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Introduction. In the present paper we consider the problem con-
cerning local isometric or conformal immersions of Riemannian symmetric
spaces into the Euclidean spaces. The main results are announced in our
recent note [2].

It is classically well known that any Riemannian manifold can be
locally or globally isometrically immersed into the Euclidean spaces of
sufficiently large dimension. For compact Riemannian symmetric spaces
M it is known that many of them can be globally isometrically imbedded
into the Euclidean spaces in codimension ~dim M (Kobayashi [14]). On
the other hand, Heitsch and Lawson [8] proved that the compact Lie
groups SO(2m + 1) and U(@2m + 1) with biinvariant Riemannian metrics
cannot be globally conformally immersed into the Euclidean spaces in
codimension 2m — 1 by calculating the Chern-Simons invariants. Later
their method was extended by Donnelly [6], who proved that the
Riemannian symmetric space SU2m + 1)/SO(2m + 1) cannot be globally
conformally immersed in codimension 2m — 1. The purpose of this paper
is to give a new estimate on the dimension of the Euclidean space into
which Riemannian symmetric spaces M = G/K can be locally isometrically
or conformally immersed.

Let (M, g) be an n-dimensional Riemannian manifold and let R be
the curvature tensor field of (M, g). Define a Z-valued function » on M
by setting

r(p) = (1/2) max rank R(X, Y) for pelM,
X,YETpM

where R(X, Y) is the curvature transformation of 7,M. If there exists
an isometric immersion f of (M, g) into the m-dimensional Euclidean space
R™, then f satisfies the so-called Gauss equation. Using this fact, we
prove that in this case the function » defined above satisfies the inequality
r(p) £ m — n for each pe M. In case f is a conformal immersion of
(M, g) into R™, we prove, by considering the modified Gauss equation
for conformal immersions, that the inequality »(p) = m — n + 2 holds
for each pe M (Proposition 1.2).
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Let M = G/K be a Riemannian symmetric space. Then the function
r takes a constant value and we denote it by ¢(G/K). From the above
result, it follows that G/K cannot be isometrically (resp. conformally)
immersed into the Euclidean space in codimension ¢(G/K) — 1 (resp.
¢(G/K) — 3) even locally. The integer ¢(G/K) can be expressed in the
following Lie algebraic form. Let g and f be the Lie algebras of G and
K, respectively, and let ¢ = f + m be the canonical decomposition of g.
We denote by p: f— o(m) the infinitesimal linear isotropy representation
of G/K at the origin. Then the integer ¢(G/K) is given by ¢(G/K) =
(1/2) maxy y., rank o([X, Y]) (see §3). Our main aim is, applying the
theory of Lie algebras, to determine the integers ¢(G/K) for all
Riemannian symmetric spaces. For this purpose we have only to deter-
mine the integers ¢(G/K) in the case G/K is a simply connected irreducible
Riemannian symmetric space of compact type (see Lemma 1.3).

Now our main result (Theorem 1.4) is stated as follows: Let G/K
be a simply connected irreducible Riemannian symmetric space of compact
type.

(1) If G/K is not isomorphic to any real Grassmann manifold, then
¢(G/K) = (1/2)(dim G/K — rank G + rank K).

(2) If G/K is isomorphic to SO(p + q)/SO(p)x SO(q) (p=¢q=1), then

[pq/2] , if g=evenor 2¢=p=¢q, ¢=odd,
plg—1)/2+q, if p>2¢ and q=o0dd.
It is remarkable that the real Grassmann manifolds SO(p + q)/SO(p) X
SO(q) with p =29 + 2 and ¢ = odd form an exceptional class among
irreducible Riemannian symmetric spaces of compact type. By this
theorem we know that most of the irreducible Riemannian symmetric
spaces M cannot be isometrically or conformally immersed into the
Euclidean spaces in codimension ~(1/2)dim M even locally.

Unfortunately our estimates obtained above are not best possible in
general. For example, it is known that the spaces of negative constant
curvature M of dimension n (= 2) cannot be isometrically immersed into
R™* even locally (étsuki [21]). On the other hand, from the above
theorem we have ¢(M) = 1. Hence for n = 3 our estimate on local iso-
metric immersions is not best possible. For the Riemannian symmetric
space M = SO(5), the integer ¢(M) is 4 and hence SO(5) cannot be locally
isometrically immersed into R®. But using a more delicate method, it
can be proved that SO(5) cannot be locally isometrically immersed into
R®. (This result is best possible because SO(5) is locally isomorphic to
Sp(2) and it is already known that Sp(2) can be globally isometrically
imbedded into R' (Kobayashi [14]). For other examples, see Agaoka

¢(G/K) =
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[1].) However our estimates for the spaces SO(2m + 1), U2m + 1) and
SU2m + 1)/SO@2m + 1) are better than Heitsch, Lawson and Donnelly’s.
In fact for these spaces the integers ¢(G/K) are quadratic polynomials of
m and hence ¢(G/K) — 3 > 2m — 1 for large m.

We now explain the contents of this paper. In §1 after showing
the modified Gauss equation for conformal immersions, we prove Proposi-
tion 1.2 and state the main theorem (Theorem 1.4). In order to prove
Theorem 1.4, we have to look for elements X, Y e m® such that the map
o°([X, Y]): m° - m° takes a maximum rank, where m°® (resp. p°) is the
complexification of m (resp. p) (see §3). For this purpose we prepare
in §2 several propositions concerning the root systems of compact
irreducible Riemannian symmetric spaces. In particular a subset I' =
{8y, -+, B} (s =rank G/K — rank G + rank K) of positive roots of g°
satisfying certain conditions plays a fundamental role (Proposition 2.2).
We prove this proposition in Appendix 1. Using the results in §2, we
prove Theorem 1.4. But we have to divide the proof into several cases
according as the property of G/K. In §3 we prove the theorem for
“general” compact irreducible Riemannian symmetric spaces, which satisfy
certain conditions on root systems. Many spaces are included in this
case. The spaces which are not “general” are listed up in Proposition
3.4 and we have to prove the theorem individually. Sections 4~6 are
devoted to the proof for these spaces. In Appendix 1 we give the proof
of Proposition 2.2, using the classification of symmetric spaces. Finally
in Appendix 2 we prove, as an application of the modified Gauss equation
for conformal immersions, that an #n-dimensional compact Riemannian
manifold with non-positive sectional curvature cannot be globally con-
formally immersed into R*™* This is a generalization of the result of
Moore in [20]. :

Throughout this paper we always assume the differentiability of
class C~.

1. The rank of the curvature transformations and the main theorem.

1.1. Let (M, g) be an mn-dimensional Riemannian manifold. We
denote by V the covariant differentiation associated with the Levi-Civita
connection of (M, g) and by R the curvature tensor field of (M, g). For
a C~ function ¢ on M and tangent vkectors X, -, Xp,eT,M we c;iceﬁne

—_ T~
Ve, Vg 0€R by Vi -+ Vy6=(V--- Vo)X, --+, X;) where V... Vs
is the k-th covariant derivative of ¢. Letf = (f', ---, f™) be a mapping
of M into the m-dimensional Euclidean space R™ and we set Vi, --- V, f =
(+++y Vg, =+ Vg f% -++). Then we have:
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(1 1) vayf = Vyvxf 9 vayvzf = va2VYf 9
' vayvzf = Vyvxvzf" VR(X,Y)Zf ’

where X, Y, Z denote tangent vectors at pe M.

Let (, ) be the standard inner product of R™. If f is an immer-
sion of M into R™, then (Vf, Vf) gives a Riemannian metric on M. By
definition an immersion is called conformal with respect to g if there
exists a function p on M satisfying (Vf, VFf) = e*g.

Let f be a conformal immersion of (M, g) into R™. We define an
R™-valued symmetric 2-tensor field @ and a symmetric 2-tensor field g
by setting

a(X, Y) = VyVif — {(Vx0)Vif + (Vy0)Vif — g(X, Y)Vf};

B(X, Y) = e#{VaVap — (Vxo)(Vap) + 29(, 99X, T},
where ¢ stands for the dual of Vp, i.e., the vector field determined by
the equality g(¢, X) = Vy0. Then we have the following

LEmMMA 1.1 (cf. Gasqui [7]).
(1.2) (X, Y),V,f)=0.
13) [aX,Y) aW, 7)) —(X, Z),aW, Y)) + (X, Y)W, Z)
+ 9(X, Y)W, Z) — (X, Z)g(W, Y) — 9(X, Z)BW, Y)
= —e"g(RX, W)Y, Z) .

ProoF. Differentiating covariantly the equation (Vf, VF) = e%*yg,
we have
(VVf, V) + (Vuf, ViV ) = 2(Vx0)e*g(Y, Z) .

Then cyclic permutation of {X, Y, Z} yields
(ViViff, V) = e{(Vx0)9(Y, Z) + (Vy0)9(Z, X) — (V,0)9(X, Y)}

and (1.2) follows from this equation.
Next we differentiate the equality (1.2). Then we have

(Vea(X, Y), V) + (X, Y), ViV > =0.
Interchanging X and W, we have
(Vxa(W, Y), V) + < a(W, Y), ViV, f>=0.
From these two equalities we obtain
(X, Y), aW,2Z)) — (X, Z),a(W, Y))
=(Va(W,Y) - Vya(X, Y), V,F) .
On the other hand we have
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Va(W,Y) - Vya(X, Y)
= VeV Vef — VeV Vef — {(ViVp0)Vipf — (Vi Vy0)V 4}
+{g(W, V)V, of — 9(X, Y)Vy, f} — {(Vwo)VVef — (V10)VyVyf}
+ {g(W, Y)V,V.f — g(X, Y)V,V.f}.
Then by use of (1.2) and the integrability condition (1.1) we have

(Vza(W, Y) — Vya(X, Y), Vi)
= —e"g(R(X, W)Y, Z) — (X, Y)9(W, Z) — 9(X, Y)8(W, Z)
+ B(X, Z)9W, Y) + 9(X, Z)BW, Y) .

This proves the equality (1.3). q.e.d.
We call (1.8) the modified Gauss equation for conformal immersions.

REMARK. If f is an isometric immersion, i.e., o is identically zero
on M, then a is nothing but the usual second fundamental form of f.
We also remark that in this case 8 =0 and the equality (1.3) reduces
to the usual Gauss equation.

1.2. Let r be the Z-valued function on M defined in Introduction.
Using Lemma 1.1, we prove the following proposition.

ProprosiTION 1.2. If (M, g) can be isometrically immersed into R™,
then for each point pe M the imequality r(p) < m — n holds. If (M, g)
can be conformally immersed into R™, then r(p) = m — n + 2 for each
pe M. In particular any open Riemanmnian submamnifold of (M, g) con-
taining p cannot be isometrically (resp. conformally) immersed into the
Euclidean space in codimension r(p) — 1 (resp. r(p) — 3).

PrROOF. Suppose that there exists a conformal immersion f: M — R™.
Let @ and B be the symmetric tensor fields on M defined above and we
denote by T;M the normal space to M at pe M. For each £e To M we
define a symmetric endomorphism A, of T,M by ¢g(4.(X),Y)=
(a(X,Y), &)X, YeT,M) and let B be a symmetric endomorphism of
T,M defined by g(B(X),Y) = 8(X,Y). Then the modified Gauss equation
(1.8) can be expressed in the form

(1.4) e*R(X, Y)Z = Apy, s X — Aaz,0)Y — BX,Z)- Y
—9X,Z2)-BY)+9(Y,Z) BX)+ pB(Y,Z)-X.
Hence for all X, Ye T,M we have
rank R(X, Y) < dim{Apx,»nY|Zc T, M} + dim {4,y X |Z€ T,M} + 4
=<2dimT;M + 4,
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which implies 7(p) S dmT;M +2=m —n + 2. In case f is an iso-
metric immersion, we substitute p = 8 = 0 into the above equality (1.4).
Then we have

rank R(X, Y¥) < 2dim T: M
for all X, Ye T,M, implying 7(p) < m — n. q.e.d.

REMARK. The “isometric” part of this proposition is essentially
equivalent to Theorem 1 in Matsumoto [17].

Now we consider the case where (M, g) is a Riemannian symmetric
space G/K. In this case the function 7(p) is constant on G/K, as is
stated in Introduction, and we denote this constant by ¢(G/K)e Z.
Using the elementary facts on the curvature transformation of G/K at
the origin (see [15]), we have

LEMMA 1.3. (1) Let M = M, X --- X M, be a product of Riemannian
symmetric spaces. Then c¢(M) = Dk, ¢(M,).

(2) Let M be a Riemannian symmetric space of compact type and
let M* be its non-compact dual space. Then ¢(M*) = ¢(M).

We determine the number ¢(G/K) for each simply connected irre-
ducible Riemannian symmetric space G/K of compact type. Then by
Lemma 1.3 and the fact ¢(R*) =0, we know the value ¢(G/K) for all
Riemannian symmetric spaces G/K. (We remark that the integer ¢(G/K)
is determined by the infinitesimal property of G/K.)

The rest of this paper is devoted to the proof of the following main
theorem.

THEOREM 1.4. Let M = G/K be a simply connected irreducible
Riemannian symmetric space of compact type. If G/K is mot isomorphic
to any real Grassmann manifold, then

¢(G/K) = (1/2)-(dim G/K — rank G + rank K) .
For real Grassmann manifolds G/K = SO(p + q)/SO(p)xS0(q) (p=q=1),
[pg/2], if g=even or 2¢=zp=gq, ¢q=odd,
p@—1/2+q, if p>2¢ and ¢q=odd,
where [ ] is the Gauss symbol.
We remark that the equality ¢(G/K) = (1/2)(dim G/K — rank G +

rank K) holds except for the case G/K = SO(p + ¢)/SO(p) x SO(q) with
p = 2¢ + 2 and ¢ = odd, which includes the standard sphere S* (n = 4).

¢(G/K) =

2. Riemannian symmetric spaces. In order to prove Theorem 1.4,
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we prepare in this section several propositions concerning irreducible
Riemannian symmetric spaces of compact type.

2.1. Let G/K be an irreducible Riemannian symmetric space of com-
pact type and let g (resp. f) be the Lie algebra of G (resp. K). We
denote by 6 the involutive automorphism of G associated with G/K. We
also denote by the same letter ¢ the involutive automorphism of g induced
by 6. Let us define an inner product (, ) of g by setting (X,Y) =
—B(X,Y), X, Yeg, where B stands for the Killing form of g.

Let ¢ =t + m be the canonical decomposition of g obtained by 6.
- Then [t f]c ¥, [, m]cm and [m,m] c ¥ Let a be a maximal abelian
subspace of m and t be a Cartan subalgebra of g containing a. We put

=1tNf. Then we have t = a + b (orthogonal direct sum). In particular
we have 6t =t. In the following discussions we fix a f-order “<” in t,
i.e., a linear order in t satisfying: If H > 0, H¢b, then 6H < 0. We
denote by g° the complexification of g. We extend ¢ and Ad(g) (9 @)
to complex linear isomorphisms of g° by complex linearity and denote
them by the same letters.

Let aet. We define a subspace g, of g° by

8. = {Xeg'|[H, X] =V —1(a, H)X for all Het}.

An element awet is called a root of g° (with respect to t°) if g, # {0}.
Let 4 (resp. 4*) denote the set of non-zero roots (resp. positive roots)
of g°. Clearly we have 4 = 4 and 6g, = gy, for each ac€ 4.

Let 7 be the conjugation of g° with respect to g. Then it can be
easily verified that zg, = g_, for a€ 4. The following is easy to prove.

PROPOSITION 2.1. There exists a set of wectors {Z,€ g.|ac 4} satis-
Sfying

(1) z2,=27_, 0Z,,_-—‘-Zga;

(2) [Za, 2. =2V -1/, a)-a.

We fix once for all such a set of vectors {Z,€g.|ac 4} stated in
Proposition 2.1.

Let us define a non-negative integer s(G/K) by setting s(G/K) =
rank G/K — rank G + rank K. Then the following proposition plays an
important role in the proof of Theorem 1.4. The proof will be given in
Appendix 1.

PROPOSITION 2.2. Assume that s = s(G/K) > 0. Then there exists a
subset I' = {B,, *++, B.} of 4% satisfying:

(1) 68, = —B: t.e., B;€dtNa;

(2) Bi=*B;¢4U{0} (2 # J).
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REMARK. (1) The set I' ={B,, -+, B,} having the above properties
is not uniquely determined. In Appendix 1 we explicitly construct
Ir={g, ---,B8,) for each G/K, using the classification of Riemannian
symmetric spaces.

(2) The spaces satisfying s(G/K) = 0, i.e., the spaces of split rank,
are exhausted by the following; the compact simple Lie groups,
AIl SU2n)/Sp(n), DII SO@2n + 2)/SO@2n + 1) and EIV E,/F,. These
spaces are exceptional in our point of view and we have to prove Theo-
rem 1.4 for these spaces individually (§4 and §6).

Let I' ={B, -+, B} be a subset of 4™ with the properties stated in
Proposition 2.2. Then since the length of the B;-series containing g3;
(1 # J) is 1, we have (B;,8;) =0 for 7 = j. For each B,€ " we denote
by X, and Y, the real part and the imaginary part of Z,, respectively.
Then:

Xoo = (U2)(Zp, + T25) = (12)(Zs, + Z_4,) = (1/2)(Zy, + 0Z )€t ;
Y, = (12 =1)Zy, — ©Z,) = (20 =1)(Zs, — Z_4)
= (U2 TI)Z,, — 0Z,)em .

We set a, = >, RB;, b, = >, RX;. Then we have q,Ca, b, Ct and
it is easily observed that dima, = dimb, = s. Let a, be the orthogonal
complement of a, in a. Then we have dima, = dima — dima, =
rank G/K — s = rank G — rank K. With the above notations, we prove

PrOPOSITION 2.3. (1) b, is orthogonal to b and b, =5, + b (orthogonal
direct sum) is a Cartan subalgebra of .
(2) t, =a, + b, (orthogonal direct sum) is a Cartan subalgebra of g.

Proor. (1) Since (t°%, g,) =0 for ac 4, it follows that (b, b) = 0.
Consequently we have dimb, = dimb, + dimb = s + (rank G — rank G/K)=
rank K. Hence in order to show that b, is a Cartan subalgebra of f,
we have only to show that b, is abelian. This can be verified by the
following equalities:

[H, X;,] = (Y2)[H, Z,, + Z_s]) = V' =1/2)(Bs H)(Zs, — Z_4) = 0,
[Xﬁi’ Xﬁj] = (1/4)[Zﬁ«u + Z—ﬂiy Zﬂj + Z—ﬂj] =0,

where Heb, B, B;€’. (Note that B,e 4Na and B, = B;¢ 4 for @ # j.)
Hence we have [b,, b,] = {0}, proving that b, is a Cartan subalgebra of .

(2) Clearly we have [a,qa,] = [a, b] = [b, b,] = {0}. We also obtain
[a, b)) = {0}, because [H, X,]= (V' —1(8: H)/2)(Zs, — Z_s)) = 0, where
Heca, and B;€I'. Therefore we have [t,t] = {0}. Since (a,b,) =0, it
follows that dimt, = dima, + dimb, = rank G — rank K+ rank K = rankG.
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This proves that t, is a Cartan subalgebra of g. qg.e.d.

REMARK. Let I'" = {8, ---, G} be a subset of 4% satisfying the
properties (1) and (2) in Proposition 2.2. Then by Proposition 2.3(1) it
can be easily proved that ¢t < s(G/K), i.e., s(G/K) is the largest integer
possessing the property in Proposition 2.2.

2.2. We now set W =233 Y, (em) and g = exp(—7/2-W) (€G).
Then we have

PROPOSITION 2.4. Let Het. Then:
Ad()-H = H + 3, (8 )Xo, — 3 (8 H)/(Boy B)-B:
Consequently Ad (9)-a, = b,, Ad(9)l.,+s = id and Ad(g)-t=t.

Before proceeding to the proof we show
LEMMA 2.5. For each Het, B, I, it holds
Ad(exptY;,)-H = H — (sin t)(B;, H)X,,
+ (cost — 1)-(Bi, H)/(Bi» B)B: (t€ R) .
Proor. By Proposition 2.1, we obtain the following equalities:
[Ye, Hl = —(B H)X,, Het;
(Y, Xo] = 1/(Bi BB -
Hence by induction on %, we can easily prove
(ad Y, )" - H = (—=1)""(8,, H)X,, ,
(ad Y, ) **-H = (—=1)"" By, H)/(B:) B:) B -

Therefore we have

Ad(exptY,)-H=H+ > t"/n!-(ad Y, -H
n=1
= H + (8, H)- 3, (=120 + 1] - X,

+ ((8:, H)/(Bir B:)- g]o (=1 (2n + 2)!- 6, .

Since >, (—1)"t™*/(2n + 1)! =sint and D2, (—1)""¢" /(2 + 2)! =
cost — 1, we obtain the desired equality. q.e.d.

PROOF OF PROPOSITION 2.4. We first remark the following equali-
ties: [Yy, Bl = [Ys, Xl = [Ys, Y] =0 for i j. Hence we have
Ad (exptW) = Ad (exptY,) --- Ad(exptY,) and Ad(exptY,)-B; = Bi
Ad (exptY,,)-X;; = X,; for i # j. Thus by Lemma 2.5, we obtain
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Ad (exp tW)-H = H — (sint)-3, (8, H)X,,
i=1

+ (eost = 1)-3 (8, H)/(B, B)-B: (teR).

Putting ¢t = —x/2 into the above equality, we have the desired equality.

We now prove the latter part of the proposition. In view of the
formulas obtained above, we can easily check that Ad (g).,+, = id. Also
we have Ad (9):B8; = (8;, B)X;, for B,e ', because (B,, B;) = 0 for @ # j.
Hence Ad(g)-a, =b,. Consequently we have Ad(g)-t =t, and the proof
is completed. q.e.d.

Let ac 4. We set @ =Ad(g)-a (et) and Z, = Ad(9)-Z, (eg°).
Then it is easily seen that & is a non-zero root of g° with respect to t;
and that CZ, is the root space of g° corresponding to & (We remark
that 6t, =t,.) We put 4, = 4N(a, +b). Then we have & = & if and
only if ac 4,.

Let ae 4,. Since & = @, it follows that 6Z,c CZ,. Hence there
exists a complex number ¢, such that 6Z, = ¢,Z,. Since 6* = id, we have
&, = 1.

LEmMMA 2.6. (1) Let acd,. Then €, = €_,.
(2) Let a,Bc 4y, Then if a + BE 4y, Eppp = €xEp.

PROOF. (1) Applying 6 on both sides of the equality [Z, Z_.] =
2 =1/(a, @)-@, we obtain e,-6_, = 1. This proves (1). The assertion
(2) is obvious. q.e.d.

Now we set 4,(+) = {acdle, =1} and 4(—) = {aec dle, = —1}
Then we have

F=b+ 3 CZ.+ 3 CZ, +6Z) (direct sum),

aedg(+) aedt\dy
m=a+ 3 CZ,+ 3 CZ,—6Z) (direct sum).
aedy(—) aedt\dy

Let Hea; + b°. We define two subsets «,(H) and k,(H) of 4 by
setting x,(H) = {a€ 4(—)|(a, H) = 0} and £, (H) = {a € 4Y\4;|(a, H) = 0}.

LEMMA 2.7. For Heai + b°, set H = Ad (9)-Heb,. Then the follow-
ing equality holds:

dim¢ Ker (ad H|,.) = rank G — rank K + #&,(H) + #x,(H) ,
where #x,(H) denotes the cardinality of x,(H).

PROOF. We first note that ad H -aiN: {0}, ad HZ =v :-i(a, H )ZN,,
and ad H-60Z, = 9(ad6H-Z,) = 0(ad H-Z,) =V —1(a, H)6Z, for ac 4.



LOCAL ISOMETRIC IMMERSIONS 117

Hence we know that each factor that appears in the decomposition of
m° obtained above is invariant under (ad H|,.). Therefore we have:

Ker (ad H|,.) = a. + 3, ) cz.+ 3 CZ,—6Z7,).

aexl(H aexg(H)
Consequently we have dimKer (ad H|,.) = dim¢a? + #£,(H) + #x,(H) =
rank G — rank K + #x,(H) + #£.(H). g.e.d.

2.3. Finally we study the sets 4,(+) and 4,(—) more closely. We
show

PROPOSITION 2.8. (1) I = {8, -, £B} C4(—).
(2) Assume that € ANb. Then a€ 4,(—) if and only if a =B,€ 4
Jor some B, .

We first prove

LEMMA 2.9. (1) Assume that a € 4; and that there exists B,€ I' such
that 2(a, B)/(B:y B:) =1 and a + B, ¢ 4. Then:

Ad (exptY,,)-Z, = cos (t/2)-Z, + 2sin (¢/2)[Y,,, Z.] ;
Ad(exptY;,)-Z_, = cos (t/2)-Z_, + 2sin (¢/2)[Y,, Z_,] (te R).

(2) Assume that ac ANb and that there exists B,€I such that
o+ B;€d. Then:

Ad (exptY,,)-Z, = cost-Z, + sint-[Y,, Z,], (tcR).

ProOF. (1) Under the assumptions we know that a — B3,€ 4U{0}
and o — 28,¢ 4U{0}. Hence we have

(ad Yﬁ,;)z'Za = (1/4)[Zﬁu [Z—ﬁi, Za]] = (1/4)[[Zﬁp Z—ﬂi]y Za]
= (—1/4)2(a, BBy B)Za = —(1/4)Z, .

Therefore by induction on n (€ Z, = 0), we can easily prove that
(ad Y, )" Z, = (—1/4)"-Z, and (ad Y,)"*"-Z, = (—1/4)"-[Y,, Z.]. Conse-
quently

Ad(exptY,)-Z, = (3 (—1r/2En)!) 2,

+ 23 (~ D@2 En + DY) [V, Z)
= cos (t/2)-Z, + 2sin (t/2)-[Y,,, Z.] .

This proves the first equality. In the same manner the second equality
can also be proved.

(2) We first note that since a € b and g,€ I'Ca,, we have («, 3,) = 0.
Hence we know that a + 28,¢ 4U{0}. In fact if a + 28,€ 4U{0} (resp.
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a — 2B;€ 4U{0}), then it follows that a — 28,€ 4U{0} (resp. a + 28;¢
4U{0}), because (@, B8;) = 0. Consequently the g;-series of a contains at
least five roots. But this contradicts the fact that for any 7, € 4, the
length of the o-series of 7 is at most four (see Bourbaki [4]). Thus
a +28,¢ 4U{0}. Hence we obtain the following:

[Z_'g” [Zpi’ Z“]] = [Zﬁi’ [Z—ﬁiv Za]] = —2Za ’
(see Helgason [9] Chap. III). Therefore
(ad Yﬁi)z'Za = (1/4){[Z—ﬁ,;7 [Zﬁu Za]] + [Zﬁv [Z-—ﬂir Za]]} = _‘Za .

Hence by induction on n, we can easily show that (ad Y;)"-Z, = (—-1)"Z,
and (ad Y,)""-Z, = (—=1)"[Y,,, Z,]. Consequently we have

Ad(exptY;)-Z, = (35 (—1re/2m)! ) -2,

o
+ (S (~1re@n + DY), 2]
=cost-Z, + sint-[Y,, Z,] .
Thus the proof of the lemma is completed. q.e.d.
LEMMA 2.10. Let ac 4,. Then Ad (97?62, = ¢, Z,.

ProOF. We note that since W = >3}, Y, em, it follows that ¢W =
—W. Hence 6(g) =0(exp (—n/2-W)) =exp (—7/2:-0W) =exp (x/2-W) =g~
Thus 6Z, = 6(Ad (9)- Z.) = Ad (6(9))-6Z, = Ad (¢7")-0Z,= Ad (g)-Ad (97%)-0Z,.
On the other hand since 6Z,=¢,-Z,=¢, Ad (g)-Z,, we obtain Ad(g7)-6Z, =
I3/ q.e.d.

PROOF OF PROPOSITION 2.8. (1) By Lemma 2.10 we obtain
Ad (970 (Xs, — V' —1Y,) = & (X5, + V' —1Y,,). Comparing the imaginary
parts of both sides, we have Ad(97%)-Y,, = —¢;,Y;,. On the other hand
since [Y,, Y,;;] =0 for B, B;el’, it follows that Ad(¢97") Y, = ¥,,.
This proves ¢,, = —1. Hence we have +p3;¢€ 4,(—) (see Lemma 2.6).

(2) We first assume that a + 3,€ 4 for some B,€I". Then for any
BieI' (j #14) it holds that a = B;¢4. In fact if a+ B;€4, then
(@ + B) — (@ + B;) = B: — B;€ 4U{0}, because (a + B;, a + B5) = (a, @) > 0.
This is a contradiction. « — B;¢ 4 can be analogously proved. Hence
we have Ad(exptY,,)-Z,=Z, for any p;el" (j+#1). Therefore
Ad (97 :0Z, = Ad (exp 7W) - Zp, = Ad (expnY,) --- Ad (expnY,) - Z, =
Ad(expnY;,) -4, = —Z, (see Lemma 2.9 (2)). Then by Lemma 2.10 we
have ¢, = —1, ie.,, ae 4y,(—). Conversely we suppose that a + B3,¢4
for any B,€I’. (We remark that o + B;¢4 if and only if a — 3,¢ 4
because (@, B;) = 0.) Then it is clear that Ad(exptY,,)-Z, = Z, for any
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B.€I' and hence Ad(¢97?%-0Z, = Z,. This shows that ¢, = 1, implying
a € 4(+). g.e.d.

REMARK. (1) If s(G/K) =0, then 4, = 4Nb because q, = 0. Con-
sequently by Proposition 2.8 (2) we have 4(—) = @.

(2) As is easily observed that Proposition 2.1 also holds even if we
replace Z;, and Z_,, by —Z,, and —Z_,, respectively for some g;er.
Such a modification brings about a change in the sign of Y,, and hence
alters the sets 4,(+) and 4,(—). (See §5 and §6. We remark that the
union 4, = 4,(+)U 4,(—) is unchanged by this modification.) However it
should be noted that under such a change in the sign of Y,, Proposition
2.8 remains to be true. The proof of this fact is left to the reader.

3. Proof of Theorem 1.4. (General case). In this section we deter-
mine the integers ¢(G/K) for many G/K that are “general” in our sense.

Let G/K be a Riemannian symmetric space of compact type and let
g =If + m be the canonical decomposition of g. In a usual way m can
be identified with the tangent space at the origin o€ G/K. We denote
by p©:f—o(m) the linear isotropy representation of G/K at ocG/K.
Then as is well known, the curvature transformation R(X, Y) (X, Yem)
at the origin 0eG/K is given by RX,Y)= —po(X, Y]): m—m (see
Kobayashi and Nomizu [15]). Hence we have

¢(G/K) = (1/2) max rank p(1X, Y]) .

The following lemma is easy to verify.

LEMMA 3.1. Let 0°: ¥ — o(m®) be the complexification of the linear
isotropy representation 0. Then

¢(G/K) = (1/2) max rank 0°([X, Y)) .

By this lemma we may consider the problem in the complex category.
Now we define a non-negative integer ¢,(G/K) by ¢, (G/K)=
(1/2)(dim G/K — rank G + rank K). We first prove

LEMMA 3.2. o(G/K) < ¢(G/K).

PrOOF. Let X, Y be arbitrary elements of m. Since [X, Y]ef and
since b, is a Cartan subalgebra of f, there exists an element ke K such
that Ad (k)-[X, Y]eb. We set H = Ad(k)-[X,Y] and H = Ad (¢7)-H.
Then by Lemma 2.7, we obtain rank p([X, Y']) = rank o(#) = dim G/K —
dim, Ker (ad H|,.) < dim G/K — rank G + rank K = 2¢,(G/K). Hence we
have ¢(G/K) = (1/2) maxy ye, rank po([X, Y]) < ¢(G/K). q.e.d.

PROPOSITION 3.3. Let I' = {B,, -+, B.} be a subset of 4% satisfying
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the conditions im Proposition 2.2 and assume that the set I' satisfies the
following two conditions:

(1) For each ac A\4; there exists B,€ I’ such that (a, B;) # 0.

(2) For each a€ dNb, B, €' it holds a + 3; ¢ 4.

Then ¢(G/K) = ¢,(G/K).

ProOF. Let a,, ---, a, be complex numbers that are linearly inde-
pendent over the field @ of rational numbers. We set X = 3, a.Z;,,
Y=3%,Z, and H=|[X,Y]. Since £pB;€4(—) (Proposition 2.8,
Lemma 2.6), it follows that X = Ad(g)-Xem’, ¥ = Ad(g9)-Yem® and
H=Ad(g)-H=[X, Y]. By a simple -calculation we obtain H=
S 2V —1a./(8;, B)-B:ca; and hence Heb; b:. Therefore ¢(G/K)=
(1/2) rank. 0°([ X, Y1) = (1/2) rankc 0°(H) = (1/2) rank¢ (ad H|,c) = ¢,(G/K) —
1/2)(%k.(H) + #k,(H)) (Lemma 2.7).

We now show that «,(H) = k,(H) = @, then we have ¢(G/K) = ¢,(G/K).
This together with Lemma 3.2 proves the proposition. Let ae€ 4 satisfy
(e, H) = 0. Then since a, ---, a, are linearly independent over @ and
since 2(a, B.)/(B;, B:) € Z, it follows that (a, B8;) = 0 for all B3, I". Thus
by the condition (1), we know that a ¢ 4\4,, i.e., a€ 4,Ca, + b. This
means that £,(H) = @. We next show that ae 4Nb. In fact since
r=4{g, -+, B, forms a basis of a, the a,component of a is equal to
0. Hence ae 4Nb. Therefore by the condition (2) and by Proposition
2.8, we know that a ¢ 4,(—). This implies that £(H) = @. Thus the
proof is completed. q.e.d.

The conditions in Proposition 3.3 are satisfied for many Riemannian
symmetric spaces. In fact we have

PROPOSITION 3.4. Let G/K be a simply connected irreducible
Riemannian symmetric space of compact type, which is not isomorphic
to any of the following spaces:

(1°) Compact simple Lie groups, AII SU2(n + 1))/Sp(n + 1) (n = 1),
DI, II SO(p + q)/SO(p) x SO(q) (p,q =o0dd, p = q + 2), EIV E|JF,.

(2°) BI, IIS O(p + q)/SO(p) x SO(q) (p = even, ¢ = odd, p = q + 3),
CII Sp(p + @)/Sp(p) X Sp(q) (p = ¢q=1), FII F,/Spin (9).

Then the set I' = {B,, ---, B, selected in Appendix 1 satisfies the condi-
tions (1) and (2) in Proposition 3.3. In particular ¢(G/K) = ¢,(G/K).

ProOOF. We note that since G/K is not isomorphic to any spaces
listed in (1°), we have s(G/K) # 0 (see Table 1 in Appendix 1). First
we suppose that s$(G/K) = rank G/K. Then we have rank G = rank K
and hence a, = {0}. Therefore the condition (1) of Proposition 3.3 is
automatically satisfied. We next consider the case where s(G/K) <
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rank G/K. By Table 1 in Appendix 1, we know that such spaces are
limited to the following three types:

AI SUn + 1)/SO(n +1) (nz=1);
DI SO(p + ¢)/SO(p) % 80(q) (p = ¢ = odd);
EI E,/Sp(4) .

Then we have rank G = rank G/K and hence t = a. Consequently we
have fa = —a for each we 4. Now let us suppose there exists ae 4*
satisfying (a, 8;) = 0 for any B,€ I'. Then it follows that a + 3, ¢ 4U {0}.
(It is known that for a simple Lie algebra g° of type [4.], [D)] or [E)]
the a-series containing three roots are of the form —a, 0, @.) Then the
set I'" = {a}UTI" satisfies the conditions of Proposition 2.2. But this con-
tradicts the maximality of the set I (see Remark after Proposition 2.3).
This shows the property (1) of Proposition 3.3.

For the verification of the property (2), see Remark at the end of
Appendix 1. We know that since G/K is not isomorphic to any spaces
listed in (2°), o &+ B, ¢ 4U{0} for any ac 4Nd, B,erI. q.e.d.

We remark that any Hermitian symmetric space is not contained in
neither (1°) nor (2°) and hence the proof of Theorem 1.4 is completed
for Hermitian symmetric spaces.

In the subsequent sections we prove Theorem 1.4 for each G/K listed
in (1°) and (2°) of Proposition 3.4.

4. Proof of Theorem 1.4. (Compact simple Lie groups, AIl and
EIV). In this section we treat the cases G/K = compact simple Lie
groups, AII SU2(n + 1))/Sp(n + 1) (n = 2) and EIV E,/F,., We remark
that for these spaces s(G/K) = 0 and hence X and Y which we defined
in the proof of Proposition 3.3 reduce to 0. We use the same notations
as in §2 and §3.

4.1. Compact simple Lie groups. Let M* be a compact simple Lie
group with a biinvariant Riemannian metric and let m* be the Lie algebra
of M*. Then as is well known that M* may be represented by the
Riemannian symmetric space G/K, where G = M* x M*, K = {(z, x)|x € M*}
and the involution @ of G is given by d(x, ¥) = (y, z) for (x, ¥)eG.

Let g (resp. f) be the Lie algebra of G (resp. K). Then we have
g=m*@m* ¥ ={X, X)eg|Xem*}. The differential of ¢ at the identity
of G, denoted by the same letter 4, is given by 6(X, Y) = (Y, X) for
(X, Y)em*@m* =g. We define an inner product (,) of g by
(X, Y, (X, Y) = —{B(X,, X;) + B(Y,, Y,)} for (X, Y)eg (i1 =1,2). As
is easily observed, ( , ) is invariant under ¢ and the orthogonal comple-
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ment m of f in g with respect to (, ) is given by m = {(X, —X)e
g|Xem*}. Let a* be a Cartan subalgebra of m* and set t = a* @ a*.
Then we know that t is a Cartan subalgebra of g containing a maximal
abelian subspace a = {(X, —X)eg|Xea*} of m and b =tN¥t is given by

= {(X, X)eg|Xea*}. We define a linear order “<” in t by the follow-
ing law: (H, H,) >0 if and only if H, » H, or H, = H, » 0, where <
denotes an arbitrary linear order in a*. Then it is easy to see that <
is a @-order in t. Let 4* (resp. 4) be the set of non-zero roots of (m*)
(resp. g°) with respect to (a*)° (resp. t°). Then we have 4 = {at, a~|a e 4*},
where a* = (a, 0), a= = (0, ). Clearly we have fa* = @~ and o~ = a*
for ae 4*.

ProOOF OF THEOREM 1.4. Let IT* = {a,, ---, a;} (I = rank m*) denote
the set of simple roots of (m*)° with respect to <.
Let a,, ---, a; be complex numbers that are linearly independent over

Q. We then set X = 3\, a(Z,+ — 0Z.), Y = S (Z_oy — 0Z_s}) and
set H=1[X,Y]. Then we have Xem’, Yem® and by a simple calcula-
tion we obtain H =21 —1 3} a/(af, ai)-(at + 6af)eb°. (Note that
af —af,a; —a;¢4U{0} (1 #7), af +a;j¢4U{0}.) By Lemma 2.7 we
have rank¢ 0°(H) = rank¢ (ad H)|,. = 2¢(G/K) — (#&,(H) + #£,(H)). (Note
that since s(G/K) =0, it follows that g = ¢ and hence Ad(g)-H = H,
Ad(9)-Z,=Z,) We now show that x,(H) = k,(H) = @, then it holds
¢(G/K) = ¢,(G/K). This together with Lemma 3.2 proves ¢(G/K) = ¢,(G/K).

Let at = (a,0)e 4 satisfy (a*, H) =0. Since a,, -, a;, are linearly
independent over @ and since 2(a™*, af)/(af, af)e Z, (a*, af) = 0, it fol-
lows that (a*, aj) = —B(a, a;) = 0 for all a,;€ II*. But it is impossible

because {«;} forms a basis of a* and hence we have (a®, H) # 0. Simi-
larly we can prove that (o=, H) =0 for all a“€ 4. Hence we have
k(H) =&(H) = @. q.e.d.

REMARK. Since ¢(R") = 0, it can be easily seen that the equality
c(M*) = (1/2)(dim M* — rank M*) holds for any compact Lie group M*
with a biinvariant Riemannian metric.

4.2, AIT SUQ2(n + 1))/Sp(n + 1) (n = 2). In the following arguments
we assume that n = 2. In the case n =1, G/K = SU(4)/Sp(2) is isomor-
phic to SO(6)/SO(5) and we treat this case in §86.

Let I = {a, --*, &} denote the simple roots of su(2(n + 1))°. Then
the Satake diagram of G/K and the restriction of 6 on t are given as
follows:

ay g ag “om—1 Aon Xon+1

o—O0—eo— - —0—0O—@
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Oy, = —(Qlyicy + Qg + QAyy) 1 =T = m),
00y, =y, A=1=m+1).
We first prove

LeMMA 4.1. Let acd. Then for some © (1 =1 n) it holds
(a, a,; + 6ay;) # 0.

PROOF. As is well known that there exists a basis {\,, - -+, Ny} Of
t @ R such that (A, N;) = ¢d,; (ce R\{0}), t = {312 an,|>2*a, = 0} and
a; =N — Ny 1 =1 = 20 + 1) (Bourbaki [4]).

Let a be written in the forma = (A, — A1) A= p=qg=2n + 1).
Since @y + 00y = — (s + Qi) = —Ngimy — Mgy + Mgy — Myyo), it holds
(a, a, + 6a,) #0 in case p =-even, ¢q#p+ 1. We have (a,a,_, +
fa,,) # 0 or (@, @y, + Oa,,) #0 in case p =even, ¢ =p + 1. (Note
that we are assuming » = 2.) Similarly we have (@, @,_, + 6a,_;) # 0
incase p = odd > 1and (a, a, + fa,) + 0incase p =1, q¢ # p + 1. Finally
we have (o, a, + fa,) # 0 in case p = 1, ¢ = 2, proving the lemma. q.e.d.

We remark that Lemma 4.1 does not hold if » = 1.

PrROOF OF THEOREM 1.4. Let a,, ---, a, be complex numbers that are
linearly independent over Q. We set X = X7, a((Z_yyi-1,, — 07 _yi-1y,),
Y =30 (Z_yyiay, — 0Z_1yia,) and H =[X,Y]. Then we have Xem:,
Yem’. Since @, & a,; & 4U{0} (¢ # ), ayy £ 00, € AU{0} (05— 1, j + 1),
Qi + 00y, Qi + Oty @ 4U{0}, we obtain H = 21" —1 3%, (—1)'a,/(ay,
o) (Qy + o) €b°. Let ac 4 satisfy (a, H) = 0. Then since a,, -+, a,
are linearly independent over @ and since 2(a, a,, + fay,)/(@, @y) € Z, wWe
have (a, ay; + 0a,;) =0 for all a,; (1 <7 =<m). But it is impossible (Lemma
4.1). Hence we have k,(H) = k,(H) = @. Therefore by Lemma 2.7 we
obtain rank¢ 0°(H) = rankc (ad H)|,. = ¢,(G/K). This together with Lemma
3.2 shows that ¢(G/K) = ¢,(G/K). q.e.d.

4.3. EIV E,JF, Let Il ={a, -, a;} be the set of simple roots of
e; with respect to a f-order in t. Then the Satake diagram of G/K and
the restriction of # on t are given as follows:

ag ag ay ap ag

O [ J [ ] [ ] O

X2
ba, = —(a, + a, + 205 + 2a, + ) ,
ba, = —(a;, + a3 + 20, + 205 + )
ba,=a; 2=1=5).
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We first prove

LEMMA 4.2. Let a be a mom-zero root satisfying (a, a, + 6a,) =
(a, ag + 6ag) = 0. Then ac 4AND.

Proor. By the Dynkin diagram of ¢, we know that (a;, a;) = 2¢
1=1=6), (a, &) = (a5, ) = (a0, ) = (@, ;) = (@5, A;) = —c and other-
wise (a,, a;) =0, where ¢ is a positive constant. We express a =

8. m;a;. Then since a, + fa, = —(a, + 2a; + 2a, + ) and «a, + O, =
—(a, + as + 2a, + 2ct;), we obtain 2m, — 2m, + ms = M, — 2my + 2m, = 0
from (a, o, + 6a,) = (a, ag + 6ag) = 0. Hence we know that m, = even,
m, = even. On the other hand, since the highest root of ¢ is o, + 2a, +
205 + 3a, + 2a; + a, it follows that |[m,| <1, |m,| =< 1. Therefore we
have m, = m; = 0 and hence a€ 4Nb. q.e.d.

PrROOF OF THEOREM 1.4. Let a,, a, be two non-zero complex numbers
such that a,/a.¢Q. We set X = a,Z, — 0Z,) + a)Z_,, — 6Z_,,) and
Y=(Z,—-60Z,)+ (Z,— 0Z,) and set H=[X,Y]. Then we have
Xem’, Yem'. Since a, — fa;, a, + a, a, + O, as — g€ 4U{0}, we
have H = 21/ —1{a,/(a,, ) (a, + Oat)) — a./(qle, ) (ats + Oats)} € 6°. Let ae 4
satisfy (a, H) = 0. Since 2(a, a; + 0a,)/(a;, @))€ Z (¢ = 1, 6), the equality
(a, H) = 0 implies (a, a, + 6a,) = (, as + Octy) = 0. Then by Lemma 4.2,
we have ae 4Nb = 4,, which implies «k,(H) = @. (Note that a, = {0} in
this case.) By Remark (1) at the end of §2, we have 4(—) = @ and
hence k,(H) = @. Therefore by Lemma 2.7 we obtain rank;p(H) =
rank. (ad H)|.. = 2¢,(G/K). This together with Lemma 3.2 proves ¢(G/K) =
¢(G/K). q.e.d.

5. Proof of Theorem 1.4. (CII and FII).

5.1. CII Sp(p + q)/Sp(p)xSp(q) (p = q =1). In the following argu-
ments we assume that (p, q) # (1, 1). In the case (p,q) =(1,1), G/K =
Sp(2)/Sp(1) x Sp(1) is isomorphic to SO(5)/SO(4) and we will treat this
case in §6.

Let I ={a,, ‘-, a,,,} denote the set of simple roots of 8p(p + q)
with respect to a g-order in t. Then the Satake diagram of G/K and
the restriction of ¢ to t are given as follows:

a2q %2q+1 %p+g—1 “ptgq

ay @y ag
&—O0—@—:-+—0O

o—  —0—0 =zq+1),
ay ag ag a9q—2 a2g—1 %2q
e—0O0—@—:-—0 e—O »=0q;
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Oy, = —(Qpiy + Qg + Apey) A=t =q—1),
Pg—1

—(a2q—1 + a'zq + 2k 2 (247 + ap+q) (20 g q + 1) ’

o, = =2g+1
\—‘(2a2q—1 + azq) (p = Q) ’
fa; = a; (1 =o0dd < 2¢q or 71> 2q) .

Then the set I" = {8, - -+, B,} (s(G/K) = q) which we define in Appendix
1 is given by Bi=a,, + 220 ay +apy, 1=S7=<qg—1) and B, =
Oy + 2305+ if =g+ 1, B, =ty + ay if p=gq. (Infact
in this case the set of simple roots {a,, ‘-, a@,:,} of 3p(» + ¢)° and the
set of simple roots {7, ---, 7.} of the reduced root system 3, are related
by 7. = (1/2)(atyi—y + 2015, + ) ( I=21=g—1) and Vg = Qygy + 2 Ziiz"{‘ak +
0,.,.) Asis well known there exists a basis {», ---, A,,,} of t such that
(N >"i) = 031-]- (ce R\{O}) and a; =\, — Nit1 1=+ p+q—1) and Xpirg =
2\,., (Bourbaki [4]). By utilizing this basis, we have:

A={£0—2) ASi<jSp+a) £M+r) ASiZi<p+0),

{0>"2i—1 = =Ny ONg; = —Ngiy (1 =1 = (I) ’

=N q+1=1=p+0q;

Bi=Mys+ Ny (151=¢q).
Consequently 4Nb = {E£Nyt — M) X =1 =9), ENpgur — Mygiy) =1 <
J=p— Q, i(>"2q+i + )“2q+j) l=s1= J= p — Q)}

First we prepare two lemmas.
LEMMA 5.1. 4(=)Nb={*a,, A1 <i=q).

PrROOF. Since rank G = rank K, we have 4, = 4N (a, + b) = 4. Then
using Proposition 2.8 (2) and by the above table, we can easily obtain
A#(_)ﬂb = {—_to"zi—l - 7\'21‘) (1 =1 = Q)} q-e-d-

By changing the sign of Y, for suitable 8, " (see Remark (2) at
the end of §2), we have

LEMMA 5.2. {*ay, A=i=Q}C4h(—)tf p=zg+1 and {£a, (1=
1=qg—D}C4(—)ifp=gq.

Proor. (1) We first note that a,; = —(Nyioy — Npipe) A =1 =g —1)

and fa,, = —(Nggoy + Nogr1). Hence we have fa,,+3;¢ 4U{0} in case j+#71,
4 + 1. Therefore combining this fact with Lemma 2.10, we have
(%) Ad (97)-Zss,, = Ad (expY,,)-Ad (expn Yy, ) - Zos,,

=Cplny, A1=i=q-—-1),

( * )q Ad (g_z) ‘Z0a2q = Ad (eXp TL'Yﬂq) -Z0a2q = ¢ Z

aggag, ¢
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We now consider the equality (x),. Since fa,, — B, ¢ 4U{0} and 2(6a,,,
BB By) = —1, we can prove by the same method as in Lemma 2.9 (1)
that Ad(exp(—nY;)) Zos,, = —Ad (exp (nY} )+ Zs,,- Hence if we change
the sign of Y;,, then from the above equalities the sign of ¢,, changes.
We fix the sign of Y,, such thate, = —1. We next consider the equality
(#)g—r- Since 2(0at,_, B,)/(Be By) = 1, it follows that Ad (exp Y, )-0ay,_, =
0y, , — B,€ 4 (see Lemma 2.5). Hence Ad (exp ﬂqu)'Zoagq_ze Bagy—g—By"
Since 0a2q—2 - ,Bq - Bq—l : AU {0} and 2(0a2q—2 - /Gq; Bq—q)/(ﬁq—u 6q—1) = _lr
we have Ad(exp—nY, _,)-Ad(expn¥j):Zpy, , = —Ad(exprnY,, ) X
Ad (exp 7Y, ) Zya,,_,- Hence replacing Y, by —Y, _ if necessary, we
have €ay_, = —1. Applying the above arguments to the equalities (x),
(1 £14 =< q—2) successively, we have ¢,, = —1 for i=1,---,¢— 2.
Then by Lemma 2.6 we have ¢_,, = —1 (1 £ 1 < q) and therefore {+a,,
1=1=q}C 4(—).

(2) can be verified by a similar method and we omit the details. g.e.d.

—®gq

In the following we assume that the sign of Y, (8,e ) is selected
such that the properties of this lemma is satisfied.

REMARK. In the case p = gq, if a,,_,€ 4,(—), then it necessarily holds
that +a,, ¢ 4,(—). In fact since a,, = B, — @, and B, ;€ 4(—), We
have by Lemma 2.6 ¢, = €5 _o,_, = €5,°6-s,,_, = (—1) X (—1) =1, imply-
ing that +a,, € 4,(+).

ProOF OF THEOREM 1.4. We first assume that ¢ = 2. Let a, ---,
Qg by, <+, b,_, be complex numbers that are linearly independent over Q.
We put X =30 a.Z_yyi-1p,+ 2521 052 _1yiayy ¥ = D 2 yip+ 2T D yimiay
and H=[X,Y]. Then we have X = Ad(g9)-Xem’, ¥ = Ad(g)-Yem’
(Lemma 5.2) and H = Ad(9)-H = [X, 17']. Since (—1)'g; + (—1)B; ¢
4U{0} (¢ # g), (—D)iay + (=1)B,;€ 4U{0} and (—1)'et,; + (—1)"'ar; € 4U {0}
(i # -7)» we have H = 21/:—_1 {Zgzl (""1)1—1(11'/(181; Bz)Bz + Z}=1 (_l)jbj/(azir
;) a,; et =ai + b°.  Since 4, =4 in this case, we have clearly
k(H) = @. Now we show that £, (H) = @. Let ac 4,(—) satisfy the
equality (a, H) = 0. Then since a,, - - -, b,_, are linearly independent over
Q, we have (o, 8)=0(1=<i<q@and(q, ) =0(1=<1=<q—1). From
the first part, it follows that ae 4,(—)Nb = {xa,,, A =7 =< @)}, i.e., a =
+a,;,_, for some ¢ (1 £1=<q). However it is impossible because (a,;_;,
a,;) # 0 or (ay_,, aty_,) # 0. Consequently we have k,(H) = @. Therefore
by Lemma 2.7, we obtain rank. o°(H) = dim G/K — dim; Ker (ad H)|,. =
2¢,(G/K). This together with Lemma 8.2 proves that ¢(G/K) = ¢,(G/K).

We next consider the case ¢ = 1. In this case, we have by Lemma
5.2 a,€ 4,(—) because p = 2. Let a, b be two non-zero complex numbers
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such that a/b¢Q. We put X =0aZ, +0Z_,, Y =24 + Z,, and H =
[X,Y]. Then we have X = Ad(g)-Xem’, Y =Ad(g)-Yem® and H =
Ad(g)-H=1[X, ¥]. Since a, + B, ¢4U{0}, we have H =21/ —1{a/(3,,
BB — blla,, a;)-a}eas + b°. Then by a similar method as above, we
can show that «,(H) =k, (H)= @. Hence we have rank;o(H)=
dim G/K — dim¢ Ker (ad H)|,. = 2¢,(G/K). Thus by Lemma 3.2 we have
¢(G/K) = ¢,(G/K). q.e.d.

5.2. FII F,/Spin(9). Let II = {a, a,, a;, a,} denote the set of simple
roots of f, with respect to a @-order. Then the Satake diagram of
G/K = F,/Spin(9) and the restriction of ¢ to t are given as follows:

ay ay ag ay

[ J o o O
oo, = —(a, + 2a, + 3a; + ) ,
fa, =a;, (1=1,2,3).
It can be easily checked that the set I' = {8} (s(G/K) = 1) which we
define in Appendix 1 is given by B8, =7, = a, + 2a, + 3a; + 2a,. As is
well known there exists a basis {\,, ---, N} of t such that (A, \;) = cd;;
(ce R\{0}) and a;, = N, — Ny, @tz = Ny — Ny, ats = N, and a, = (1/2)(N, — N\, —
Ns — A,) (Bourbaki [4]). By utilizing this basis, we have:
d={xN 1154, =M 2N LSi<F9),
(1/2)(EN =Ny =N = N),
N, = —N\, , =N, 10=2,8,4).

We now prove
LEMMA 5.3. 4,(—)Nb = {xa, *=(a, + ), =(a, + @, + a)}.

ProoF. We first note that B, = \,. Hence by Proposition 2.8, we
have 4,(—)Nb = {£N\,, =N;, =N,}. This proves the lemma. q.e.d.

PrOOF OF THEOREM 1.4. First note that 6a, — B, = (1/2)(—3\, —
N, — Ny — Ny € 4U{0} and 2(6a,, B)/(By, B) = —1. Hence replacing Y, by
—Y,, if necessary, we have a,€ 4,(—) (cf. Lemma 2.9 and Lemma 5.2).
Now let a, b be two non-zero complex numbers satisfying a/b¢ Q. We
set X=0aZ, +bZ_,, Y=2Z_4 + Z, and H=[X,Y]. Then we have
X=Ad()-Xem', Y=Ad(g)-Yem and H=Ad(9)-H=[X, ¥Y]. Bya
simple calculation we obtain H = 21" —1{a/(8, B) B — b/(a, a,)-a}.
(Note that a, + B, ¢ 4U{0}.) Since rank G = rank K, we have k,(H) = @
in the same way as before. Now we show £(H) = @. Let ae 4(—)
satisfy (a, H) = 0. Then since a/b¢Q, we have (a, B) = (a, a,) = 0.
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From the equality (a,8) =0, it follows that ac 4(—)Nb = {xa,
+(a, + a), =(a;, + a, + a;)}). But it is impossible because (a, a,) # 0 for
all o€ 4(—)Nb. Hence we know that £,(H) = @. Therefore we have
rank 0°(H) = dim G/ K — dim Ker (ad H)|,.. = 2¢,(G/K) (Lemma 2.7), proving
¢(G/K) = ¢(G/K) (Lemma 3.2). q.e.d.

6. Real Grassmann manifolds SO(p + q)/SO(p)xSO(q) (p=q+2 =3,
g = odd).

6.1. In this section we determine the integers ¢(G/K) for real
Grassmann manifolds G/K = SO(p + q)/SO(p) x SO(q) (p=q+2=3,
g = odd). (We have already determined the integers ¢(G/K) in the cases
g=evenor p=g¢q, ¢+ 1 in §3.) We first consider the upper bounds
for the integers ¢(G/K). We prove

LemMA 6.1. Let G/K = SO(p + ¢)/SO(p) xSO(q) (p = ¢ = 1, ¢ = odd).
Then it holds ¢(G/K) = (1/2) min {pq, pg — (p — 2q¢)}.

PROOF. Let us denote by M(m, n) the space of all m X n real ma-
trices. Then we have

g=o(p+¢q ={XeMp+gq, p+9q|'X=—-X};
A0
t= {(0 B> AeM(p’ p)) BeM(q, q), tA = _A’ tB — —B} :
0

e {(—X f)

and the linear isotropy representation p:¥—o(m) can be written as

follows:
<A O>< 0 X>_< 0 AX—XB)
o B\=tx o)~ \'xa—B'x 0

<A 0) 0 X
et, em.
0 B —tX 0
We write this equality in the form p(A, B)(X) = AX — XB, for sim-
plicity. Let X, Ye M(p, q) and define A(X, Y)e o(p) and B(X, Y) € o(q) by

[( 0 X> < 0 Y) _ AX,Y) 0
—tx 0/’ \=ty o0 }_< 0 B(X, Y)>,

ie., AX,Y)=—-X'Y+Y!X and BX,Y) = —'XY +!YX. We now
show that it holds dim Ker p(A(X, Y), B(X, Y)) = p — 2q for every
X, Ye M(p, q). In the following we fix X, Ye M(p, q). Let U be the

X e M(p, Q)} ’
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subspace of M(p, 1) consisting of all we M(p, 1) satisfying ‘Xu = Yu =
0e M(q, 1). Then it is obvious that dim U = p — 2¢q. On the other hand,
since ¢ = odd, there exists a non-zero v,€ M(q, 1) such that ‘»,-B(X, Y) = 0.
Then the linear map ¢: M(p, 1) — M(p, q) defined by ¢(u) = w v, for ue
M(p, 1) is clearly injective. Since A(X, Y)¢(u) = ¢(u)B(X, Y) = 0 for each
u€ U, the image ¢(U) is contained in Ker o(A(X, Y), B(X, Y)), which
implies that dim Ker o(A(X, Y), B(X,Y)) = dim U = p — 29. Therefore
¢(G/K) = (1/2)(dim G/K — max {0, » — 2¢}) = (1/2) min {pq, pq — (p — 29)},
proving the lemma. q.e.d.

6.2. BI, II SO(p + ¢)/SO(p) x SO(q) (p=q+3=4, p=even, q=
odd).

Let I = {a, ---, a,} (n = (1/2)(p + ¢ — 1)) be the set of simple roots
of o(p + q)° with respect to a #-order. Then the Satake diagram of G/K
and the restriction of ¢ to t are given as follows:

ay ag ag ag+1 Qp_q ap
O__O__....._O .__ ...... _.=>.
o, = —a, 1=1=q-—-1),
fa, = —(a,,-l— 2 3 a,,> ’
k=q+1

00 =0,; A=1=50n—4q).

The set I' = {B,, - -+, B} (8(G/K) = q) which we define in Appendix 1 is
given by Bz = Qs (1 é 7/ é (1/2)(q - 1))7 ,81' = Qg + 2 Zz=2iak ((1/2)((] -
ND+1=5i1=<q—1) and B8, = i, a. (In fact the set of simple roots
{7, -+, 7} of the reduced root system X, and the set {a, ---, a,} are
related by v, =a, 1 £i1<q—1) and 7, = D}, az.)
As is well known there exists a basis {\, ---,\,} of t such that
Ny M) = ¢dy; (e R{0}) and a; =N, — Ny, 1S9 —1) and a, = \,.
Utilizing this basis, we have:
d={xM—2) Q=i<j=n), =M+ r) A=1<J =),
=N 1 =i =),
O, =—-xN 1=51=9), =N (@+1=1=m),
Bi = Ngior — Ny (1 S (1/2)((1 - 1)) ’
Bi= M+ M (U2q—D+1=iZq—1),
By = Mg -
Consequently we have a=a, = >/, R3, =/, R\;, b=2>7 ., R\.
Moreover since rank G = rank K, we have 4, = 4.

LEMMA 6.2. 4(—)Nb={£3i o 1 =i=n—q)}
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PrROOF. By Proposition 2.8, we easily have 4,(—)Nb={£N,, 1=
1 <m — q)}. This implies the lemma. g.e.d.

We now put & = Dt a, (= My — Nyi)€ 4y for 1 <7 < m, where
m = min {(1/2)(¢ — 1), » — q}. Then we have & *¢&;¢4U{0} (i +# ),
06 = —(iti o + 2200 ay) (=N + Ny) A St =m).

By changing the sign of Y,; for suitable B,€I" (see Remark (2) at
the end of §2), we have

LEMMA 6.3. {£¢& (1 =21 m)} C 4(—).

PrOOF. For simplicity, we put ¢ =(1/2)(g — 1)+ for 1 <7<
(1/2)(g — 1). Then it is easy to see that & =+ B;, 6& + B;¢4U{0} if
j # 1,1 and hence Ad (exptY, ) Zoe, = Zpg, for j #1, 1. Therefore com-
bining with Lemma 2.10, we have

Ad(97%)-0Z,, = Ad (expnY,,)-Ad (exp n Yy)  Zoe, = ¢, 2pe;, (1 =1 =m).

Since 2(6¢,, B:)/(B;, B:) = —1 for 1 <1 < m, it follows from Lemma 2.5
that Ad(expnYy;)-0¢ = 65, + B; and hence Ad (expwYy;):Zye, € Goe,ss;-
On the other hand, since 2(6¢; + 8;, B)/(B:, B:) =1 and 6 + B; + B: ¢
4U{0}, it follows from Lemma 2.9(1) that Ad(exp —nY,,) Zy,s; =
—Ad (expYy,) Zye,1s;» Hence replacing Y, by —Y,, if necessary, we
have ¢, = —1. Therefore by Lemma 2.6 we have +¢,¢€ 4,(—). q.e.d.

In the following we fix the sign of Y, such that +¢;€ 4y(—) for
i=1, -, m.

PROOF OF THEOREM 1.4. Let a;, -+, @umq-1r b1, )y buym@enyr € &y =+
d, be complex numbers that are linearly independent over @. We put

(1/2) (¢—1) m
X = Z (aiZ(_l)ipi -+ b,;Z(_l)i—Hﬂ;) + Cqu + jzﬂdjz(_l)jej )

i=1
(1'2) (¢—1)

Y = (Z(—l)’:'Hﬁ,; + Z(—l)iﬁf) + Z_pq + .Z} Z(_l)]'-Hej

i=1

and H =[X,Y]. Then we have X = Ad(g9)-Xem’, ¥ =Ad(g)-Yemwr
(Lemma 6.3) and H = Ad(g9)-H =[X, ¥Y]. By a simple calculation we
obtain

(1/2) (g—1

H = 21/:1[ by (—DHad(By B B: — bl(Bs, B)-Bi} + ¢/ (Bar Ba) By
+ 3 (1l 8974

because B; £ B;& 4U{0} (2 # j), (—=1)'8; + (—1)*'¢g;, (=16 + (—1)"'¢,,
B, +&;¢4U{0) and & +¢,¢4U{0} (i # j). Since 4, =4, we have
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k(H) = @. We now determine the set &,(H). Let ac 4y(—) satisfy
(¢, H) = 0. Then since a,, ---, d, are linearly independent over @, we
have (a,8) =0 1 =i=<¢q) and (o, &;) =0 (1 £ j<m). From the first
part we have ae 4(—)Nb={x3i . A =S1=n — @} = (N, 1=
1 < n — q)}. Consequently from the second part we have (a, 1., =0
(1 £1=m). Hence we have @ = +\,,,,, forsomei =1, ---, n —q — m.
This shows that £,(H) = {£D im0 A =19 =n —q — m)}. In particu-
lar we have #x,(H) = 2(n — ¢ — m). Therefore rank; o°(H) = dim G/K —
dim¢ Ker (ad H)|,. = pg — 2(n — ¢ — m) = min {pq, pqg — (p — 2¢)} (Lemma
2.7). This together with Lemma 6.1 proves that ¢(G/K) = (1/2) min {pq,
pq — (p — 2q)}. q.e.d.

6.3. DI, II SO(p + ¢)/SO(p) X SO(q) (p=¢q+2=3, p=odd, ¢=
odd). Let IT ={a, -+, @} (n = (1/2)(p + q)) denote the set of simple
roots of o(p + q)° with respect to a f-order. Then the Satake diagram
of G/K and the restriction of ¢ to t are given as follows:

(1) n=q+2

—— — — —_— —- e s s —_ / an——l
O o) o) ° o\.
(o, = —a; (1 <4q), ba; =a; (1>4q),

n—2
0aq::——<a,+-2k§: ak+—an4_+-an>.

=q+1

Gi) n=qg+1

{06% =—a;, (1<4q,
19leq = — Qg4 0a,,+1 = —Q,.
The set I' ={B,, -+, By} (8(G/K) = q¢ — 1 in this case) which we define

in Appendix 1 is given by 8 = a,. (1 1 = (1/2)0(@ — 1)), Bumgen =
Qg + 2305, + s +a, 1=1=(1/2)(¢q—1). (In fact the set of

simple roots {v, ---,7,} of the reduced root system XY, and the set
{ay, -+, a,} are related by 7, =a;, 1=t =q—1) and v, =DiZla, +
(1/2)(an—1 + an)')

As is well known there exists a basis {\, -+, \,} of t such that

My M) =¢dy; (ce R{(0) anda; =N — M i =n—1anda, =X\,_, +
n,. Utilizing this basis, we have:

n
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d={xM—2) QA=i<ji=s=n), £ +2) A1 <J=n)},
o =—N 1=1=¢q), s =Ny 1=1=m—0q),
Bi =Ny — Ny (L=1=(1/2)(g — 1)),

Buma-n+i = M + My (L =1 = (1/2)(@ — 1)) .

Consequently we have aq,= DI RB; = >=IRN;, a, =R\, and b=
"~? R\,.;. Then we can easily show the following

LEMMA 6.4. (1) 4%\4, =N\, Ns A S0 =0 — Q).
(2) 4(—)Ndb= 0.

Now let us set & = Jitita, (=hy — Agys) for 1 < i <m, where
m = min {(1/2)(¢ — 1), » — q}. Then we can easily verify that &, + ¢;¢
4U{0} (i=#j), &edy 1=i=m) and 05 = —(fLi a, + 2300 o +
Oy + ) = =Ny — Ny (1 =7 =<m). Moreover we have 0¢, + B3;¢ 4U {0}
(G #4,7), 08+ B+ B € 4U(0) (1 < ¢ < m) and 2005, B,)/(Bs, B) = 8y — &3
l=si=m,1=j=<q—1),where: = (1/2)(¢ —D+1 (1 =1 = (1/2)(¢ — 1)).
Then by a similar method developed in the proof of Lemma 6.3, we may
assume that +gedy(—) A =7 = m).

PrROOF OF THEOREM 1.4. (a) The case n —q = (1/2)(¢ — 1), (i.e.,
p=2¢—1). In this case we have m =n —q. Let a, - -, ¢umq-n»
by, -, bum-ns €1, ***, €, be complex numbers that are linearly inde-
pendent over Q. We set

(1/2) (g—1) m
X = ;1 (aiZ(—niﬁi + biZ(—l)’“flﬁ;-) + jz‘aﬂciz(—x)jej ’
(1/2) (g—1

Y=">

=1

) m
(Z(—n”lh + Z(—n"ﬁ{) + 2‘: Z(—Uj'Hfj ’
=

andset H = [X, Y]. Then we have X = Ad(9)- Xem®, ¥ = Ad(g)- Yem*
(+£,€4(—)) and H = Ad(g)-H=[X, Y]. By a simple calculation we
obtain

(1/2) (¢—1

H=2/=1 "5 (~1a/B, 8)-8. - bJ(8; 6)-8)
+ 3 (~Dielle -5

because B, & B; ¢ 4U{0} (i # j), (—1)'8: + (—1)"'¢g; @ 4U{0}, (—1)""'@3; +
(=1)*¢;¢ 4U{0} and ¢, + &;¢ 4U{0} (¢ # 7).

We now determine the sets «,(H) and k,(H). Let aec 4 satisfy
(¢, H) = 0. Then since a,, ---, ¢, are linearly independent over @, we
have (a,8) =0 1=i=<qg—1) and (a,£)=0 (1 <j=<m). From the
first part we obtain (o, N;) =0 (1 <7 < q — 1) and hence a € 4N (a, + b)C
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7, R\, Consequently from the second part we have (a, N,y;) =0 (1 =
1<m=mn—q). Thus we have ac R\,. But it is impossible because
AN RN, = @. Hence we have £,(H) = k,(H) = @. Therefore rank. p°(H) =
dim G/K —rank G +rank K = pq — (1/2)(p + @) + 1/2)(p +¢) — 1 = pg — 1
(Lemma 2.7). This together with Lemma 6.1 implies that ¢(G/K) =
(1/2)(pg — 1) in the case p = 29 — 1.

(b) The case n —q > (1/2)(¢ — 1), (i.e., p > 2¢ — 1). In this case
we have m = (1/2)(¢ — 1) <n —q. Wesety =27la, + a, (=N, + \,).
Then we have pe 4\g,and n = &, ) £ 9, 69 £ &, n £ By, 69 £ B, & 4U{0}.
Let ay, *++, Qumgens Oy ***y Dumg—ns €1y ** *y Cmy & be complex numbers that
are linearly independent over Q. We set

(1/2) (¢—1)

= ;::i (aiZ(—l)iﬁi + bz'Z(-n“’ﬂ;) + jz=lcjz(—-l)j€j +d(Z, - 62, ,
(1/2) (¢—1) m
Y= - (Z(—l)iﬂﬂt —+ Z(—niﬁz) + jz;lzt—nfﬂej +(Z_y, —0Z_,),

and H = [X, Y]. Then we have X = Ad(g)-Xem*, ¥ = Ad(g)-Y e m’ and
H=Ad(g)-H=[X, Y]. (Note that Ad(¢9):-Z., = Z., and Ad (9)-6Z., =
0Z.,.) By a simple calculation, we obtain

(1/2) (¢—1

H=2"1"" (—14a(8, 8)-8. — b/(8: 8-

+ 5 (~1eif(e, 608 + din, )0 + 0)

We now determine the sets k,(H) and x,(H). Let ac 4 satisfy (a,

H) =0. Then since a,, ---, d are linearly independent over Q, we have
(@,B)=0 1=i=qg-1), (,)=0 A=j=m) and (a,7 + 679) = 0.
From the first part we have (a,2,) =0 (1<41=<q—1) and hence a€
4N (a, + b) < >, Rn,. Consequently from the second and the third parts
we obtain (a, M) =0 1 £1<m = (1/2)(¢ — 1)) and (a, »,) = 0. (Note
that n+60np =%, + N, — N, + N, =21,.) Hence we have ac R\, +
72335 Rhgy;.  Therefore if ae 4,(—) € 4N(a, + b), we have ae 4,(—)Nb.
But it is impossible because 4,(—)Nb = @ (see Lemma 6.4). This shows
that x(H) = @. Now we assume that a € 4"\4,. Then by Lemma 6.4,
we know that a =\, = \,,, for some ¢ (m +1=<¢=<m —q —1). Thus
we have k,(H) = (M £ Nys 0 + 1 =1 =<n — q — 1)} and hence #x,(H) =
2(n —q—m —1)=p —2¢ —1. Therefore we have rank;p'(H)=
dim G/K — rank G + rank K — #,(H) = pg — (1/2)(p + q) + (1/2)(p + q) —
1—(p—2¢g—1)=pqg— (p — 2q). This together with Lemma 6.1 proves
that ¢(G/K) = (1/2){pqg — (p — 2¢)} in the case p > 2¢q — 1. q.e.d.

Thus the proof of Theorem 1.4 is completely finished.
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Appendix 1. In this appendix we give the proof of Proposition 2.2.
We retain the notations used in §2.

Let o€ 4. By @ we mean the a-component of a with respect to the
decomposition t = a + b. Clearly we have @ = 0 if and only if a€ 4Nb.
We denote by 2 the set of all & (a€ 4\b). The elements of X are called
restricted roots of G/K. In general 3 does not form a reduced root
system, but it is known that the subset 3, of X defined by ¥, = {y¢€
3|2+ ¢ X} forms a reduced root system. Moreover since G/K is irreducible,
%, forms an irreducible reduced root system. Therefore X, is isomorphic
to a root system of some complex simple Lie algebra whose rank equals
l = rank G/K.

For each +rc X, let us set 4(y) = {ac 4\b|a = +}. We call the car-
dinality m(y) = $4(y) the multiplicity of .

We first prove

LEMMA. Let v€ 2. Then:

(1) +edif and only if m(yr) is odd.

(2) If 24p€ X, then 24p€ 4.

(8) Let ' €2 satisfy |¥'| = |4|. Then m(y") = m(ap).

(4) Assume that € 4. Then it holds m(yp) > 1 if and only if
a e d for some ac AND.

ProOF. The proofs of the assertions (1) and (2) can be found in
Helgason [9], Chap. X, Exercises. We now prove the assertions (3) and (4).

(8) Let K, (resp. K,) be the centralizer (resp. normalizer) of a in K
and let f, be the Lie algebra of K,. Since the Weyl group K;/K, of the
pair (G, K) acts transitively on each subset X of the same length, there
exists an element k, € K, such that ' = Ad (k,)-+ (see Helgason [9]). On
the other hand, since b and Ad(k,)-b are maximal abelian subalgebra of
f,, there exists an element k,e K, such that Ad(k,)-b = Ad(k,)-b. Put
k= ki*-k. Then we have ' = Ad (k)-4 and Ad(k)-t =t. Therefore
we have Ad(k)-4 =4 and hence 4(y') = Ad (k)-4(y). This implies
m(y') = m(p).

(4) First we assume that m(y) > 1. Let ge 4(4)\{+} and put a =
B — +. Then we have ac 4Nb, because (B, ¥) = (v, ) >0and & = B8 —
v =4 —+4 =0 Since a —+y =0(a + ) =084, we have a = e 4.
Conversely if we assume that a &+ r€ 4 for some a€ 4Nb, then we have
m(+) > 1 because ¥ = @ = . g.e.d.

In a natural way a linear order in a is induced from the #-order in

t. We denote by 3§ the set of positive restricted roots in ¥,. As usual
we say that an element in 3§ is simple if and only if it cannot be written
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TABLE 1
G/K rank G/K s(G/K) Dynkin diagram of I7x m(7;)
Al  SU(n+1)/SO(n+1) n [(n+1)/2] o—o— +++ —o0—o 1
(n=1) T1 T2 Tn—17Tn
Al SU@2(n+1))/Sp(n+1) n 0 0—0— ..+ —0—0 4
n=1) 1 T2 Tn—17n
AIIl SU(p+q)/S(U(p) x U(q)) q q o—o— .. —oeo (¢22) 2 (i<q)
(p=qz=1) T1 T2 Tq—1T7q 1 (i=q)
T° (g=1) 1
1
BI  SO(p+¢)/SO(p) X SO(qg) q q o0~ +++ —o=0 1 (i<q)
(p+g=o0dd, p>q=2) LT Ta=1Tq p—q (1=9)
BIT SO(p+1)/SO(p) 1 1 ° p—1
(p=even, p=2) 1
cI Sp(n)/ Uln) n n 0—o— -4+ —oe=0 1
(n=1) T T2 Tn—1Tn
CII  Sp(p+q)/Sp(p) X Sp(g) q q o—o— ++- —oe=0 (¢=2) 4 (i<q)
(p=2¢z21) T Te Tq—17q 8 (i=q)
; (g=1) 3
1
DI SO(p-+q)/SO(p) x SO(q) q 2[q/2] o—o— ... —o=0 (p=¢+2) 1 (:<q)
(p+q=even, pzqz2> L T2 Tq—17q p—q (1=q)
(p, %2, 2) Tg—2
o—o— s —§—o (p=q) 1
71 T2 P Tg—1
7
DI SO(p+1)/SO(p) 1 0 o p—1
(p=o0dd, p=3) 1
DITI SO@2n) Uln) [n/2] [n/2] o—o— +++ —oe=0 (p=4) 4 (1<[n/2])
(n=2) 21 T2 7[n/2] 1 (i=[n/2])
o (n=2 or 3) 1
I8!
EI  E¢/Sp4) 6 4 74 1
:1—_7?3 l 75 76
7
EII  E,/SU®)-SU®) 4 4 o—om0—o 1(=1,2)
TL T T3 T4 2 (1=38,4)
EIIT Ey/Spin(10)-SO(2) 2 2 o=0 1 (z=1)
71 To 6 (@:2)
EIV E\F, 2 0 o—o 8
Ty Te
EV  E;/SU®) 7 7 Is 1
?T Ta Lorsre
EVI E,/S0(12)-SU@) 4 4 o—omo—o 1G=1,2
Ty Te T3 T4 4 (3=38,4)
EVII E,;/E;-SO2) 3 3 o—oe=0 8 (:=1,2)
71 T2 73 1 (2=3)
EVIII E5/SO(16) 8 8 T4 1
;1—7’: ‘I) ;’;A;s“:;_)’s
7
EIX EyE,-SU@) 4 4 o—omso—s 1 (i=1,2)
Ty Te 73 T4 8 (1=3,4)
FI  FySp@3)-SUQ) 4 4 o—o=0—0 1
Ty Tg 73 T4
FII  F,/Spin(9) 1 ° 7
7
6 G/SU@xXSUE 2 2 oe=o 1

T1 T2
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as a sum of any two elements of Xi. Hereafter we denote by
I, = {7, --,7} (I =rank G/K) the set of all simple restricted roots of
It

For each irreducible Riemannian symmetric space G/K of compact
type with G simple we exhibit, in table 1, the rank of G/K, the integer
s(G/K), the Dynkin diagram of 17, = {7, ---, 7} and the multiplicities
m(v,) (v;€ II,) (cf. Helgason [9] Chap. X, pp. 532-534).

We note that in case M* = G/K is a compact simple Lie group, i.e.,
incase G = M*xM*, K = {(x, 2) € G|xe M*} and 6(z, y) = (¥, ), x, y€ M*,
we have s(G/K) = rank G/K — rank G + rank K = rank M* — 2rank M* +
rank M* = 0.

We now define a subset Iy = {8, -+, B,,} of 2{ (C a) according to
the type of X, (I =rankXY,) (see Table 2).

In view of the list of non-zero roots contained in each irreducible
reduced root system X, (see Bourbaki [4]), we can directly verify that

TABLE 2
2* So ﬁi
[4)] 0—0— ++. —o0—o [@+1)/2] Bi=T2i-1 1=:=[a+1)/2])
(=1 nnr Ti1—171
[Bll>2 ;—;_ cee —0=0 l Bi=T3i—1 (1§i%[l/2])
> Ti—17
(=2 nom o Pumi=lut2 5 e (A=i=[/2]-1)
=2i
Bi= {7'1—1+27L (l=even)
AT (I=o0dd)
-1
[Ci] 0—0— +.+ —o0e0 l Bi=2 X T +T7, 1=
(I=3) n e T1-171 k=i
(D] Tig 2[1/2] Bi=Tau-r  (A=2=[l/2]
(I=4) o—o— .. —92—o 1—2
T2 o Tim1 Burel+i=Ta1+2 2 Tt T +7,
T ; k=2¢ (l(léiég(l—Z)/Z])
—J1t =even
bum={ irr, (=0l
[Ee] T 4 B1=Ts, Bo=T3, Bs=Ts,
0—0—0—o—o Ba=To+T3+274+7s
T1 73 o 75 78
T2
[E'l] 74 7 ;31=72y ﬁz—_—ra, ﬁs=7m [94:77,
o_o—i’-—o——o———o ﬁ5=72+r3+2r4+r5,
TTs L 75 Te 7 Ba=To+7Ts+27 4+ 21 4+275+77,
2 Br=271-+275+ 873 +47,+ 375+ 27g+77
[Es] Ty 8 Bi=Ts, Bo=T3, Bs=T5, Bs=T1,
0—o—fP—o0—o—o-—o0 Bs=To+T3+27 4475,
LT3 o ¥5 Te Y7 Tg Be=To+4T3+27 4275+ 27 g+ T+,
T2 /97=271+2Tz+37’3+4T4+3T,5+27’6+7'7,
Bs=21487,+473+67,+515+474+ 37,1275
[F4] 0—0=0—0 4 B1=Ts, Bo=To+21s, By=7,+2V3+27,,
TL T2 T3 T4 Bs=271+387,+47 3427,
[G.] o¢=o 2 P1=Ts, Bo=211+T,

71 Teo
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Bt B¢ 2, U{0} (7). We can also check that all B;eI’, have the
same length in every case except for [B;] (I = odd), [G,]. We note that
in the case ¥, is of type [B,)] (I =odd) it holds |B,| = --- =B8] =
V2|8l

PROOF OF PROPOSITION 2.2. We assume that s(G/K) > 0 in the fol-
lowing, i.e., G/K is not a compact simple Lie group, AII, DII nor EIV
(see Table 1).

(1°) The case where G/K is not of type DI (¢ = odd). In this case
G/K has the following properties:

(i) Bied™

(ii) B % B; € 4U{0} (i # J);

(iii) #I, = s(G/K).

Hence if we put I' = I',, the conditions (1) and (2) of Proposition 2.2 are
satisfied. Now we prove the above properties.

Proof of (i). First suppose that X, is not of type [B;] (I = odd),
[G.]. Since all B,€ I', have the same length, we have m(g,) = --- = m(B,,)
(Lemma (3)). On the other hand, we know that there exists some B, I,
such that g,eIl,, i.e.,, B, = 7; for some j (1 < j =<1). Viewing Table 1,
we know that m(g,) is odd for such a B, Hence m(B;) is odd for every
B.e 'y, implying B,€ 47 (Lemma (1), (3)). Next we consider the case
where 3, is of type [B;] (I = 0odd) or [G,]. In the case [B,] (I = odd),
we have |G| =---=[8.]= ]/—2—|Bl| and Bi="€elly, B =¢ell,.
From Table 1, we know that both m(B,) and m(g;) are odd. Hence m(B;)
is odd for every B;e I',. This means B3;€ 4*. In the case [G,] (this case
occurs if and only if G/K is of type G), we have m(v,) = m(7,) =1 and
hence m(B,) = m(B;) = 1, which implies B, B, € 4*.

Proof of (ii). Suppose that B, + B;€ 4 for some B, B;€ I, (1 # 7).
Since B;+ B;¢2Y, and B, + B;€ 2, we have 2(B;, + B;)€ 3. Then by
Lemma (2) we obtain 2(8; + B;)€ 4. This contradicts the assumption
B: + Bje 4. Hence B, + B;¢ 4U{0}. Similarly we can show that g8, — 3, ¢
4U{0}. Thus we have B, + B3;¢ 4U{0} for ¢ =+ j.

Proof of (iii). Assume that G/K is not of type AI (n = 2) nor E'I.
Then from Table 1 we have s(G/K) = rank G/K. Moreover in these cases
we know that X, is not of type [4;] (I = 2), [D)] (I = odd) nor [E].
Therefore we have s, =1, i.e., #I, = rank G/K, which implies #I, =
s(G/K). For the space AI (n = 2) we have I, = [(n + 1)/2] = s(G/K)
and in the case of EI we have #I', = 4 = s(G/K).

Thus the proofs of (i), (ii) and (iii) are completed.

(2°) The case where G/K is of type DI (¢ =odd). We have
s(G/K) =rankG/K —1=q —1 and X, is of type [B,] in the case p =
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g + 2 and is of type [D,] in the case p =¢q. Thus if we put I = I'\{B,}
in the case p = q + 2 and put I" = I', in the case p = q, the set I' has
the properties (1) and (2) of Proposition 2.2. This can be easily verified
by a similar argument as above. The details are left to the reader. q.e.d.

REMARK. The set I' selected in the above proof possesses the fol-
lowing properties:

(a) If G/K is of type DI (g =odd, ¢ = q + 2), then it holds
(a, B;) = 0 for each ae 4(B,) and B,e 1.

(b) If G/K is not of type BI,II (¢ = odd, p = q + 3), CII nor FII,
then it holds m(B,) = 1 for each B,€ I'. Hence in these cases we have
o+ B, ¢4 for each ae A4NH and B,e I’ (Lemma (4)). For the spaces
BIL,II (g =o0dd, p=q+3), CII and FII we have m(B,) =p —q,
m(B,) =3 and m(B,) = 7, respectively. Therefore for these spaces we
have a + B;€ 4 for some a€ 4Nb and some B,€ " (Lemma (4)).

The proofs of these facts are easy (see Tables 1 and 2). The
property (b) implies that the space G/K which is not isomorphic to any
of the spaces listed in (2°) of Proposition 3.4 satisfies the condition (2)
of Proposition 3.3.

Appendix 2. Asan application of the modified Gauss equation (Lemma
1.1), we show here a theorem concerning global conformal immersions.

THEOREM (cf. Moore [20], Kobayashi and Nomizu [15]). Let (M, g) be
a compact m-dimensional Riemanmnian manifold with non-positive sec-
tional curvature. Then (M, g) cannot be conformally immersed into the
2n — 2)-dimensional Euclidean space R

PrROOF. Suppose that there exists a conformal immersion of (M, g)
into R™2. Let S*™* be the hypersphere in R*' centered at the origin
of R™*' with radius 1. Since R™? is conformally equivalent to S**
minus a point, there exists a conformal immersion £ of (M, ¢g) into R
whose image is contained in S**~%. Then we have {f, f) = 1, (Vf, Vf) =
e**g, where p is a function on M. Since M is compact, p attains its
minimum value at some point pe M. Then at »p we have @ = VVf and
B =¢e*(VVp) = 0. We now prove that it holds a(W, W) = 0 for any
non-zero vector We T,M. In fact by the equality <f,f) =1 we have
(VuVuf, F) = —(Vuf, Vyf) = —e*g(W, W) # 0, meaning that a(W, W)=
VyVuf #0. Let T,M° and T;M° denote the complexifications of T,M
and T;M, respectively. Then a can be naturally extended to a T.M°-
valued complex symmetric bilinear form on T,M°, denoted by the same
letter @. Since dim T3 M = dim T,M — 1, there exists a non-zero vector
Ze T,M° such that a(Z, Z) = 0. Writing Z =X+ —1Y (X, Ye T, M),
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we have (X, X) = a(Y, Y) and a(X, Y) = 0. By the fact proved above
we know that X and Y are linearly independent and a(X, X) = 0. We
now set k = g(X, Y)/g(X, X) and set Y, =Y — kX. Then we have
9X, Y) =0, Y, Y)=(~1+kaX, X) and aX, Y, = —ka(X, X).
Therefore by Lemma 1.1, we obtain

0= —eg(R(X, Y)X, )

=(a(X, X), a(Y,, Y))) — <X, Y), a(Y,, X)) + B(X, X)g(Y,, Y))
+ 9(X, X)B(Y,, Y)) — B(X, Y)o(Y,, X) — 9(X, Y)B(Y,, X)

1+ B)YaX, X), aX, X)) — ka(X, X), (X, X))

+ B8(X, X)9(Y,, Y) + 9(X, X)B(Y,, Y))

= (X, X), a(X, X)) + B(X, X)g9(Y,, Y)) + 9(X, X)B(Y,, Y,) > 0.

Il

This is a contradiction. q.e.d.
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