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1. Introduction. The total curvature of complete, noncompact,
connected and oriented Riemannian 2-manifold M is defined to be an

improper integral I Gdv of the Gaussian curvature G of M with respect

to the Riemannian volume dv over M. It is well known that the total
curvature of such an M is not a topological invariant but it depends on
the choice of the Riemannian structure. The pioneering work of Cohn-
Vossen on the total curvature states that if M is finitely connected and

if M admits the total curvature, then I Gdv ^ 2πX(M), where X(M) is
JM

the Euler characteristic of M (see [2, Satz 6]). It is interesting to
investigate a geometric influence of the total curvature on the Riemannian
structure of M which defines it. The first attempt in this direction of
the work was made by Maeda in [5], [6] and [7]. He investigated some
relations between the measure of rays emanating from a fixed point
and the total curvature of a complete Riemannian manifold homeomor-
phic to R2 whose Gaussian curvature is nonnegative everywhere.

From completeness and compactness of M it follows that through
every point p on M there passes at least a ray 7: [0, <χ>)—> M, where a
ray is by definition a unit speed geodesic such that any subarc of it is
a unique minimizing geodesic between the endpoints. Here all geodesies
are parametrized by arc length unless otherwise mentioned. For a point
p on M let TPM and SPM be the tangent space to M at p and the unit
circle of TPM centered at the origin. SPM is endowed with a natural
Lebesgue measure induced by the Riemannian structure of M. Let A(p)
be the set of all unit vectors tangent to rays emanating from p. A{p)
is closed because a limit geodesic of a sequence of rays is again a ray.
Thus we are interested in the measure of the set A(p). In a recent
paper, Maeda has proved the following:

THEOREM (Maeda [7]). If M is a complete Riemannian manifold
homeomorphic to R2 and if the Gaussian curvature G of M is nonnega-
tive everywhere, then
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S Gdv = 2π — inf meas (A(p)) .
M peM

The purpose of the present note is to consider whether the above
result is true for complete metrics on R2 on which G changes sign. We
shall show that the equality in the above theorem does not hold in
general where G changes sign. We shall furnish an example of a
complete surface Σ homeomorphic to R2 embedded in the Euclidean
3-space E* on which the equality in the above theorem does not hold.
In fact we have

2π - [ G+dv < inf meas (A(p)) < 2π - ί Gdv ,
JΣ peΣ JΣ

where G+(x): = Max{G(x)f 0}, xeΣ. In general we have the following
for a complete Riemannian manifold M homeomorphic to R2:

THEOREM 1. Let M be a complete Riemannian manifold homeomor-
phic to R2. If M admits the total curvature, then

2π - \ G+dv ^ inf meas (A(p)) ^ 2π - ( Gdv .
JM peM JM

The infimum of meas (A(p)) is attained when G has compact support.
However it is not certain whether the infimum is attained if the support
of G is noncompact. But in the special case where G > 0 everywhere,
we have the following as a direct consequence of the above Theorem 1:

THEOREM 2. Let M be a complete Riemannian manifold whose
Gaussian curvature is positive everywhere. If the infimum o/meas (A(p))
is attained at some point on M, then the total curvature of M is equal
to 2π.

However the author does not know if the converse of Theorem 2 is
true or not. Other geometric significance of the total curvature has
been investigated by Innami [4] and Shiohama [9], [10]. Basic tools used
in the proofs of our results will be given in §2 and the proofs are
stated in §3. The example stated above will be furnished in §3.

2. Preliminaries. Let M be a connected, complete and noncompact
Riemannian 2-manifold without boundary. The total curvature of M is
defined as follows.

DEFINITION 1. M admits the total curvature if and only if for every
monotone increasing sequence of compact domains {Vd} of M such that

Uiέi ^i = M, the sequence jl Gdv\ has a limit in [—°°, °°].
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It turns out that the limit of ji Gdv\ does not depend on the

choice of {V5) if the total curvature of *M exists.

REMARK. M admits the total curvature if and only if either

( G+dv < o o o r ( G'dv > - oo is fulfilled, where G~ = G - G+. If M
JM JM

does not admit the total curvature, then for any given real number A
there exists a monotone increasing sequence {Vs} of compact domains in
M such that \Jj3iiVj = M and that lim^ool Gdv = A (see [2, the footnote
on p. 79]).

A geodesic 7: R —> M is by definition a straight line if any subarc
of 7 is minimizing. The following theorem was proved by Cohn-Vossen
which plays an essential role for the proofs of our results.

THEOREM A ([3, Satz 6]). Let Mbe a complete Riemannian manifold
homeomorphic to R2. If M admits the total curvature and if there exists
a straight line 7: J2 —> M, then

Gdv ^ 0 .

The proof of Theorem A is based upon the following Lemma B which
Cohn-Vossen discussed in [3, §5], and is valid in all dimensions.

LEMMA B. Let N be an n-dimensional {n ^ 2) complete noncompact
Riemannian manifold and let 7: [0, oo) —> jSΓ be a ray and let x be a
fixed point on N. For any positive ε, there exist a divergent sequence
{tj} and minimizing geodesies σά: [0, ls\ -+ N such that σ^O) = x, σά(l5) =
Ύ(*i)ι 3 = 1, "m

9 and they satisfy ^(α /Z,-), 7(^ )) < ε for all j = 1,

PROOF OF LEMMA B. Set f(t): = d(x, 7(ί)), where d is the distance
function on N induced by the Riemannian metric. / is Lipschitz con-
tinuous with Lipschitz constant 1, and hence it is differentiable almost
everywhere. / is differentiable at t0 > 0 if and only if every minimizing
geodesic joining x to 7(ί0) makes a constant angle with 7 at 7(ίo) It
then turns out that the constant is equal to cos~\f\tQ)). f is non-
differentiable at t0 > 0 if and only if there are two distinct minimizing
geodesies joining x to 7(ί0) such that their angles with 7 at 7(ί0) are not
equal. Thus setting 0(ί): =cos"1(//(ί)) where it is defined, we have t-f(t) =

\ [1 — cos θ(u)]du — /(0). It follows from the triangle inequality that
Jo

< - /(ί) ^ d(x, 7(0)) for all t ^ 0. Therefore the integrand of the above
equality is bounded above for all t > 0. Thus lim^oo inf [1 — cos θ(u)] = 0,
and the proof is complete.
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In the proof of Theorem A and later in §3, Lemma B is used on a
closed unbounded domain D of M which is bounded by a geodesic polygon.
The distance function d(x, y) on D is defined to be the infimum of lengths
of all curves in D joining x and y. Every two points on D can be joined
by a ^-minimizing segment in D whose length realizes the distance
between the two points. The existence of such segments was already
established Cohn-Vossen [2, §10, §11].

PROOF OF THEOREM A. LetίTFj Jbe a monotone increasing sequence
of compact domains satisfying \J5^λ Ws = M such that for each j , W5 —
int (Wj) is a simply closed geodesic polygon. Let ε be an arbitrary
small positive number and fix j . By Lemma B, we can choose large ts

and sj in such a way that 7(ίy) and 7(—Sj) are joined by two segments
T3- and Sj in M — int(W5) satisfying the following properties: Tj and Sj
are not homotopic to each other in M — int (Wj), they have the same
minimal lengths among all curves in M — int (Wj) having the same
endpoints and belonging to the same homotopy classes, and their angles
at the endpoints are less than ε/2. The minimizing property of Sά and
Tj in M — int (Wj) implies that if a? is a non-differentiable point of Sjf

then x belongs to dWj and the angle of Sj at x is not smaller than π
if it is measured with respect to M — int (Wj). Thus Sj U Tj bounded
a convex domain, say, Dj. The Gauss-Bonnet theorem implies that

I Gdv < ε.
JDj

Now by choosing a subsequence {Dk} of {Dj} if necessary, we may
assume that {Dk} is a monotone increasing sequence with \Jk Dk = M.
Then lim^oo I Gdv = \ Gdv <̂  ε, and the proof is complete since ε is

)Dk )M

arbitrary.
From now on, let M be a complete Riemannian manifold homeomor-

phic to jβ2. Let q be an arbitrary fixed point on M. Since A(q) is
closed in Sq(M), Sq(M) — A(q) consists of a disjoint union of open subarcs
of Sq(M). Set \JχeΛFλ: = Sq(M) — A(q), where A is an index set, and
each Fx is an open subarc of Sq(M). For each λe A let Dλ(q) be a unique
component of the set D(q): = M — {expg tu; ue A(q), t ^ 0} which contains
{expg tv ve FAf 0 < t < the convexity radius at q). Clearly Dλ(q) — Dx(q)
consists of rays, say, σ, τ: [0, oo) —> M with σ(0) — r(0) = q. The following
fact was first proved by Maeda [5] under the assumption that G ^ 0,
and later the assumption G ^ 0 was removed by the author. Here a
proof simpler than that in [8] will be stated.

LEMMA C (compare [8, Lemma 4]). With the same notations as above,
we have:
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(1) For any ε e (0, <(<τ(0), τ(0)/2) there exists an R = R(e) such that
if U is the unique unbounded component of the set Dλ(q) Π {x β M;
d(q, x) > R}, then for any xe U and for any minimizing geodesic
α:[0, l]-+M with α(0) = q, a(l) = x, either <(α(0), ά(0)) < ε or else
<(r(0), ά(0)) < ε ΛoZdβ.

(2) For αw?/ jfeed t > R if ct: [0, 1] —> U is a curve whose image
bounds a unique unbounded component of {x e U; d(q, x) > t}f then there
are a point x on ct([0, 1]) and two distinct minimizing geodesies
β, 7: [0, ί] —> Λf such that their images are in Dλ and that they satisfy

<(/3(0), (7(0)) < ε , <(7(0), τ(0)) < ε .

PROOF OF LEMMA C. First of all it follows from the construction
of the boundary of Dλ that every minimizing geodesic joining q to any
point in Dλ does not intersect its boundary and has its image in Dλ.
Therefore (1) is a direct consequence of the fact that there is no ray
emanating from q whose initial tangent vector belongs to Fλ

To prove (2) note that there is an open set around σ(t) in which
every point can be joined to q by a unique minimizing geodesic which
makes an angle with σ at q less than ε. Note also that for every
u e [0, 1] every minimizing geodesic joining q to ct(u) does not meet ct

([0,1]) except at ct(u). Let Iσ: = {ue[0, 1]; every minimizing geodesic
joining q to ct{u) makes an angle with σ at q less than ε}. Then it
follows from what is noted above that Iσ Φ 0 and that if uelσ, then
u'e Iσ holds for all u'e [0, u). Similarly we define Iτ: = {ue [0, 1]; every
minimizing geodesic joining q to ct{u) makes an angle with τ at q less
than ε}. Then we conclude that Iτ is a nonempty subinterval of [0, 1]
containing 1. If there is a uoe [0, 1] — Iσ U IT, then the point x = ct(u0)
has the desired property. Suppose that [0, 1] = Iσ U IΓ. Then it follows
from IσΓ\ Iτ — 0 that one of the two intervals is open and the other is
closed. Without loss of generality we may assume that Iσ is open. Set
u0 = sup Iσ. Then a minimizing geodesic β: [0, t] —• M is obtained as a
limit of minimizing geodesies βά\ [0, t] -> M with /3/0) = q, βά(t) = ct(uό)
such that Uj e Iσ and lim uά — u0. On the other hand, it follows from
u0 6 Iτ that there is a minimizing geodesic 7 joining q to ct(u0) with the
desired property. Thus the proof is complete.

The following result was established in the previous work of the
author and the proof is omitted here.

THEOREM D ([8, Theorem 2]). Let M be a complete Riemannian
manifold homeomorphic to R2. If M admits the total curvature, then
for every point p on M,
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meas (A(p)) *z2π — \ G+dv .
JM

3. The proof of Theorem 1. By means of Theorem D we only need
to prove that

( * ) inf meas (A(p)) <; 2π - \ Gdv .
peM JM

If the total curvature of M is nonpositive, then (*) is obvious. Taking
Theorem A into account, we may therefore assume that M admits no
straight line. If the left hand side of (*) is zero, then (*) is nothing
but the Cohn-Vossen theorem. Therefore we may assume that through
every point p on M there pass at least two (indeed more than two)
distinct rays.

Let {Vj} be a monotone increasing sequence of compact sets such
that (Ji^i Vj = M. Let ε be an arbitrary fixed positive number, and fix
j . The proof is divided into three steps as follows.

STEP 1. Since M has no straight line by assumption, there is an
R3 > 0 such that for each point x on M — BR.{V3) all rays emanating
from x do not intersect V3 . Indeed, we otherwise would have a
divergent sequence of points {xk} and rays {σk}, each σk emanating from
xk = σk(Q) and passing through a point on V3. Then the compactness
of V3 would make it possible to choose a subsequence of {σk} which
converges to a straight line, a contradiction. Let g be a point on
M - BRj(V3) and set Sq(M) - A(q) = \JλeΛFx as before. Then there
exists a λ e i such that Fλ is a proper subarc of Sq(M) and that Dλ(q)
contains Vά. Let σ, τ: [0, oo) -^ M be distinct rays with σ(0) = τ(0) = q
which bound Dλ(q). The existence of distinct rays emanating from q is
guaranteed by the assumption that the left hand side of (*) is positive.

STEP 2. Since V3 is contained in Dλ(q), there is a positive number
η such that η = inf {̂ ζ(ά(O), ά(Q)), <£Xί(0), ά(0)); a is a minimizing geodesic
joining q to every point on V3}. It follows from Lemma C, (2) that
there exist a point p and two minimizing geodesies α, 6: [0, I] —• Dλ(q)
such that α(0) = 6(0) = q, a(l) = b(l) = p and <(ά(0), σ(0)) < *ηβ, <(6(0),
f (0)) < Ύ}\2. Thus the subdomain of Dλ(q) which is bounded by α([0, I])
and 6([0, I]) contains V3 in its interior.

Consider Dλ(q) to be a complete Riemannian manifold with nonempty
boundary. The distance function d is naturally defined on Dλ(q) by the
metric on M restricted to Dλ(q). Then every two points can be joined by
a rf-minimizing segment which may have a nondifferentiable point in its
interior. It follows from Lemma B that there are large numbers s3 and
tj and d-minimizing segments a3 and b3 joining p to σ(s3) and τ{t3 )
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respectively such that the angles between aό and σ at σ(sj) and between
bj and τ at τ(ts) are less than e/2. It should be checked that these
angles are all positive. This is observed as follows. It suffices for the
proof of ^C(άy, σ)\σi8j) > 0 to show that aά is a geodesic in M. Suppose
a,j has a nondifferentiable point in its interior. Then the break point
coincides with q. (This might happen when ^C(σ(0), τ(0)) is close to 2ττ.)
Since aό have d-minimizing property and since a and δ are minimizing,
the subarc of aά between p and q has the same length as a and δ. Thus
L(α,) = d(p, q) = L(a) + L(σ\[0, s, ]). But since <(ά(0), σ(0)) < jj/2 we
have L(a) + L(σ | [0, s, ]) > (s, - r) + d(tf(r), α(r)) + (L(a) - r) for a small
r > 0, and this value is realized by a broken geodesic in Dλ(q) joining
σ(Sj), σ(r)f a(r) and p = a(l) in an obvious way. This contradicts the
d-minimizing property of ajf proving the positivity of the angle.

STEP 3. Let D5 be the compact subdomain of Dλ{q) which is bounded
by aif bjf σ([0, sy]) and r([0, ίj). The above argument ensures that Dά

contains the compact domain bounded by a geodesic biangle a and δ, and
hence DJZDVJ. By choosing a subsequence {Dk} of {Dά} if necessary, we
may assume that {Dk} is monotone increasing and \Jk Dk = M. For each
k the Gauss-Bonnet theorem applies to yield

( Gdv < meas (Fλ) + ε ^ 2π - meas (A(q)) + ε

<^ 2π — inf meas (A(p)) + ε .
qeM

This completes the proof of Theorem 1 since ε is an arbitrary positive
number.

PROOF OF THEOREM 2. Let q be a point of M at which the infimum
of the function xH* meas (A(x)) is attained. Let \JλeΛFλ = Sq(M) — A(q)
and for each XeΛ let A(g) be defined as in §2. It follows from Lemma
C, (2) that Dλ{q) for each λ 6 A is covered by a monotone increasing
sequence of compact subdomains in Dλ(q) each of which is bounded by a
geodesic biangle. Because of G > 0 the total curvature of Dλ(q) exists
and

ί Gdv ^ meas (Fλ) .

Moreover we have

\ Gdv ^ Σ ί Gdv^Σ meas (i^) = 2π - meas

where the first inequality is ensured by the assumption G > 0. Therefore
all equalities hold by means of the Maeda theorem. The first equality
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implies that M — UaβiiA(ί) has measure zero, in other words, A(q) has
no interior in Sq(M). Hence meas (A(q)) = 0 implies the conclusion.

Finally we furnish an example of a surface Σ in Ez, on which both
inequalities in Theorem 1 hold. The Gaussian curvature G of Σ has
compact support and Σ has two "hills" on a plane. The construction is
carried out as follows. For positive numbers a < b set /(ί): =
h(b - t)/{h(b -t) + h(t - α)}, where h:R->R is defined by

fexpί-l/t1) for ί ^ O
= | θ for t < 0 .

Computations show that f(t) = 0 for t^b, 0 < /(t) < 1 for α < ί < 6
and /(£) = 1 for α ^ ί , and 0 ^ /'(ί) ^ /'((α + δ)/2) = -8(6 - α)"s. For
an arbitrary fixed point p = (p1? p2) with ||p|| > 26, let 21 be defined as
the graph of x3 = xs(xlf x2);

(f(\\x\\) for ||x - p\\ > 6

**' \M*-P\\) for \\x-p\\Sb,

where x = (xl9 x2) e R2. It is elementary to verify that

\ Gdv = 0 and ( G+dv = 4π(l - sin {tan^ft - α)3/8}) .

Therefore we can choose a and 6 in such a way that

π < [ Gdv < 2π

is satisfied. We can also choose p sufficiently far from the origin so
that meas (A(x)) ̂  π holds for any point x on Σ. This is possible because
every compact set on E2 is contained in a cone of arbitrary small angle
at the vertex is taken to be sufficiently far from the compact set.
Therefore we have

2π - ( G+dv < π < inf meas (A(x)) < π = 2π - I Gdv .
JΣ xeΣ JΣ

It should be noted that the Cohn-Vossen theorem was extended to
a finitely connected noncompact G-surface on which angular measure is
defined. The total excess with respect to the angular measure plays the
same role as the total curvature. For details see [1, §43 and §44].
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