NONLINEAR SEMIGROUPS AND A CHARACTERIZATION OF THE VALUE PROCESS IN STOCHASTIC CONTROL

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

HIROAKI MORIMOTO AND MASATAKA IZUMISAWA

(Received December 20, 1982)

1. Introduction. Let (Ω, F, P) be a complete probability space equipped with an increasing, right continuous family \mathscr{F} of complete sub- σ -fields $(F_t)_{t\geq 0}$ such that $F=\bigvee_{t\geq 0}F_t$. Let us denote, by $\mathscr{O}(\mathscr{F})$, $\mathscr{F}(\mathscr{F})$ and \mathscr{U} , the \mathscr{F} -optional σ -field, the class of all \mathscr{F} -stopping times and the set of \mathscr{F} -progressively measurable processes $u=\{u(t); t\geq 0\}$ with values in a σ -compact subset of R^d , respectively. We define a stopped process u^S of u at time $S\in\mathscr{F}(\mathscr{F})$, $\mathscr{U}(u,S)$, a restriction S_A of S to an \mathscr{F}_S -measurable set S and a concatenation S as follows:

$$u^s=\{u(t\wedge S); t\geqq 0\}$$
 , $\mathscr{U}(u,S)=\{v\in\mathscr{U}; v^s=u^s\}$, $S_{\scriptscriptstyle A}=egin{cases} S & ext{on } A \ & ext{on } A^c \end{cases}$ and $u\cdot S\cdot v=uI_{\scriptscriptstyle [0,S]}+vI_{\scriptscriptstyle]S,\infty[}$ for $u,v\in\mathscr{U}$.

Now we consider a subclass \mathcal{D} of \mathcal{U} as an admissible control. \mathcal{D} is assumed to be stable for a stopping and a concatenation. Furthermore, we put the following assumptions on \mathcal{D} :

(A.1) For each admissible control u of \mathcal{D} , there exists a right continuous (\mathcal{F}, P) -local martingale N^u such that its jumps are strictly greater than -1 and $N^u(0) = 0$.

$$(A.2) \quad N^u(t \wedge S) = N^v(t \wedge S) \quad \text{if} \quad v \in \mathscr{D}(u,S) = \mathscr{D} \cap \mathscr{U}(u,S) \quad \text{and} \\ N^{u \cdot S \cdot w}(t \vee S) - N^u(S) = N^{v \cdot S \cdot w}(t \vee S) - N^v(S) \quad \text{for} \\ u,v,w \in \mathscr{D}, \ S \in \mathscr{T}(\mathscr{F}) \ .$$

(A.3) Let z^{u} be an exponential local martingale with respect to N^{u} , i.e.,

$$z^{\it u}(t) = \mathscr{C}(N^{\it u})(t) = \exp\{N^{\it u}(t) - (1/2) < (N^{\it u})^{\it o} > (t)\} \prod_{\it s \le t} (1 \, + \, \varDelta N^{\it u}(s)) e^{-\it dN^{\it u}(s)}$$

where $\langle (N^u)^c \rangle$ is the \mathscr{F} -predictable increasing process associated with the continuous part $(N^u)^c$ of N^u and $\Delta N^u(s) = N^u(s) - N^u(s-)$. Then there exists a constant p > 1 such that $\sup_{u \in \mathscr{D}} \|\sup_t |z^u(t)|\|_{L^p(P)} < \infty$.

From (A.3), z^u is a strictly positive and uniformly P-integrable martingale and we can define the probability measure P^u which has density z^u with respect to P and which is equivalent to P for each $u \in \mathscr{D}$. We define the cost associated with $u \in \mathscr{D}$. Let $c^u = \{c^u(t); t \ge 0\}$ be a right continuous \mathscr{F} -adapted P^u -integrable increasing process. We consider $c^u(\infty)$ as the loss function, $c^u(t)$ as the evolution cost associated to the policy of control u. We suppose the following conditions on c^u :

$$\begin{array}{ll} (\mathrm{C.1}) & c^{u}(t \wedge S) = c^{v}(t \wedge S) & \text{if} \quad v \in \mathscr{Q}(u,S) \quad \text{and} \\ & c^{u \cdot S \cdot w}(t \vee S) - c^{u}(S) = c^{v \cdot S \cdot w}(t \vee S) - c^{v}(S) \quad \text{for} \\ & u, v, w \in \mathscr{D}, \ S \in \mathscr{T}(\mathscr{F}) \ . \end{array}$$

- (C.2) $\sup_{u \in \mathscr{D}} E^u[c^u(s) c^u(s_0)] \to 0$ as $s > s_0$ and $s \to s_0$ where $E^u[\quad]$ denotes the expectation with respect to P^u .
- (C.3) The difference of c^u is exponentially uniformly bounded in $S \in \mathcal{J}(\mathcal{J})$ and in $u \in \mathcal{D}$, i.e., there exist constants a > 0 and C(a), which depends on a, such that $0 \le c^u(\infty) c^u(S) \le C(a)e^{-aS}$.

The cost $\Gamma(u)$, the conditional cost $\Gamma(u, S)$ and the conditional minimal cost J(u, S) are then defined as follows:

$$\Gamma(u)=E^u[c^u(\infty)],\; \Gamma(u,S)=E^u[c^u(\infty)|F_S] \;\; ext{ and } \;\; \ J(u,S)= ext{ess inf}\{\Gamma(v,S);\,v\in\mathscr{D}(u,S)\}\;.$$

Under some suitable assumptions on N^u and c^u , Benes [1], Brémaud [3] and Duncan-Varaiya [5] showed that there exists an optimal control $u^* \in \mathcal{D}$, i.e., $\Gamma(u^*) \leq \Gamma(u)$ for all $u \in \mathcal{D}$, or equivalently, $J(u^*, S) = \Gamma(u^*, S)$ for all $S \in \mathcal{T}(\mathcal{F})$. It is known (see El-Karoui [6; Chap. 3]) that there exists a right continuous \mathcal{F} -optional process W, called the value process, such that $W(S) = \text{ess inf}\{E^u[c^u(\infty) - c^u(S)|F_S]; u \in \mathcal{D}\}$ P-a.s. on $\{S < \infty\}$

- (i) $c^{u}(S) + W(S) = J(u, S)$ P-a.s. for all $S \in \mathcal{F}(\mathcal{F})$.
- (ii) $E^{u}[W(0)] = \inf\{J(u, 0); u \in \mathcal{D}\}.$
- (iii) $c^u + W$ is a positive P^u -submartingale.
- (iv) u^* is an optimal control if and only if $c^{u^*}+W$ is a positive P^{u^*} -martingale.

In this paper, our aim is to characterize the value process by the method of nonlinear semigroups of conditioned shifts in non-Markovian case. We base ourselves on martingale theory, Bellman's principle and Nisio's results [7] (see also Bensoussan [2]) of nonlinear semigroups in the control of Markov processes.

Let us denote by $\mathscr X$ the Banach space of all essentially bounded right continuous $\mathscr F$ -adapted process $x=\{x(t);\,t\geq 0\}$ with its norm $\|x\|=\|\sup_t|x(t)|\,\|_{L^\infty(P)}<\infty$ and with the usual order. Let \varPhi be a subclass of

 \mathscr{X} such that $\{c^u(t)+e^{-at}x(t)\}$ is a right continuous P^u -submartingale for each $u\in\mathscr{D}$. We seek a semigroup $\{G_h\}$ of operators acting on Φ whose fixed point is equal to the value process. Such a semigroup will be obtained as the envelope of the semigroups $\{K_h^u\}$ of conditioned shifts on \mathscr{X} where $K_h^u x$ is defined as the \mathscr{F} -optional P^u -projection of the process $\{e^{at}(c^u(t+h)-c^u(t))+e^{-ah}x(t+h)\}$. In fact we prove the following theorems in \S 4.

THEOREM 1. There exists a nonlinear semigroup $\{G_h; h \geq 0\}$ on Φ satisfing the following conditions:

- (i) semigroup property; $G_0x = x$, $G_{h+k}x = G_hG_kx = G_kG_hx$.
- (ii) monotone; $G_h x \leq G_h y$ whenever $x \leq y$.
- (iii) contractive; $||G_h x G_h y|| \le e^{-ah} ||x y||$.
- (iv) $K_h^u x \geq G_h x$ for all $u \in \mathscr{D}$.
- (v) maximal; Let $\{H_h; h \ge 0\}$ be a semigroup on Φ which satisfies (i)-(iv). Then $H_h x \le G_h x$.

THEOREM 2. There exists a unique solution $x^* \in \Phi$ such that $G_h x^* = x^*$ for all h > 0 and that x^* is identical with the process $\{a^{at}W(t); t \ge 0\}$. Furthermore x^* is a maximal element of Φ .

- 2. Preliminaries. (1) The optional projection. Throughout this paper, we identify, as usual, two indistinguishable processes. So we have the following lemma concerning the optional projection of processes.
- LEMMA 1. (Dellacherie-Meyer [4; VI-43, 47]). For a measurable bounded process x, there exists a unique optional process y such that

$$E[x(T)|F_{\scriptscriptstyle T}] = y(T)$$
 P-a.s. on $\{T < \infty\}$ for all $T \in \mathscr{T}(\mathscr{F})$.

Furthermore, if x is right continuous, then so is y.

This process y is called the optional projection of x.

(2) The formula of Bayes' type. An easy calculation shows the following formula of Bayes' type:

$$(2.1) \hspace{1cm} E^{\imath}[X|\,F_{\scriptscriptstyle T}] = E[X(z^{\imath}(\,\infty\,)/z^{\imath}(T))\,|\,F_{\scriptscriptstyle T}] \quad \textit{P-a.s.}$$

 stochastic integral of a predictable process H relative to a local martingale N. Since $I_{[0,S]} \circ N^u$ is orthogonal to $I_{]S,\infty[} \circ N^v$, we have $z^{u \cdot S \cdot v}(t) = \mathscr{C}(N^{u \cdot S \cdot v})(t) = \mathscr{C}(I_{[0,S]} \circ N^u)(t) \mathscr{C}(I_{]S,\infty[} \circ N^v)(t) = z^u(t \wedge S)z^v(t \vee S)/z^v(S)$. Hence we get

$$z^{u \cdot S \cdot v}(T) = \begin{cases} z^u(S)z^v(T)/z^v(S) & \text{if } T \geq S \\ z^u(T) & \text{if } T < S \end{cases},$$

especially, $z^{u \cdot S \cdot v}(S) = z^u(S)$ and $z^{u \cdot S \cdot v}(\infty) = z^u(S)z^v(\infty)/z^v(S)$. Let X be an essentially bounded random variable. Then we have

(2.3)
$$E^{u \cdot S \cdot v}[X|F_T] = \begin{cases} E^v[X|F_T] & \text{if } T \ge S \\ E^u[E^v[X|F_S]|F_T] & \text{if } T < S \end{cases}$$

and $E^{u \cdot S \cdot v}[X] = E^{u}[E^{v}[X|F_{s}]]$. Indeed, if $T \ge S$, we have

$$egin{aligned} E^{u\cdot S\cdot v}[X|F_T] &= E[Xz^{u\cdot S\cdot v}(\infty)/z^{u\cdot S\cdot v}(T)|F_T] \ &= E[Xz^v(\infty)/z^v(T)|F_T] = E^v[X|F_T] \end{aligned}$$

by (2.1) and (2.2). Similarly, if T < S, we get

$$E^{u \cdot S \cdot v}[X|F_T] = E[Xz^v(\infty)z^u(S)/z^v(S)z^u(T)|F_T] = E[E[Xz^v(\infty)/z^v(S)|F_S]z^u(S)/z^u(T)|F_T] = E^u[E^v[X|F_S]|F_T].$$

Furthermore, we get

$$(2.4) E^{u \cdot S_A \cdot v}[X|F_S] = E^v[X|F_S]I_A + E^u[X|F_S]I_{A^c} \text{for} A \in F_S .$$

In fact, since $A \cap \{S_A \leq t\} = A \cap \{S \leq t\}$ and $A^c \cap \{S_A \leq t\} = \emptyset$, we get $B \cap A^c \in F_{S_A}$ and $C \cap A \in F_S$ for $B \in F$ and $C \in F_{S_A}$. So we have

$$egin{aligned} E^{v}[X|F_{S_{A}}] &= E^{v}[XI_{A}|F_{S_{A}}] + XI_{A^{c}} = E^{v}[X|F_{S_{A}}]I_{A} + XI_{A^{c}} \ &= E^{v}[E^{v}[X|F_{S_{A}}]I_{A}|F_{S}] + XI_{A^{c}} = E^{v}[X|F_{S}]I_{A} + XI_{A^{c}} \end{aligned}$$

and

$$E^{u \cdot S_A \cdot v}[X|F_S] = E^u[E^v[X|F_{S_A}]|F_S] = E^u[E^v[X|F_S]I_A + XI_{A^c}|F_S]$$

= $E^v[X|F_S]I_A + E^u[X|F_S]I_{A^c}$.

(3) The essential infimum.

LEMMA 2. (El-Karoui [6; Appendix]) (i) For each family $\{Y^i; i \in I\}$ of random variables, there exists a random variable Y such that

- (a) $Y^i \ge Y$ P-a.s. for all $i \in I$.
- (b) If Z is a random variable such that $Z \leq Y^i$ P-a.s. for all i, then $Z \leq Y$ P-a.s.

This Y, which is the greatest lower bounded of the family $\{Y^i; i \in I\}$ in the sense of P-a.s. inequality, is denoted by P-ess inf Y^i .

Further there exists at least one countable sequence $\{Y^n, n \in \mathbb{N}\}$ taken

- from $\{Y^i\}$ such that P-ess inf $Y^i = \inf_N Y^n$ P-a.s.
- (ii) If the family $\{Y^i; i \in I\}$ is directed downwards, the sequence $\{Y^n; n \in N\}$ can be chosen to be decreasing P-a.s., P-ess inf $Y^i = \lim_n \downarrow Y^n$ P-a.s. and $E[\text{ess inf } Y^i | G] = P\text{-ess inf } E[Y^i | G]$ for every sub- σ -field G of F.
- 3. Semigroups of conditioned shifts and its envelope. (1) First, we consider the semigroups $\{K_h^u; h \ge 0\}$ of conditioned shifts. By the definition of $K_h^u x$, we have the following relation:

$$(3.1) K_h^u x(T) = E^u [e^{aT} \{c^u(T+h) - c^u(T)\} + e^{-ah} x(T+h) | F_T]$$

P-a.s. on $\{T < \infty\}$ for $T \in \mathcal{T}(\mathcal{F})$. Also we get the following proposition.

PROPOSITION. Let $h, k \in [0, \infty)$.

- (i) K_h^u is an operator on \mathcal{X} .
- (ii) semigroup property; $K_0^u x = x$, $K_{h+k}^u x = K_h^u K_k^u x = K_k^u K_h^u x$.
- (iii) monotone; $K_h^u x \leq K_h^u y$ whenever $x \leq y$.
- (iv) contractive; $||K_h^u x K_h^u y|| \le e^{-ah} ||x y||$.

PROOF. (i) From Lemma 1, $K_h^u x$ is right continuous. Since z^u is a P-uniformly integrable martingale, we get

$$\begin{split} \|\sup_{t} |K_{h}^{u}x(t)| \, \|_{L^{\infty}(P)} \\ &= \|\sup_{t} |E^{u}[e^{at}\{c^{u}(t+h) - c^{u}(t)\} + e^{-ah}x(t+h)|F_{t}]\|_{L^{\infty}(P)} \\ &\leq \|\sup_{t} E[\{C(a) + \|x\|\}\{z^{u}(\infty)/z^{u}(t)\}|F_{t}]\|_{L^{\infty}(P)} = C(a) + \|x\| < \infty \end{split}$$

by (C.3) and the formula of Bayes' type.

(ii) It is trivial that K_0^u is the identity operator. For $T \in \mathcal{F}(\mathcal{F})$, we have

$$\begin{split} e^{-aT}K^u_{h+k}x(T) &= E^u[c^u(T+h+k)-c^u(T)+e^{-a(T+h+k)}x(T+h+k)\,|\,F_T] \\ &= E^u[c^u(T+h)-c^u(T)+e^{-a(T+h)}E^u[e^{a(T+h)}\{c^u(T+h+k)\}-c^u(T+h)\} \\ &\quad + e^{-ak}x(T+h+k)|F_{T+h}]|F_T] \\ &= e^{-aT}E^u[e^{aT}\{c^u(T+h)-c^u(T)\}+e^{-ah}K^u_kx(T+h)\,|\,F_T] = e^{-aT}K^u_hK^u_kx(T) \;. \end{split}$$

(iii) is immediate from (3.1). For (iv), we have

$$\begin{split} \|\sup_{t} |K_{h}^{u}x(t) - K_{h}^{u}y(t)| \|_{L^{\infty}(P)} & \leq \|\sup_{t} E^{u}[e^{-ah}|x(t+h) - y(t+h)||F_{t}]\|_{L^{\infty}(P)} \\ & = \|\sup_{t} E[e^{-ah}|x(t+h) - y(t+h)|(z^{u}(t+h)/z^{u}(t))|F_{t}]\|_{L^{\infty}(P)} \\ & \leq e^{-ah} \|x - y\|. \end{split}$$

(2) Before we define the envelope of $\{K_h^u\}$, we show that Φ is closed in \mathscr{X} . Indeed, let $x_n \in \Phi$ and $x_n \to x$ in \mathscr{X} . Then we have

 $\sup_n |x_n(t)| \leq \sup_n ||x_n|| < \infty$ *P*-a.s. and $\lim_{n\to\infty} x_n(t) = x(t)$ *P*-a.s. for each t. By the submartingale property, we get $E^u[c^u(t) + e^{-at}x_n(t)|F_s] \geq c^u(s) + e^{-as}x_n(s)$ for $t \geq s$. Letting $n \to \infty$, we obtain $E^u[c^u(t) + e^{-at}x_n(t)|F_s] \geq c^u(s) + e^{-as}x(s)$ by the boundedness of $\{x_n\}$. Therefore $x \in \Phi$. We remark that non-positive constant processes $\{x(t) = b; t \geq 0\}$ with $b \leq 0$ belong to Φ , for the process c^u is increasing.

(3) Now we define the envelope G_h of $\{K_h^u\}$ as follows:

$$G_h x(T) = P ext{-ess inf } K_h^u x(T) \quad ext{for} \quad x \in \mathscr{X}, \ T \in \mathscr{T}(\mathscr{F}) \ .$$

Clearly, $\{G_h x(t); t \ge 0\}$ is an \mathscr{F} -adapted process.

LEMMA 3. (The Bellman principle) Let $x \in \mathcal{X}$, $T \in \mathcal{T}(\mathcal{F})$ and $h, k \in [0, \infty)$. Then

$$G_{h+k}x(T)=P ext{-ess inf }E^u[e^{aT}\{c^u(T+k)-c^u(T)\}+e^{-ak}G_hx(T+k)|F_T]$$
 on $\{T<\infty\}.$

PROOF. Let us fix $T\in \mathscr{S}(\mathscr{F})$. From the semigroup property of $\{K_h^u\}$, we have $K_{h+k}^ux(T)=K_h^uK_h^ux(T)\geqq E^u[e^{aT}\{c^u(T+k)-c^u(T)\}+e^{-ak}G_hx(T+k)|F_T]$ and so $G_{h+k}x(T)\geqq P$ -ess inf $E^u[e^{aT}\{c^u(T+k)-c^u(T)\}+e^{-ak}G_hx(T+k)|F_T]$. To prove the reverse inequality, we first show that $\{K_h^ux(S);u\in\mathscr{D}\}$ is directed downwards for $S\in\mathscr{F}(\mathscr{F})$. Put $A=\{K_h^ux(S)\geqq K_h^vx(S)\}$ and $w=u\cdot S_A\cdot v$. From (C.1), we see that $c^w(S+h)-c^w(S)=c^w(S_A+h)-c^w(S_A)=c^v(S_A+h)-c^v(S_A+h)-c^v($

$$egin{aligned} K_h^w x(S) &= E^w [e^{aS} \{c^w(S+h) - c^w(S)\} + e^{-ah} x(S+h) | F_S] \ &= E^v [e^{aS} \{c^v(S+h) - c^v(S)\} + e^{-ah} x(S+h) | F_S] I_A \ &+ E^u [e^{aS} \{c^u(S+h) - c^u(S)\} + e^{-ah} x(S+h) | F_S] I_{A^\sigma} \ &= K_h^v x(S) I_A + K_h^u x(S) I_{A^\sigma} = K_h^v x(S) \wedge K_h^u x(S) \;. \end{aligned}$$

By virtue of Lemma 2-(ii), we can choose a countable sequence $\{u_n\}$ of \mathscr{D} such that $G_h x(T+k) = \lim_{n\to\infty} K_h^{u_n} x(T+k)$. Hence we get

$$\begin{split} G_{h+k}x(T) & \leq E^{v\cdot (T+k)\cdot u_n}[e^{aT}\{c^{v\cdot (T+k)\cdot u_n}(T+h+k)-c^{v\cdot (T+k)\cdot u_n}(T)\}+e^{-a(h+k)}x(T+h+k)|\,F_T] \\ & = E^{v\cdot (T+k)\cdot u_n}[e^{aT}\{c^v(T+k)-c^v(T)\}+e^{-ak}E^{v\cdot (T+k)\cdot u_n}[e^{a(T+k)}\{c^{u_n}(T+h+k)\\& -c^{u_n}(T+k)\}+e^{-ah}x(T+h+k)|\,F_{T+k}]|\,F_T] \\ & = E^v[e^{aT}\{c^v(T+k)-c^v(T)\}+e^{-ak}E^{u_n}[e^{a(T+k)}\{c^{u_n}(T+k+h)-c^{u_n}(T+k)\}\\& +e^{-ah}x(T+k+h)|\,F_{T+k}]|\,F_T] \;. \end{split}$$

Letting $n \to \infty$, we have $G_{h+k}x(T) \leq E^v[e^{aT}\{c^v(T+k) - c^v(T)\} + e^{-ak}G_hx(T+k)|F_T]$ which completes the proof.

4. Proof of theorems. (1) Proof of Theorem 1. Let x be an element of Φ . We first note that the mapping $t \to \|G_h x(t)\|_{L^{\infty}(P)}$ is bounded for each $h \in [0, \infty)$. We next show that $G_h x(T) \leq G_{h+k} x(T)$ on $\{T < \infty\}$ for each $x \in \Phi$, $T \in \mathscr{T}(\mathscr{F})$. Since $\{c^u(t) + e^{-at}x(t)\}$ is an essentially bounded P^u -submartingale, we get $E^u[c^u(T+h+k)+e^{-a(T+h+k)}x(T+h+k)|F_{T+k}] \geq c^u(T+h) + e^{-a(T+h)}x(T+h)$, hence

$$\begin{split} E^{u}[e^{aT}\{c^{u}(T+h+k)-c^{u}(T)\}+e^{-a(h+k)}x(T+h+k)|F_{T}]\\ &\geq E^{u}[e^{aT}\{c^{u}(T+h)-c^{u}(T)\}+e^{-ah}x(T+h)|F_{T}]\;. \end{split}$$

Thus $G_{h+k}x(T) \ge G_hx(T)$. Combining the above inequality with Lemma 3, we get

$$\begin{split} c^{u}(t) + e^{-at}G_{h}x(t) & \leq c^{u}(t) + e^{-at}G_{h+k}x(t) \\ & \leq c^{u}(t) + e^{-at}E^{u}[e^{at}\{c^{u}(t+k) - c^{u}(t)\} + e^{-ak}G_{h}x(t+k)|F_{t}] \\ & = E^{u}[c^{u}(t+k) + e^{-a(t+k)}G_{h}x(t+k)|F_{t}] \;. \end{split}$$

Therefore $\{e^u(t) + e^{-at}G_hx(t); t \ge 0\}$ is a P^u -submartingale. To prove the right continuity of $\{e^u(t) + e^{-at}G_hx(t)\}$, it suffices to show that the mapping $t \to E^u[e^{-at}G_hx(t)]$ is right continuous for each $u \in \mathscr{D}$. For $s \ge t$, let us denote

$$X_s^{u \cdot t \cdot v} = c^{u \cdot t \cdot v}(s+h) - c^{u \cdot t \cdot v}(s) + e^{-a(s+h)}x(s+h)$$

= $c^v(s+h) - c^v(s) + e^{-a(s+h)}x(s+h)$,

which follows from (C.1). From the right continuity of $z^u(u \in \mathcal{D})$, (A.3) and (2.2) it follows that

$$E[|z^{u\cdot(t+\varepsilon)\cdot v}(\infty)-z^{u\cdot t\cdot v}(\infty)|]\to 0$$

and then, by (C.3),

$$|\,E^{\,u\cdot(t+\varepsilon)\cdot v}[X^{\,u\cdot t\cdot v}_t]\,-\,E^{\,u\cdot t\cdot v}[X^{\,u\cdot t\cdot v}_t]|\to 0\quad\text{as}\quad\varepsilon\to 0,\,\varepsilon>0\,\,.$$

For each $\delta > 0$ there exists $v_{\delta} \in \mathscr{D}$ such that

$$E^{u\cdot t\cdot v_\delta}[X_t^{u\cdot t\cdot v_\delta}] < \inf_{v\in\mathscr{D}} E^{u\cdot t\cdot v}[X_t^{u\cdot t\cdot v}] + \delta$$

and thus

$$E^{u\cdot(t+arepsilon)\cdot v_\delta}[X^{u\cdot t\cdot v_\delta}_t] \leq \inf_{v\in\mathscr{D}} E^{u\cdot t\cdot v}[X^{u\cdot t\cdot v}_t] + \delta$$

for ε sufficiently small. Hence it is not difficult to see that for any $\delta>0$ there exists $\varepsilon_{\delta}>0$ such that for $\varepsilon_{\delta}>\varepsilon>0$,

$$egin{aligned} & \left|\inf_{v\in\mathscr{D}}E^{u\cdot(t+arepsilon)\cdot v}[X^{u\cdot t\cdot v}_{t+arepsilon}] - \inf_{v\in\mathscr{D}}E^{u\cdot t\cdot v}[X^{u\cdot t\cdot v}_{t}]
ight| \ & \leq \sup_{w\in\mathscr{D}}\left|E^{w}[X^{u\cdot t\cdot w}_{t+arepsilon}] - E^{w}[X^{u\cdot t\cdot w}_{t}]
ight| + \delta \;. \end{aligned}$$

On the other hand, we get by Lemma 2

$$E^{\boldsymbol{u}}[e^{-at}G_{\boldsymbol{h}}\boldsymbol{x}(t)] = \inf_{\boldsymbol{v} \in \mathscr{D}} E^{\boldsymbol{u} \cdot t \cdot \boldsymbol{v}}[X_t^{\boldsymbol{u} \cdot t \cdot \boldsymbol{v}}] \;.$$

Thus we deduce

$$\begin{split} |E^u[e^{-a(t+\varepsilon)}G_hx(t+\varepsilon)] - E^u[e^{-at}G_hx(t)]| \\ & \leq \sup_{w \in \mathscr{D}} E^w[\{c^w(t+h+\varepsilon) - c^w(t+h)\} + \{c^w(t+\varepsilon) - c^w(t)\}] \\ & + \sup_{w \in \mathscr{D}} e^{-a(t+h+\varepsilon)}E[|x(t+h+\varepsilon) - x(t+h)|z^w(\infty)] \\ & + \sup_{w \in \mathscr{D}} e^{-a(t+h)}E[|x(t+h)|z^w(\infty)](1-e^{-a\varepsilon}) + \delta \ . \end{split}$$

The first term of the last expression converges to zero as $\varepsilon \to 0$ by (C.2). The second term is dominated by

$$\sup_{w \in \mathscr{D}} e^{-a(t+h+\varepsilon)} \| x(t+h+\varepsilon) - x(t+h) \|_{L^{p/(p-1)}(P)} \| z^w(\infty) \|_{L^p(P)}.$$

By Lebesgue's dominated convergence theorem, $\lim_{\varepsilon \to 0} \|x(t+h+\varepsilon) - x(t+h)\|_{L^{p/(p-1)}(P)} = 0$. The third term converges also to zero as $\varepsilon \to 0$, for this term is dominated by $e^{-a(t+h)}\|x\|\sup_w\|z^w(\infty)\|_{L^p(P)}(1-e^{-a\varepsilon})$. Therefore, letting $\delta \to 0$, we obtain $G_h x \in \Phi$ for $x \in \Phi$. The properties (i) (ii) (iv) of G_h are obvious by Lemma 2 and the definition of G_h . Since

$$\begin{split} |G_{h}x(t)-G_{h}y(t)| & \leq \operatorname*{ess\,sup}_{u\,\in\,\mathscr{D}} E^{u}[e^{-ah}\,|\,x(t\,+\,h)-\,y(t\,+\,h)|\,|\,F_{t}] \\ & = e^{-ah}\operatorname*{ess\,sup}_{u\,\in\,\mathscr{D}} E[|\,x(t\,+\,h)-\,y(t\,+\,h)|\,(z^{u}(t\,+\,h)/z^{u}(t))|\,F_{t}] \\ & \leq e^{-ah}\,\|\,x-\,y\,\| \ , \end{split}$$

we get $||G_h x - G_h y|| \le e^{-ah} ||x - y||$. The property (v) is immediate by the definition of essential infimum.

(2) The proof of Theorem 2. We first show that the value process is a maximal element of Φ . Let us denote by V the process $\{e^{at}W(t); t\geq 0\}$. Note that $c^u(t)+e^{-at}x(t)\leq E^u[c^u(\infty)|F_t]$ for all $x\in \Phi$. It follows from the property (iii) of W that V belongs to Φ . For all $x\in \Phi$, we have $G_\infty x(T)=e^{aT}W(T)$ and $c^u(T)+e^{-aT}x(T)\leq E^u[c^u(\infty)|F_T]$. Thus $x(T)\leq P$ -ess $\inf_{u\in \mathscr{D}}e^{aT}E^u[c^u(\infty)-c^u(T)|F_T]=V(T)$ which implies the maximality of V. From the contraction mapping theorem, there exists a fixed point $x_h\in \Phi$ of G_h for each h>0. To prove the latter part of Theorem 2, it is sufficient to show that $x_h(T)\geq e^{aT}W(T)$ on $\{T<\infty\}$ for all h>0. Since $\{c^u(t)+W(t)\}$ is a P^u -submartingale for each $u\in \mathscr{D}$, we have

$$E^u[e^{aT}\{c^u(T+h)-c^u(T)\}+e^{-ah}\{e^{a(T+h)}W(T+h)\}|F_T] \ge e^{aT}W(T)$$

and hence $G_hV(T) \geq V(T)$. Applying the operator G_h to the above inequality, we inductively get $V(T) \leq (G_h)^n V(T)$, while, $(G_h)^n V(T)$ converges to the fixed point $x_h(T)$ as $n \to \infty$. So $x_h = V$ and x^* is independent of h > 0. Thus the proof is complete.

REFERENCES

- V. E. Benes, Existence of optimal stochastic control law, SIAM J. Control 9 (1971), 446-475.
- [2] A. Bensoussan, Stochastic control by functional analysis methods, Studies in Math. and its Appl. 11, North-Holland, Amsterdam, New York, Oxford, 1982.
- [3] P. Bremaud, Point processes and queues, martingale dynamics, Springer series in statistics, Springer-Verlag, New York, 1981.
- [4] C. Dellacherie and P. A. Meyer, Probabilités et potentiels, 2nd ed., Chapters I-IV, Hermann, Paris, 1975; Chapters V-VIII, Hermann, Paris, 1980.
- [5] T. D. DUNCAN AND P. P. VARAIYA, On the solutions of a stochastic control system, SIAM J. Control 9 (1971), 354-371.
- [6] N. EL-KAROUI, Méthodes probabilistes en contrôl stochastique, Ecole d'Ete de Probabilités de Saint-Flour IX, Lecture Notes in Math. 876, Springer-Verlag, Berlin-New York, (1981), 73-238.
- [7] M. Nisio, On a nonlinear semigroup attached to stochastic control, Pub. Res. Inst. Math. Sci., Kyoto Univ., 12 (1976), 513-531.

DEPARTMENT OF MATHEMATICS FACULTY OF GENERAL EDUCATION EHIME UNIVERSITY MATSUYAMA, 790

Japan

AND MATHEMATICAL INSTITUTE
TÔHOKU UNIVERSITY
SENDAI, 980
JAPAN