo}

( i ) c%S) + W(S) = J(u, S) P-a.s. for all S e ^ ( ^ ) .
(ii) Eu[ W(0)] = inf{J(w, 0); u 6 ^ } .
(iii) cu + T7 is a positive PM-submartingale.
(iv) u* is an optimal control if and only if cu* + W is a positive

PM*-martingale.
In this paper, our aim is to characterize the value process by the

method of nonlinear semigroups of conditioned shifts in non-Markovian
case. We base ourselves on martingale theory, Bellman's principle and
Nisio's results [7] (see also Bensoussan [2]) of nonlinear semigroups in the
control of Markov processes.

Let us denote by <%f the Banach space of all essentially bounded
right continuous ^-adapted process x = {x(t); t^O} with its norm ||&|| =
||supt|ίc(ί)| IU°°(p> < °° and with the usual order. Let Φ be a subclass of
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such that {cu(t) + e~atx(t)} is a right continuous Ptt-submartingale for
each u e ^ , We seek a semigroup {Gh} of operators acting on Φ whose
fixed point is equal to the value process. Such a semigroup will be
obtained as the envelope of the semigroups {Kt} of conditioned shifts
on <%f where Ktx is defined as the .^-optional Ptt-projection of the
process {ea\cu(t + h) — cu(t)) + e~ahx{t + h)}. In fact we prove the following
theorems in §4.

THEOREM 1. There exists a nonlinear semigroup {Gh; h ^ 0} on Φ
satisfing the following conditions:

( i) semigroup property; Gox = x, Gh+kx = GhGkx = GkGhx.
(ii) monotone; Ghx ^ Ghy whenever x 5̂  y.
(iii) contractive; \\Ghx — Ghy\\ ^ e~ah\\x — y\\.
(iv) Ktx ^ Ghx for all ue&.
(v) maximal; Let {Hh; h ^ 0} be a semigroup on Φ which satisfies

(i)-(iv). Then Hhx ^ Ghx.

THEOREM 2. There exists a unique solution x* e Φ such that Ghx* =
x* for all h>0 and that x* is identical with the process {aatW{t); t^0}.
Furthermore x* is a maximal element of Φ.

2. Preliminaries. (1) The optional projection. Throughout this
paper, we identify, as usual, two indistinguishable processes. So we
have the following lemma concerning the optional projection of pro-
cesses.

LEMMA 1. (Dellacherie-Meyer [4; VI-43, 47]). For a measurable
bounded process x, there exists a unique optional process y such that

E[x(T)\Fτ] = y(T) P-a.s. on {T< oo} for all Te^{^).

Furthermore, if x is right continuous, then so is y.

This process y is called the optional projection of x.

(2) The formula of Bayes' type. An easy calculation shows the
following formula of Bayes' type:

(2.1) EU[X\FT] = E[X(z«(oo)/z*(T))\Fτ] P-a.s.

for every essentially bounded random variable X. For simplicity we
omit P-a.s. in inequalities or in equalities from now on, if no confusion
occurs. Using (2.1), we can calculate the expectation with respect to the
probability law induced by a concatenation control. From (A.2), we get
N%'8'\t) = Nu's'v(tΛS) + Nu's'v(tVS) - NU'S'V(S) = Nu(tΛS) + N\tVS) -
NV(S) = (I[0,s-\oNu)(t) + (J^oocoiV'X*) fo r u,ve& w h e r e H<>N d e n o t e s t h e
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stochastic integral of a predictable process H relative to a local martingale
N. Since Iί0,si°Nu is orthogonal to IlsMoN% we have z '8'\t) = &(Nu'8")(t) =
^(Iίo,s^Nu)(t) &(hSM°NΏ){t) = z\t A S)z\t V S)/z%S). Hence we get

{zu(S)zv{T)/zv(S) if T>S
(2.2) z%'s'\T) = %

especially, zu s \S) = zu(S) and zu's υ(oo) = zu(S)zv(oo)/z\S). Let X be an
essentially bounded random variable. Then we have

(9* P - ΓTIFl F [ X | F ^ i f T ^ S

and E"""[X] = E«[EV[X\FS]]. Indeed, if T^S, we have

S * [Z|ίV] = E[Xz*-s-v(co)/z» s-v(T)\Fτ]

= iί/ [ Λ.Z \^>)jZ \ 1 ) \ r τ\ = iί/ [ A I JP Γ J

by (2.1) and (2.2). Similarly, if T < S, we get

E"8'V[X\FT] = E[Xz\oo)z\S)lz\S)zu{T)\Fτ\

= ^[S[X^(oo)/^S) |F,MS)MΓ) |F Γ ] - E*[EV[X\F8]\FT] .

Furthermore, we get

\Δ Qi) Jjj A γΛ.\I?s\ = ϋ/ [-Λ-li/^Ji^ -f- ϋ [-Λ. I JO s\lAc IOr Ji. h J? s .

In fact, since i Π i S ^ ^ i ί l f S ^ ί } and A" Π (Ŝ  ̂  ί} = 0, we get
ί f l i ' e FSA and C Π A 6 Fs for JB e F and C e Fs^. So we have

E [X\FSΛ] = E"[XIA\FSA] + XI Λ. = E«[X\FSA]IA + XIAc

= E'[E'[X\FSA]IΛ\FS] + XIAc = E"[X\FS]IA + XIA*

and

?s] = £7"[^[X |F S J |F S ] = E«[E°[X\FS]IA + XIA*\FS]

( 3 ) The essential infimum.

LEMMA 2. (El-Karoui [6; Appendix]) (i) For each family {Y*; i e 1}
of random variables, there exists a random variable Y such that

(a) Y* ̂  Y P-a.s. for all i e I.
(b) If Z is a random variable such that Z ̂ Y{ P-a.s. for all i,

then Z^Y P-a.s.
This Y, which is the greatest lower bounded of the family {Y*; i e 1} in
the sense of P-a.s. inequality, is denoted by P-ess inf Y\
Further there exists at least one countable sequence {Yn. neN} taken
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from {Y1} such that P-essinf Yι = mίNYn P-a.s.
(ii) // the family {Yι\ ie 1} is directed downwards, the sequence

{Yn; neN} can be chosen to be decreasing P-a.s., P-essinf Y* = limn j Yn

P-a.s. and E[ess inf Y* \ G] = P-ess inf E[ Yι \ G] for every sub-σ-field G of
F.

3. Semigroups of conditioned shifts and its envelope. (1) First,
we consider the semigroups {KS; h >̂ 0} of conditioned shifts. By the
definition of K£x, we have the following relation:

(3.1) Kίx{T) = Eu[eaT{cu(T + h) - c\T)} + e~ahx(T + h)\Fτ]

P-a.s. on {Γ<oo} for Te <ί7~(^r). Also we get the following proposition.

PROPOSITION. Let h,ke [0, ©o).

( i) Ku is an operator on <%f.
(ii) semigroup property, K£x = x, K?ιΛ.kx — KlKΐx — KlKlx.
(iii) monotone\ Kζx ^ K%y whenever x ^ y.
(iv) contractive; \\Kix - Kϊy\\ ^ e'ah\\x - y\\.

PROOF. ( i ) From Lemma 1, Kϊx is right continuous. Since zu is
a P-uniformly integrable martingale, we get

|| sup I ISa (ί) I IL-(P)
t

= | | s u p | S [e"{c (* + h)- C(t)} + e~'hx(t + h)\Ft]\\L»tP>

<ί I]supE[{C(a) + ||*||}{^oo)/z-(t)}Ijrt]!!,.„,„ = C(a) + \\x\\ < «

by (C.3) and the formula of Bayes' type.
(ii) It is trivial that K? is the identity operator. For Te^{^~),

we have

e~aTKΐ+kx( T) = E [c*( T+h+k) - c\ T)+e-"ίT+h+k)x( T+h + k) | Fτ]

= E«[c*(T+h)-c«(T)+e-a{T+k)E«[ea(T+h){C(T+h+k)}-c«{T+h)}

+e-akx(T+h+k)\Fτ+h]\Fr]

= e-aTE«[eaT{C(T+h)-c (Γ)} + e-ahKξx{T+h)\Fτ] = e-"τKΐKξx{T) .

(iii) is immediate from (3.1). For (iv), we have

\\avp\K;x(t)-K;y(ί)\ \\L~<P) ^

^e~ah\\x-y\\ .

(2) Before we define the envelope of {Kt}, we show that Φ is
closed in £f. Indeed, let xneΦ and xn->x in £f. Then we have
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supπ I xn(t) I ̂  supn | |α?n | | < °o P-a.s. and l i m ^ xn(t) = x(t) P-a.s. for each
t. By the submartingale property, we get Eu[cu(t) + e~atxn(t) \ F8] ^
cu(s) + e-a8xn(s) for ί^s . Letting w->oo, we obtain J5 [c (ί) + e-βla?(ί)|FJ ^
cu(s)+e~a8x(s) by the boundedness of {xn}. Therefore xeΦ. We remark
that non-positive constant processes {x(t) = 6; £ ^ 0} with & <̂  0 belong to
Φ, for the process cu is increasing.

( 3 ) Now we define the envelope Gh of {Kϊ} as follows:

Ghx{T) = P-ess inf KJίx(T) for x e ^ Γ e

Clearly, {GAcc(ί); ί ^ 0} is an .^-adapted process.

LEMMA 3. (The Bellman principle) Lei c c e ^ Tz^(^) and
h, fte[0, oo).

Gh+kx(T) = P-ess inf ί7tt[βαΓ{ctt(Γ + ft) - ctt(Γ)} + e~akGhx(T + ft)|FΓ]

OW { T < oo}.

PROOF. Let us fix T e ^{&~). Prom the semigroup property of {Kί\,
we have Kξ+hx(T) = KtKtx{T) ^ ^»[eαΓ{c"(Γ+ ^ - C C ^ J + e - ^ G ^ r + f t ) ! ^ ]
and so Gh+kx(T)^P-essmf Eu[eaT{cu(T+k)-ca(T)}+e-akGkx(T+k)\Fτ]. To
prove the reverse inequality, we first show that {KZx(S); u e !2$\ is directed
downwards for S e J ^ J H . Put A = {ϋΓΛ

Mx(S) ̂  JΓ*a;(S)} and w = u SΛ v.
From (C.I), we see that cw(S + h) ~cw(S) = ew(SA+h)-ca(SA) = c"(SA+h)-
c*(SA) = β (S + h) - c*(S) on A and cw(S + Λ) - cw(S) = β"((S + fc) Λ S J -
cw(S Λ S^) = c"(S + h) - cu(S) on Ac. Using (2.4) and the above relations,
we have

K?x(S) = Ev[eaS{cw(S+h) - c"(S)} + e~ahx{S + h)\Fs]

= Ev[eaS{c\S + h)- c"(S)} + e-akx(S + h)\Fs]IA

+ E"[e*s{c"(S + h)- C(S)} + e-°hx(S + h)\Fs]IA,

= Klx(S)IA + Kΐx{S)IAc = Klxiβ) A Kix(S) .

By virtue of Lemma 2-(ii), we can choose a countable sequence {%„} of
3> such that Ghx(T + k) = limπ^» Kt»x{T + k). Hence we get

Gh+hx(T)

-»[e « {c ( r+ft) _ β ( T)}+e-
akEvΛTJrh) •««[e«τ+k){c"»( T+h+k)

-c««(T+k))+e-*hx(T+h+k)\Fτ+k]\Fτ]

ί Γ+ft) - c ( Γ)} + e-»*JE
1'' [e<ι(Γ+i){cu»( T+ft + Λ) - β« ( T + ft)}

+e-*hx(T+k+h)\Fτ+k]\Fτ] .
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Letting ^ o o , W e have Gh+kx( T) ̂  Eυ[eaT{c\T+k) - cv( T)}+e~akGhx( T+k)\ Fτ]
which completes the proof.

4. Proof of theorems. ( 1 ) Proof of Theorem 1. Let x be an
element of Φ. We first note that the mapping t —> || Ghx(t) \\L*>[P) is bounded
for each he[0, <χ>). We next show that Ghx(T) ^ Gh+kx(T) on { Γ < oo}
for each xeΦ, Te ^r'(^Γ). Since {cw(t)+ e~atx(t)} is an essentially bounded
P t t-submartingale, we get Eu[cu(T + h + k) + e-a{T+h+k)x(T + h + h)\ Fτ+k] ^
cu(T +h) + e-a{T+h)x(T + h), hence

Eu[eaT{cu(T +h + k)~ c\T)} + e~a{h+k)x(T + h + k)\Fτ]

^ Eu[eaT{cu(T + h) - cu(T)} + e-ahx(T + h)\Fτ] .

Thus Gh+kx(T)^Ghx(T). Combining the above inequality with Lemma 3,
we get

c\t) + e~atGhx(t) ^ c\t) + e-atGh+kx(t)

^ cu(t) + e-atEu[eat{cu(t + k) - cu(t)} + e~akGhx(t + k)\Ft]

= Eu[cu(t + k) + e-a«+k)Ghx(t + k)\Ft] .

Therefore {cu(t) + e-atGhx{t); t ^ 0} is a P t t-submartingale. To prove the
right continuity of {cu(t) + e~atGhx(t)}, it suffices to show that the mapping
t -> Eu[e~atGhx(t)] is right continuous for each ue&. For s ^ t, let us
denote

χrt.v = c%.t.^8 + fc) _ c « (8) + e~
a{8+h)x(s + Λ)

- cv(s + λ) - cv(s) + e-α(8+λ)α;(s + λ) ,

which follows from (C.I). From the right continuity of zu(ue£&), (A.3)
and (2.2) it follows that

and then, by (C.3),

I Eu.«+ε).v[Xrt.v] _ #-«-[x«-'-]| _>o as e -> 0, ε > 0 .

For each δ > 0 there exists vδ 6 & such that

j ^ ί .ίjX *"*] < inf E%mtmV[XrtmV] + 8

and thus

for ε sufficiently small. Hence it is not difficult to see that for any
δ > 0 there exists εδ > 0 such that for εδ > ε > 0,
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|inf # «+" [X£j ] _ inf E-t-v[Xrt-v]\

^ sup \Eκ[x:;'r] - E'[xr* w]\.+s.
we&r

On the other hand, we get by Lemma 2

Eu[e~atGhx(t)] = inf EU'"V[XΓ*V] .

Thus we deduce

\Eu[e~a{t+ε)Ghx(t + e)] - J5 [β-βlG

^ sup Ew[{cw(t + h + ε) - cw(£ + &)} + {cw(t + ε) - cw

h + e) - x(ί + h)\za(^)]

The first term of the last expression converges to zero as ε—>0 by (C.2).
The second term is dominated by

supe-α ( t + Λ + ε ) | |α(£ + h + ε) - χ(t + Λ)|UP/(P-D(P, \\ZW(^)\\LP{P) .

By Lebesgue's dominated convergence theorem, lim£_+0 ||ίc(t + h + e) —
x(t + Λ)|UJ»/(P-I)(P) = 0. The third term converges also to zero as ε->0,
for this term is dominated by e-a{t+h)\\x\\suvw\\zw(oo)\\LP{P)(l-e-

a*). There-
fore, letting <5-+0, we obtain GhxeΦ for xeΦ. The properties (i) (ii)
(iv) of Gh are obvious by Lemma 2 and the definition of Gh. Since

\Ghx(t) - Ghy(t)\ ^ esssup#"[e- α / i Kί + h) - y(t + h)\ \Ft]

= e~ah ess sup Eft x(t + h) - y(t + h) \ (zu{t + h)/zu(t)) | Ft]

we get \\Ghx — Ghy\\ ^ e~αfe||# — y\\. The property (v) is immediate by
the definition of essential infimum.

( 2) The proof of Theorem 2. We first show that the value process
is a maximal element of Φ. Let us denote by V the process {eatW(t);
t^O}. Note that cu{t) + e~atx{t) ^ Eu[cu(oo)\Ft] for all xeΦ. It follows
from the property (iii) of W that V belongs to Φ. For all xeΦ, we
have G^x{T) = eaTW{T) and cu(T) + e~aTx{T) ^Eu[cu(°o)\Fτ]. Thus x{T) ^
P-essinfue^eαΓJ&M[cw(oo) - cu(T)\Fτ] = V(T) which implies the maximality
of V. From the contraction mapping theorem, there exists a fixed point
xheΦ of Gh for each h > 0. To prove the latter part of Theorem 2, it
is sufficient to show that xh(T) ^ eaTW(T) on {T<°o} for all ft > 0.
Since {cu(t) + W(t)} is a Pu-submartingale for each u e ^ , we have
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Eu[eaT{cu(T + h) - c\T)} + e-
ah{ealT+h)W(T + h)}\Fτ] ^ eaTW(T)

and hence GhV(T) ^ V{T). Applying the operator Gh to the above in-
equality, we inductively get V(T)^(Gh)

nV{T), while, (Gh)
nV(T) converges

to the fixed point xh(T) as n—> <*>. So xh = V and cc* is independent of
Λ > 0. Thus the proof is complete.

REFERENCES

[1] V. E. BENES, Existence of optimal stochastic control law, SIAM J. Control 9 (1971),
446-475.

[ 2 ] A. BENSOUSSAN, Stochastic control by functional analysis methods, Studies in Math, and
its Appl. 11, North-Holland, Amsterdam, New York, Oxford, 1982.

[3] P. BREMAUD, Point processes and queues, martingale dynamics, Springer series in sta-
tistics, Springer-Verlag, New York, 1981.

[4] C. DELLACHERIE AND P. A. MEYER, Probabilites et potentiels, 2nd ed., Chapters I-IV,
Hermann, Paris, 1975; Chapters V-VIII, Hermann, Paris, 1980.

[ 5 ] T. D. DUNCAN AND P. P. VARAIYA, On the solutions of a stochastic control system, SIAM
J. Control 9 (1971), 354-371.

[6 ] N. EL-KAROUI, Methodes probabilistes en control stochastique, Ecole dΈte de Probabilites
de Saint-Flour IX, Lecture Notes in Math. 876, Springer-Verlag, Berlin-New York,
(1981), 73-238.

[7] M. Nisio, On a nonlinear semigroup attached to stochastic control, Pub. Res. Inst. Math.
Sci., Kyoto Univ., 12 (1976), 513-531.

DEPARTMENT OF MATHEMATICS AND MATHEMATICAL INSTITUTE

FACULTY OF GENERAL EDUCATION TOHOKU UNIVERSITY

EHIME UNIVERSITY SENDAI, 980

MATSUYAMA, 790 JAPAN

JAPAN






