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One of the purposes of this paper is to identify a new construction
of representations of Weyl groups due to Joseph [6] with Springer's
construction (see [10], [11]). More precisely, let O be a nilpotent orbit
of a complex semisimple Lie algebra Q and π the Lie algebra of a
maximal unipotent subgroup. To each irreducible component U of 0 Π π,
Joseph has attached a certain polynomial pπ on the dual of a Cartan
subalgebra and has shown that the pπ

ys span a PP-submodule (W denotes
the Weyl group) in the space of polynomials when U runs through the
irreducible components of Ofiπ. On the other hand, for a nilpotent
AeO, let &A = {gB\g"1 A exή be the S3 variety, where B = Na(xt) is
the Borel subgroup whose unipotent radical has the Lie algebra ti.
Springer [10] defined T7-module structures on the rational homology
groups H*(&A, Q) on which also the finite group C(A) - Zβ(A)/ZG(A)° acts
compatibly. The C(A)-fixed subspace H2d{A)(&A, Q)cu) of the top homology
(d(A) = &\mέ%A) is known to be TΓ-irreducible. In this note, it will be
proved (Theorem 3) that this irreducible "PP-module is isomorphic (up to
the sign representation) to the previous TΓ-module ΣuQPu defined by
Joseph. As Joseph has pointed out, it follows from the above identifi-
cation that the polynomials pπ are harmonic. Furthermore, Spaltenstein
[9] has shown that there is a natural surjection σ from the set I(&A)
of the irreducible components of £%A onto the set 1(0 n π) of those of
0 Π π. The above isomorphism is given by the correspondence

Vu i - Σ [C] e BuU&\ Q)ou)

where [C] is the fundamental cycle for an irreducible component C of

In order to prove the above identification, in §2, we shall rather
extend Joseph's idea to obtain a PF-module isomorphic to the full
homology group H2du)(&A, Q). For this, we take the universal covering
space 0 of 0 and consider ρ~\O Πn)cO (p: 0 -> 0). We define a TΓ-module

Supported in part by the Grants-in-Aid for Scientific and Co-opsrative Research, the
Ministry of Education, Science and Culture, Japan.



50 R. HOTTA

structure on the Q-vector space with basis consisting of the symbols [V],
where V runs through the irreducible components of p~\O Π π), and
show that this ΫF-module is naturally isomorphic to Springer's
HUU){^A

9 Q) (Theorem 2).
In order to prove Theorem 2, we use the local formulas for Springer's

representations described in an earlier paper [4]. In §1, we recall these
formulas in slightly different forms from those given in [4] (Theorem 1).
Since the proof given in [4] uses i-adic cohomology, we shall give an
easier proof of Theorem 1 in §4, using Kazhdan-Lusztig's construction
[7]. It seems to be known to experts that this construction in [7]
coincides with Springer's [10], but there have been no references which
give a proof of this fact. In Appendix, we shall prove this.

We have often discussed these subjects with T. Tanisaki, who has
strongly helped our understanding. K. Watanabe and M.-N. Ishida have
shown us a proof of Lemma 7 in 2.7, which is crucial in this paper, and
have taught us some elements of commutative algebras. We here
express a great gratitude to them and to the referee whose suggestion
motivated us to rewrite Lemma 3 in the first draft.

1. Review of the local formulas of Springer's representations.

1.1. Let G be a connected complex reductive algebraic group, B a
Borel subgroup of G and & = G/B the flag variety. Take a maximal
torus T in B. Thus W = NG(T)/T is a Weyl group. Denote respectively
by g, b and π the Lie algebras of G, B and the unipotent radical of B.
Fix a nilpotent A eg and let &A be the S3 variety for A, i.e.,

&A = {gBeG/B\AeLie(gBg-1) = gh} = {g Big-1 A en} .

Here we simply write xX = Ad (x)X for xeG, Xeg.
It is known that &A is connected and equidimensional of dimension

d(A) = (dim Z(A) - r)/2, where Z(A) = {g e G \ gA = A}, r = dim T (see [9]).
Denote by I(&A) the set of all irreducible components of &A. Through
the action of Z(A) on &A, the finite group C(A) = Z(A)/Z(A)° acts on
the set I(^A) (Z(A)° is the identity component of Z(A)). C(A) also acts
on the homology group H*(&A, Q).

Springer [10] defined an action of the Weyl group W on H*(&A, Q)
which commutes with that of C(A) and showed that the isotypic
components H<ldu){&A, Q)ξ exhaust all the irreducible representations of
W when A and ξ run through nilpotent elements of g and irreducible
representations of C(A), respectively.

1.2. Let s 6 W be a simple reflection for the fixed Borel subgroup B,
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i.e., P8 = Bϋ BsB forms a subgroup of G. Since the simple reflections
generate W, it is desirable to describe the explicit action of s on a
given T7-module. The top homology group H2d{A){&A, Q) has a
distinguished basis consisting of the fundamental cycles [C] for irreducible
components CeI(&Λ). Considering

as Springer's W-module, we want to describe the action of a simple
reflection s with respect to this basis.

We fix a simple reflection s once and for all. Let P = P8 = B U BsB
be the corresponding parabolic subgroup. Put & = G/P and

&* = {gp e & IA e Lie (gPg'1)} .

Through the PMmndle & —>^*, &A is mapped surjectively onto &A.
We denote this surjection &A —> ^ ^ by φ. It is shown that a fiber of
^ is isomorphic to P° (the point) or P1 (the projective line).

DEFINITION 1.

( i ) For C e / ( ^ ) , an irreducible component of ^ S we call C
s-horίzontal if dim C = dim ^(C). We call C s-vertical otherwise, i.e.,
if dim 0(C) = dim C - 1.

(ii) For C Φ C in I(&A), we call (C,C) an s-joining pair if
φ(C')cφ(P).

1.3. When C is s-horizontal, C—> φ(C) is birational since the generic
fibers are P° and we are working over C. When C is s-vertical, C -> φ(C)
is a P'-bundle.

If (C, C") is an s-joining pair, then C is s-horizontal, C is s-vertical
and ^(C) is of codimension 1 in φ(C). Then C and C intersect in codi-
mension 1 and C π C is mapped surjectively onto φ(C). In fact, if both
C and C are s-horizontal (or s-vertical) and φ(C')<zφ(C)9 then φ(C) = φ(C).
When s-horizontal, a generic fiber of C u C ' - > ^(C) is a point, which
implies C = C". When s-vertical, C and C" are the restrictions to φ{C)
of the Px-bundle & -* ^ , which implies C = C". Therefore, ^(C) is of
codimension 1 in φ(C) and C is a P'-bundle over φ(C). C D C is the
inverse image of φ(C) under the map C-^φ(C); hence the required
statement.

1.4. We assume to have an s-joining pair (C, C). We call an
irreducible component X of Cf)C effective if X->φ(C) is surjective.
Clearly we then have dim X = dim φ(C) = dim C - 1. We denote by
eZ(X, ̂ (C)) this degree of the map X->φ(C).

Let h:C-^C be the normalization of an s-horizontal component C.
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For an irreducible component X' of h~\C Π C')ieύ, the reduced inverse
image of C Π C", we also call X' effective if h{X') is an effective com-
ponent of C f l C . We denote by E(C, C) the set of effective components
in h"\C Π C")red. An element X' of J£(C, C) is a simple divisor of the
normal variety C and we have the degree d(X\ Φ(C')) of the dominant
map φohιx,:X'->φ(C).

1.5. To an effective component X' eE(C, C) in C, we attach a map
gx,\Ώ —>G, where D is a unit disk in C. Since X' is a simple divisor
in C, we can take an imbedding Dζ=^C which intersects Xf transversally
at a generic point η of X'. Then JD X X' is locally isomorphic to C at
57. We may assume h(x) e C Π C for $ 6 D if and only if x = 0. Since
the JB-bundle TΓ: G —• ^ is locally trivial in the Zariski topology, we can
take a local trivialization near h(D) c C,

> G (h(D) x B^ π-\h(D))) .

Define the analytic map

to be the composite map D —> h(D) —> G.

LEMMA 1. Let gx,:D-*G be the above map. Then gx>(x)~lAen.
Let tπ be the Lie algebra of the unipotent radical of P. Then gx>(x)~ιA 6 m
if and only if x = 0 in D.

PROOF. The first statement follows from h(x) e 3PA. For the second
statement, we have h{x) e C where C is s-horizontal and h(x) e C if and
only if x = 0, where C is s-vertical. Note that gBe C, s-vertical, if and
only if gpB 6 &A for any p 6 P. But then the last condition is equivalent
to p~ιg~ιA 6 n for any p e P, which is also equivalent to g~ιA e m. The
statement is now clear. q.e.d.

Since m is a hyperplane in rt, we have the analytic map

Ίz>\ D —• n/m ĉ  C (ΎjrOO = ^/(ίc)"1^ mod m)

such that Ίx>{x) = 0 if and only if α? = 0. We denote by m(7x0 the
mapping degree of Ίχf, i.e., the order of Ίx> at OeD.

DEFINITION 2. For an s-joining pair (C, C')f we define the positive
integer

where m(Ίχf) is the above mapping degree and d(X', ^(C)) is the degree
of the map X' -> φ(C) for an effective component X' in E(6, C) (1.4).
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1.6. We normalize Springer's action of the Weyl group W on
A, Q) so that for A = 0 it gives the sign representation and for

A regular, the trivial representation. Hence they give the TΓ-modules
in [10] multiplied with the sign representation.

THEOREM 1. The action of a simple reflection s on H2d{A)(&A, Q)
with respect to the distinguished basis {[C]\Ce I(3?A)} is given as follows)

( i ) s[C] = — [C] if and only if C is s-vertical.
(ii) s[C] = [C] + Σ«7,c)^'[C] if C is s-horizontal. The summation

is over all s-joining pairs (C, C) for the C, and nc

c' is the number
defined in Definition 2 (1.5), which depends on s.

Though this theorem is slightly different from Theorem 2 in [4],
the proof using Z-adic cohomology is almost the same. We shall later
(§4) give a direct proof relying on Kazhdan-Lusztig's construction [7].

2. An extended version of Joseph's construction.

2.1. In the J5-bundle π: G -> & = G/B, put

GA = π~\^A) = {geG\g~'Aen} .

We also write the pulled back 2?-bundle

π: GA -> &A .

On GA, B acts on the right, and Z(A), on the left. Let 0{A) be the
nilpotent orbit in g to which A belongs. We consider the covering
space

p: O(A) = Z(A)°\G -> O(A) c g (p(Z(A)°g) = g^A) .

We then have

0{A) Xflrt ~ ^ ( n ) = Z(A)°\GA ,

O(A) n n - Z(A)\GA ,

the smooth Z(A)°-boundle

and the etale map

We denote by I(Z) the set of all irreducible components of a variety
Z. We then have the natural bisections

-+ I(GA) -> I(O(A) X9 n) ,

sending C to π~\C) and then to ψ(π~\C))f as well as the surjection
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sending V to ρ(V). Here the component group C(A) = Z(A)/Z(A)° acts
on I{&A) ~ I{O(A) Xβn) by permutations, and the last surjection is the
quotient by this action of C(A). Note that O(A) X8 π and O(A) Π n are
also equidimensional.

2.2. We shall interpret the notions related to I(&A) in terms of
those related to I(O(A) X8 n), under the above bijective correspondence

Φ: I{^A) ^ I(O(A) Xfl tt)
Especially, we shall find a simpler expression of the numbers n€

c' in terms
of the corresponding components Φ{C), Φ(C') in I(6(A) X8tt). For this
we need some notions analogous to those discussed in §1.

We have fixed a simple reflection s, and the parabolic P = B{J BsB.
The Lie algebra of the unipotent radical of P was denoted by tn, which
is a hyperplane in π. We first note the following:

LEMMA 2. For Ce I(&A), C is s-vertίcal if and only if p(Φ(C))c:m.

PROOF. AS in the proof of Lemma 1 (1.5), C is s-vertical if and
only if for any gBeC, g~ιAem. Thus the lemma.

2.3.

DEFINITION 3. For V, V'eI(O(A) Xflπ), we call (V, V) an s-joining
pair if p(V)<£τnf p(V')c:m and if V and V9 intersect in codimension 1.

We easily see that (V, V) in I(O{A) X8n) is s-joining if and only if
so is (Φ-\V), Φ-\V')) in I{<^A).

DEFINITION 4. For an s-joining pair (F, V) in I(O(A) X8n), we call
an irreducible component Y of V (Ί V effective if the corresponding com-
ponent π(ψ~\Y)) is so for {φ-\V),φ-\V')) in I(&A), i.e., π(ψ~\Y))-+
φ(φ-\V')) is surjective. (O(A) X8 it 2- GA ^ &A Λ &>A.) Denote by
E(V, V) the set of all effective components in F(Ί V.

In the parabolic subgroup P — B\J BsB, let U8 be the unipotent 1-
dimensional subgroup of P such that U8<£B and sUβ^czB (the root
subgroup corresponding to — a when a is the simple root corresponding
to s). Let (F, V) be an s-joining pair in I(O(A) Xβπ). Since V'ap-χm),
P acts on V (on the right, V being regarded as a subset of

LEMMA 3. In the above situation, there exists a non-empty open
subset Vr'eg of V satisfying:

( i ) Freg has a good quotient Fr'eg —> V^JU8 under the U8-action whose
fibers are 1-dimensional.
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(ii) For an irreducible component Y of V Π V, the composite map

YnV —>v -+v IU
-L \ \ V reg * r reg * V reg/ ^ β

is dominant if and only if Y is effective.
Takig this Fr'eg and an effective Ye E(V, V), denote by d(Y, (V'/U8))

the degree of the dominant map

γnv;eg-+v;juβ.
Then

d(Y, {VIU.)) = d(π(ψ-ιY)), Φ(Φ-\V)) ,

and hence the right hand side is independent of the choice of the Fr'eg.

PROOF. We first show the existence of Fr'θg. Put C = Φ~\V)f C =
Φ~\V) in I(&A). Then (C, C) is s-joining. Take an effective component
YeE(V, V) and put X = π(ψ~\Y))f an effective component in Cf lC;
hence X-*φ(C) is surjective. Then π~\X)P = π~\Cf) = ψ~\V') in GA.
But then P = BU8 U Bs and π~\X) is .B-stable. Therefore we have

f~\V)IU8 = (π-\X)UJU.) U {π-\X)l8Ujr*)B ,

where π~\X)UJU8 is open dense in ψ~\V')IU8. Hence

π~\X) - π-\X) UJ U8 c ψ~\ V)/ U8

is dominant and the both have the same dimension. Hence this map is
generically finite. Using the theorem of Rosenlicht on existence of
generic quotients, we can thus take a non-empty open subset ^V in
π-\X)UJU8 such that ^ γ has a good quotient Z{A)°\ϋfτ with fiber
dimension equal to dim Z(A). If we take the inverse image ^ of ^V
in ψ-\V), then ψ ( ^ ) = Z(A)°\%Ϊ is open in V and

Y Π ψi&ί) ^ ψ(3tt)IU. ci Z{A)°\^Y

is dominant and generically finite. Thus if we put

F r ' e g = U
YE(V

then Vreg satisfies the requirement.
Secondly we show the last statement. For YeE(V, V), take ^ Γ c

ψ-\V)IU9, ^yCZψ-W) {^YIU8 - ^V) and f ( ^ ) c K e g as above. We
then have the commutative diagram:

JU.:
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It is enough to show that all three vertical maps have the same degrees.
As noticed above, f is smooth with fibers isomorphic to Z(A)° and so
is ψrest, by definition. The map 7Γrest has fibers isomorphic to B, while
π has fibers isomorphic to P/U8 ^ B JLL (BlsU8s~ι)s which is birationally
isomorphic to J3. Applying the following Lemma 4, we immediately see
the required statement. q.e.d

The following lemma will be used later again.

LEMMA 4. Let

Z >Z,

\

be a commutative diagram of irreducible varieties. Assume that f and
f are dominant and have finite degrees, and that the fibers of g and g'
are irreducible and the restrictions of f to the fibers of g birationally
isomorphic to those of g\ Then the degrees of f and fx coincide.

PROOF. Easy.

2.4. Let (V, V) be an s-joining pair in I(O{A) Xfln) and Ye E{V, V).
Then Y is an irreducible reduced component of the scheme FX n m.
Denote by m(FX n m, Y) the multiplicity of the component Y in the
scheme FX n tn.

We shall prove the following theorem.

THEOREM 2. For an s-joining pair (V, V) in irreducible components
of 0{A) Xfln, define the positive number

nV = Σ m(VXnm, Y)d(Y9 (V'/U,))
YeE(V,V)

where d(Y, (V'/U8)) is as in Lemma 3, (iii). Let (C, C") = {Φ~\V)9 Φ~\Vf))
be the corresponding s-joining pair for &A. Then

nV = ncc ,

where the right hand side is as in Definition 2 (1.5).

2.5. The number nc

G' involves the normalization C of C. We compare
this situation with that involving the normalization V of V. We first
note the following general fact.

LEMMA 5. Let
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z—>τ

I I
z—>τ

be a Cartesian diagram of irreducible varieties. Assume that Z —> T is
smooth and T' —> T is the normalization. Then Z is the normalization
of Z.

PROOF. Since Z -> T is smooth, Z is normal variety. Since T -+ T
is finite and birational, so is Z-+Z. Hence Z->Z is the normalization.

q.e.d.

By this lemma, in the Cartesian products

4 , 1 I
= π~\C)

we have an isomorphism ψ~\Vy ~π \Cyf which is the normalization
of ψ~\V) = π~\C). Let E(C9 C), E{V, V) be the sets of effective com-
ponents in C Π C, V Γ\ V respectively. By Lemma 3, there is a bijective
correspondence

E(C, C')3X^> f(π-\X)) 6 E{V, V) .

The set of effective components E(Gf C) consists of irreducible components
of h~\C ί lC) which are mapped surjectively onto effective components
in C f l C We also call an irreducible component of k~XVnV) in V
(k: V->V) effective if it is mapped sur jectively onto a component in
E(V, V). We denote by E(V, V) the set of all effective components in
k~\VΓ\ V). We then have the natural maps

V)

I I
^ V)

where E(C,C')BX'y-» ψ(π-\X'))e E(V, V).
2.6. We are now going back to the situation in 1.5. For each

effective component X'eE(C, C) we have taken a unit disk D^C which
intersects X' at a generic point of X'. Then we have defined the map
gx,:D-*GA and

Ίx,\ D -* n/nt = C (yX'(x) = gx>{xYιA)

such that ΊZi(x) = 0 if and only if x - 0. The number nc

c' involves the
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mapping degree m(Ίx.) of Ίz,. Let Y' = ψ{π~\Xr))e E(V, V) be the
corresponding effective component in V. We note the following:

LEMMA 6. Keep the above situation. For the maps

let V Xnm be the fiber product scheme. Let Yf be a reducible component
of VXnm. Denote by m(V Xnm, Y') the multiplicity of Yf in FXnτn.
Then we have

m(FXπm, Y') =

PROOF. Recall the diagram in 2.5,

, I , 1 *
V JL_ ψ-\V) > C .

The map gx,\ D-> ψ~\V) = π-\C)(zGA factors as

and define the map

Qx'

D V .

By definition, sub varieties D and Yf of V intersects transver sally, and
the composite map

coincides with Ίx>. Now Y1' dV is the component in (FXnm)rθd which
intersects D transver sally. By definition, m(V"Xnm, Y') is the length
of the Artinian ring (^F®^n^m)r'> the stalk of the structure sheaf of
VXnm at the generic point of Y'f which is isomorphic to ^>,F'//^F,F'>

where ^τ f Γ/ is the local ring of the divisor Yf in V and fe C[n] is the
linear form defining the hyperplane m. It is easy to see that this length
equals the mapping degree m(Ίx,) of Ίx, in the above. q.e.d.

2.7. In order to identify quantities involving multiplicities, we use
the following lemma, which may be more or less known. Since we could
find no references which includes its proof, we here cite the proof com-
municated by Watanabe and Ishida.

LEMMA 7. Let A he a geometric local domain of dimension 1 and
Ά the normalization of A. Denote by p the maximal ideal of A and by
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κ(p) ~ A/p the residue field of p. Then, for f Φ 0 in A,

lengthy (A/fA) = Σ Jengthv (Άp,/fΆp,)[κ(p'): fc(p)]
p'eMaxi

where lengthy M denotes the length of a B-module M, Max A the set of
maximal ideals in A and tc(pr) the residue field of p\ [ : ] denotes the
degree of a field extension.

PROOF. Since

lengthy (Ά/fΆ) = Σ . lengthy (Άpf/fΆ,,)
p'eMaxA

= Σ . lengthy, (Άt,/fΆp,)[κ(pf): κ(p)] ,

it is enough to show the equality

lengthy (A/fA) = lengthy (Ά/fΆ) .

But then the A-module A/A has finite length as an A-module. Hence
for the map

/ : A/A -> A/A (f(x + A) = fx + A)

we have lengthy (Ker /) = lengthy (Coker / ) . In the commutative diagram
of short exact sequences

0 > A > Ά > Ά/A > 0

/} f'\ /} (f'(χ)=fx,(χeΆ))
0 > A • A > Ά/A > 0 ,

/ and / ' are injective by assumption. By the snake lemma, we have
an exact sequence

0 -> Ker /-> Coker /-> Coker / ' -> Coker /-> 0 ,

which implies

lengthy (Coker /) = lengthy (Coker /') .

Since Coker / = A/fA and Coker / ' = A/fA, we have the required
equality. q.e.d.

Using Lemma 7, we can prove the following lemma.

LEMMA 8. Let the situation be as in 2.5 and 2.6. Take an effective
component Y of VΓiV, YeE(V, V). Then

m(VXnm, Y) = Σ . m(VXnm, Y')d(Y\ Y)
k(Y')=Y,Y'eE(V,V)
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where k: V—>Vis the normalization of V and d(Y', Y) is the degree of
the map Yr —>Y under k.

PROOF. Let A = &y%Y be the local ring of the divisor Y in V, and
fe έ?VfY the image of the defining form of m by the map C[π] —• ^VfF.
Then, by definition,

m(FXntπ, Y) = lengthy (A/fA) ,

m(ΫXnm, Y') = lengthy (ΛV/ΛO

(pf is the maximal ideal defining Yf) ,

d(Y', Y) = [Kffl: κ(p)] .

Hence Lemma 8 follows from Lemma 7. q.e.d.

2.8. We are now in a position to prove Theorem 2 stated in 2.4.
Let the assumption be as in Theorem 2. By Lemma 8, we have

nV = Σ m(FX nm, Y)d(Y, (V'!U8))
YeE(V,V)

= Σ . m{ΫX.m, Y')d(Y', Y)d(Y, (V'/U,)) .
y'eE(V,V)

Under the bijective correspondence (2.5)

EiC, C')=ίE(V, V),

let Y' = f(π-\X')), X' e E(C, C) and X = h(X') e E(C, C). Using Lemma
5, we also have

d(Y', Y) = d(X',X).

By Lemma 3, we have

d(Y,(V'IUs)) = d(X,φ(C')).

By Lemma 6, we have

m(VXnm, Y') = m(Jx.).

Since d(X', φ(C')) = d{X', X)d(X, φ(C')), we have

< = Σ . TO(7z.)rf(X', φ{C'))
X'eE(C,Cf)

which equals nc

c' by Definition 2. The proof of Theorem 2 has thus been
completed.

2.9. Thanks to Theorem 2, we have obtained a new construction of
Springer's representations. Let O c g be a nilpotent orbit and p: 0^0
be the universal covering of 0. Fix a Borel subalgebra with nilpotent
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radical π and consider the Weyl group If as a Coxeter system with
simple reflections determined by n. For a simple reflection s, we have
the notion: the hyperplane tπ of n, s-joining pairs in the set 1(6 Xβn)
of irreducible components of 6 χ g n etc On the vector space

with basis {[V]\Ve 1(0 X2it)}, define the action of s as follows;
( i ) s[V]= -[V] if p(V)<zm,
(ii) 8[V] = [V] + Σiiv.v>)nv' [V] if ρ(V)&m, where nV is the

number defined in Theorem 2 and the last summation is over the s-joining
pairs for V fixed. From Theorem 2, it follows that these actions of the
simple reflections extend to the action of the Weyl group W on Th and
under the correspondence

the W-module 7Γ0 is isomorphic to the Springer ΫΓ-module H2du)(&A, Q).
Both spaces have natural actions of π±(O) (~Z(A)jZ(A)° for G simply
connected) which commute with the W-actions.

3. Identification with Joseph's construction.
3.1. In this section, we shall show that Joseph's representation on

the space spanned by 1(0 Π π) coincides with Springer's W-module
H2dU)(&A, Q)cu), the subspace fixed by C(A) which is irreducible (AeO).

We keep the situation and the notations as in §2. In the space JΓ0,
we have the TF-action such that, for a simple reflection s,

s[V] = [V]+ Σ <[V] if p(V)<£m.
(VfV)

We rewrite this expression. Fix s and consider F e / ( 6 χ f l n ) such that
p(V)ςtm. Let P = BUBsB be the parabolic subgroup corresponding
to s. For a reduced irreducible component Y of V Xn m, put

YP= {yp\yz Y,peP}aVXnm.

LEMMA 9. The following three conditions are equivalent.
(i) dim YP = dim V.
(ii) YP is dense in some F 'eί(OX 8 π) such that p(V')am.
(iii) YeE(V, V) for some s-joining pair (V, V).

PROOF. Interpretation of Lemma 3 in 2.3. q.e.d.

We put
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E(VXnm) = {Γe/(FX nm)|dim YP = aim V) .

Then by Lemma 9, we have the surjection

E(VXum)->{V'\(V, V) is s-joining pair} ,

which we write as Y\->YPe 1(0 Xpn). The s-action on [V] can then be
rewritten as

s[V] = [V]+ Σ m(VX.m, Y)d(Y, (ΫF/Z7.))[ΓP] .
YeE(V xnm)

3.2. We now consider the etale map (with Galois group C(A))

p:OX6n-+Of]n.

We write the adjoint action of G on g on the right, in this section, so
that it is compatible with the notations in §2. (For instance,
(Ad g~ι)X = Xg, Xe g, ge G.) For an irreducible component Ue 1(0 n n)
such that Uςtm, we put

E(UXnm) = {ZeI(Uf)m)\άimZP = άimU) .

Then it is clear that, for Ye I(VXnm) (p(V) = U),

YeE(VXnm) if and only if p(Y)eE(Uχnm) .

For ZeE(UXnm), let ΈF be the irreducible component of 0 Π rt
which contains ZP as a dense subset. As in Lemma 3, the ϊ78-action
on ZP has the generic quotient (ZP)τeJ U8 of the same dimension as that
of Z. We denote by d(Z, (ZP/U.)) the degree of the map Z n (ZP)τβg-+
(ZP)TJUS. We also denote by m(U Xttm, Z) the multiplicity of the
reduced component Z in the scheme U Xn m.

LEMMA 10. Assume that UeI(OΓ\n) is not contained in tπ. Then
in the W-module To, we see that s(Σp(V)=u [V]) equals

Σ [V]+ Σ m(UXnm,Z)d(Z,(ZPIU8))( Σ _ [ F ' ] ) .
ρ(V) = σ ZeE(UXnm) ρ(V')=ZP

3.3. We prove Lemma 10. Let Ue 1(0 n n) be not contained in m
and take ZeE(Uχnm). Then we have the Cartesian diagrams

p-\U) — p~\Z) — p~\ZP)

1 I 1
u «—= z ^-* zp .

Let p~\Z) = Π?=1 Yu p-\ZP) = Π ^ J ^ a n d ^ ( I ^ ) = Πl= 1 Vk the irredu-
cible decompositions of p~\Z), p~\ZP) and p~\U) respectively. Note
that Y(e E(Vk Xnτn) for some Vk and (Vk, V-) is s-joining if Vk{\V]% <Z>.
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Since the components Yt is isomorphic to each other by the covering
transformation group C(A) and since Yt —> Z is etale, we have

m(UXnm, Z) = m(Vk Xnτn, Yt)

for every Yt and Vk which contains Yt. In order to see this, let
(resp. ^VfrYt) be the local ring of U at Z (resp. F* at Yt), and / e
be the defining form of tn in tt. Hence έ?UXnmtZ = ^utzlf^u,z and

is an etale homomorphism of Artinian local rings. It is therefore enough
to prove that, if A —> B is a finite flat homomorphism of Artinian local
rings, then lengthy A — lengthy B. In fact, then B is a free A-module
of rank equal to dimκ{A)fc(B)'y hence lengthy B = (άimκU)ιc(B)) (lengthy A),
where ιc(A), tc(B) denote the residue fields of A, B respectively. But
then we also have lengthy B = (dimκ{A) ιc(B)) (lengthy B)9 which implies the
required equality.

We next consider the degrees involved. Put Zτβg — (ZP)τeg Π Z,
(Yi)τβS = Yt Π (Vί)rβg (V'jZDYt). We then have the commutative diagram
of generically finite maps

_
Zceg * (ZPXJU, .

Since the group C(A) acts transitively on all diagrams

all the d(Yit (Vj/U.)) are the same for Y^V] and we have

d(z, (ZPIUS))%C(A) = nδd(Yt, vyu.)),

where n is the cardinality of the Yt'a and δ is the degree of
(ZP)nJU, (constant for every j).

As to d, we have

δm = % C(A)

where m is the cardinality of the V'/s. In fact, consider the commu-
tative diagram
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(ZP)ieg >{ZP)ieJU>.

Since the fibers of both horizontal maps are isomorphic to Ut> we have
by Lemma 4

= md{V'i, (ZP/U,)) = mδ .

We now consider the s-action on ΣP(V)=U [V] = Σi=i [l^J By
formula given in 3.1,

Σ m(p-\U) Xπm,
Fe£(iO-i(?7) x nm)

In the summation Σ F on the right hand side, we pick up the part of
the expression

Σ m{p-\U) Xnnt, Y)d{Y, (YP/Ua))[YF\
{Y)Z

u {YtP/U.))[Y<P\ •

We know m(p-\U) X.m, Yt) = m(U Xnm, Z), and d(Yit (Γ.P/C/,)) is
constant for all i = 1, •••,%. Therefore the above sum equals

m ( U X n m , Z ) d ( Y ι , ( i / s ) ) ( ( / Σ

Using the equalities d(Z, (ZP/U,)) #C(A) = Mδd(Y;, (VJ/EΓ.)) and 5m =
#C(A), we see

md(Z, (^P/IΓ.)) = nd{Yt, (V-/U,)) .

Hence the above equals

m(UXnm, Z)d(Z, {ZPIU,))(±[V'λ) •

We thus see β(Σί=i [ Vk]) equals

Σ m(U Xnm, Z)d(Z,
ZeE(Uxnm) p{V')=ZP

which completes the proof of Lemma 10.
3.4. We call Joseph's construction [6] of T7-modules. To an irredu-

cible component U of Ofln, Joseph attaches a certain polynomial pπ on
ϊ?*, the dual of the Cartan subalgebra Ij. He shows that space

% = Σ C Vu
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spanned by the pu's in the space of polynomials is W-stable. Further-
more, there are formulas for the action of a simple reflection s;

( i ) If Ucnx, then spπ = —pπ.
(ii) If ?7<£m, then

spu = Pu+ Σ m( U Xn tπ, Z)d(Z, (ZP/U8))PΊP
ZeE{U xnm)

(see Theorem and its proof in [6, §3.1]).
By Theorem 2 (2.4), (2.9) and Lemma 10 (3.3), the following theorem is
now clear.

THEOREM 3. The W-module Sίf0 is irreducible and isomorphic to
the fixed subspace H2du)(^A, C)cu) of C(A) in the Springer module
H2du)(3¥A, C) for AeO. Moreover, the correspondences

Pu^ Σ [F]H-> Σ A [C]

(Ue J(O Γ) π)) give the W-isomorphisms

{To® C)C{A) ^ H2du){^\ C)cu) .
Q

COROLLARY. Sίf0 is a subspace of the space of harmonic polynomials.

PROOF. From the results of Borho-MacPherson [1], it follows that
the W-module έ%f0 has multiplicity one in the space of homogeneous
polynomials of degree d(A). Hence the corollary.

For the application to enveloping algebras, see Joseph's papers [6],
[12], Very recently, Kashiwara and Tanisaki have found nice applications
of our results [13].

4. Proof of Theorem 1.
4.1. Using Kazhdan-Lusztig's construction of Springer's represen-

tation [7], we shall prove the local formulas in Theorem 1 (1.6). We
first recall their construction.

Let φ:E-^ X be a locally trivial P'-bundle of algebraic varieties
over C. Assume that the additive group C acts on E —• X as the bundle
isomorphism

A:Cx E^E (φ(A(t, x)) = φ(x)) .

Let EA = {xe E\ A(t, x) — x (ί e C)} be the fixed point subvariety of Έ.
Kazhdan and Lusztig define an involution σ on H*(EA, Q), the rational
homology group of EA with arbitrary supports (the Borel-Moore homology
group), as follows. Choose a Riemann metric on each fiber P 1 (2-sphere)
of E as a topological fiber bundle, and let
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a: E-+E

be the antipodal involution on each fiber. Choose a closed neighborhood
U of EA in E such that the inclusion i: EA ^ U is a proper homotopy

equivalence (17 contracts properly to EA). Then i*: H*(EA, Q) ^>H*(U, Q)
is an isomorphism. Since the action of C on each fiber is algebraic, one
can choose a continuous function μ: X-+R+ such that A(t, x)eU for
(t, x) e C x α ( ^ ) satisfying |ί| ^ μ(Φ(x)). We then have the map

β: a{EA) -> *7 (/3(z) = A(jt£(^)), a?))

and thus have the map

These maps induce

and give

σ = i*1 o (β o α) # e End H*(EA, Q) .

Working in the proper equivalence category, we see σ is an involution
and independent of the choice of metrics, U and μ.

4.2. Let the situation and the notations be as in §1. Let p: & =
G/B —> & — G/P be the P^bundle for the choice of a simple reflection s
of the Weyl group W. A nilpotent element A gives rise to the C-actions
on & and & by the left translation of expίA (teC). ^ A is the fixed
point subvariety of & by this C-action. Then E — p~\^A) —> 3?\φ — p\E)
is our P^bundle. The C-action on E satisfies the condition of 4.1 and
gives rise to the involution σ on H*(&A, Q) (&A — EA). Kazhdan and
Lusztig claim that this involution coincides (up to the sign represen-
tation) with the action of the s in Springer's representation of w on
H*{0Ay Q). We shall later give a proof of this fact in Appendix and
we shall now take it for granted, i.e.,

σ — s on H*(&A, Q) .

We now have the maps

&Z* a > E

The map φ induces the surjection
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on the top homology groups such that the fundamental cycles [C] of
s-horizontal components Ce I(3?A) are mapped to [φ(C)]. The kernel Ker^*
is then spanned by the fundamental cycles of s-vertical components.
Restricting the bundle to φ(C) for C s-vertical, we easily see that s acts
on Ker^* as —1 and on H2d{A)(^A, Q)/Ker φ* as 1. Hence we know (i)
in Theorem 1.

4.3. We fix C which is an s-horizontal component of &A. Then
the subspace H2du)(φ~\φ(C))f Q) aH2du)(^A, Q) is s-stable and

H2dUΦΛφiC)\ Q) zL

Hence we care only for the s-vertical components C such that (C, C")
are s-joining pairs for C, i.e.,

s[C] = [C] + Σ N8'[C]
(C,C)

for some number NS\ where the summation is over C such that (C, C)
are s-joining. We have to prove NS' = nc

c' where the right hand side
is the number defined in Definition 2 (1.5).

Take an s-vertical C" such that (C, C) is s-joining. Since φ(C) Φ φ{C")
for C Φ C", the d(A)-dimensional components of EA = Φ~\Φ(C)^ consist
of certain open subsets C1 and C[ of C and C respectively. Here we
have put

Φ(C\ = φ(C)\ U ΦIP") .
G"ΦC

Under the natural surjection

H2du)(^A, Q) -» H2diA)(Et, Q) ,

[C] (resp. [C]) is mapped to [CJ (resp. [C[]) and the kernel is spanned
by those [C] (C" Φ C, C). Furthermore, applying the involution s on
the P'-bundle

Eι = φ-\Φ(C\) -> φ{C\ ,

we see that the above map is s-equivalent. Hence, considering the s-
action on H2du)(EA, Q), we have

We have thus reduced the problem to the situation in the P^bundle
Eι —> Φ(C)U where the fixed point subvariety EA has two components
(if necessary, we may disregard the lower dimensional components).

4.4. We are going back to 1.4 and 1.5. Let C be the normalization

of C (cΛc-t^(C)) and put Ct = (φ o h)-\φ(C\). Pull back the bundle
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X to obtain the Cartesian square

The C-action on Ex can also be pulled back to one on Ex and we denote
the fixed point sub variety by Ef = h~\Ef).

We shall now notice the following:
(1) An irreducible component X[ of (φ ° h)~\φ(CD) is mapped

surjectively onto φ(C[) if and only if X[ = Cλ Π X' for some effective
X' e £7(C, C) and the degree d(X/, 0(CI)) of the map X/ -> 0(C{) equals

(2) Assuming that the components of Et are Cx and Cί, we see
that the components of Ef are h~\C^) = Cx Xφ{C)fii and φ~\Xl) where
XI = C, n X' runs through X'eE(C, C).

(3) Since ^"'(JC/) (resp. CO is a Px-bundle over X[ (resp.
the degree d{φ~\X[)y C[) equals d(JE/, φ{C[)) =

(4) Under the map

is mapped to [C,] while [φ~\Xl)] is mapped to d($-\X[\ C[) [C[].
( 5) Assume that we have

X'eEiCC)

in the s-module H2du)(Ef, Q). Then by (3) and (4), we have

= [CJ + ( Σ .

in H2dU)(Ef, Q)9 and hence

- Σ m(X')d(X'f φ{C)) .Σ.
Thus, in order to prove Theorem 1, (ii), i.e., vie = Ng'> it suffices

to prove the equality

( * ) m(X') = m{Ίχf) for X' e E(C, C)

where the right hand side is as in 1.5. Let ηeX[ = X^ Γ\C1 be a
generic point of the simple divisor X[ in C^ As in 1.5, we take a unit
disk Dc^C1 transversally intersecting X[ at η. Taking a small neigh-
borhood X2

f of η in X[9 we have an open neighborhood D x X[ of η in
Cx. Restricting Ex -> Cx to D x X2', we have i?2 = £-1(Z) x XI) -> J9 x Z2'
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such that the fixed point subvariety Ef of the C-action through A has
the two components C2 = h~\C^) Π E2 and C2 = φ~\X2). Here under the
natural map

H2du)(Et,Q)--H2d{A)(Ei,Q),

[h'KCJ] is mapped to [C2] and [φ-\XD] is mapped to [C'2]. Thus it suffices
to see the equality (*) in the local model E2-^ D x X2.

We now consider the inclusion

D~DxηczDxX2'

and pull back the P^bundle E2 over D. Denote this Px-bundle by
ED ~ D x P 1 —> D. The following facts can been seen by inspection of
the definitions.

LEMMA 11. Let ΊX\D^G be as in 1.5. Then the resulting C-
action on ED is given by (x, z) ι—• (x, z + tΊx>{x)) (ί e C, (x, z)e D x P1)
where we take the coordinate ze CU {°°} = P1 of P1.

LEMMA 12. The fixed point subvariety Ej, consists of the two com-
ponents D x {oo} and {0} x P1 in ED. Under the Gysin isomorphism

H2(Eί,Q)~H2du)(Ei,Q),

which is also s-equivariant, the fundamental cycle [D x {°°}] (resp.
[{0} x P1]) is mapped to [C2] (resp. [Q).

4.5. In order to finish the proof of Theorem 1, it suffices to prove
the following lemma.

LEMMA 13. Let Ύ: D-+C be a holomorphic map such that 7(0) = 0.
Let C act on ED = D x P 1 by (a?, z) H* (χf z + tl(x)) (ί e C). 2%ew m tΛe
homology group H2(E£, Q) of the fixed point subvariety Ei, the s-action
on the cycle [D x {oo}] is described as

s[ΰ x {oo}] = [ΰ x {oo}] + m(7)[{0} x P1]

where m(7) is the mapping degree of 7.

PROOF. Let a(x, z) = {x, — 1/z) {{x9 z) e ED) be an antipodal involution.
Then a(EA

D) = D x {0} Π {0} x P 1. Put

U={(x,z)eDxP1\\z\^R or |»| ̂  r}

for fixed R > 0 and 0 < r < 1. Then C7 is a closed neighborhood of _£/£
which properly contracts to Ei. For sufficiently large t > 0, β(a(E£)) =
{(a?, -1/2 + ί7(aθ)|(α>, z)eEi}aU. The s-action is, by definition, the
composite map
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H%(Ei, Q) — H2(U, Q) ̂  H2(Ei, Q) .

The cycle s[D x {oo}] is represented by [β(a(D x {oo}))]e £Γ2(J7, Q) where
β(a(D x {oo})) = {(Xf tΎ(x))\xeD}. We have to show, in H2(U, Q),

[β(a(D x {oo}))] = [D x {oo}] + m(7)[{0} x P1] .

For this, we take embeddings

DxP'^P'xP1

U U
u — ??

such that ^ is a closed neighborhood of K = P1 x {00} (j {0} x P1 which
properly contracts to K and ^ Γi D x P1 = U. Thus we have the natural
isomorphisms

Q) ~ H2(U, Q) Z-HJ&, Q) - ^ ( P 1 x P\ Q) .

In these isomorphisms, [D x {00}] corresponds to [P1 x {°°}]. We extend
the cycle β(a(D x {00})) in U to a homological cycle F in ^ such that
jPf! ?7 = /3(α(D x {00})). It suffices to see

[F] = [P 1 x {00}] + m(7)[{0} x P1]

in i ϊ 2 ( ^ , Q) ~ H2{Pι x P\ Q). In the homology group H^P1 x P\ Q),
we have the intersection numbers

[P1x{oo}].[{0}xP1] = l ,

[ P ' X ί o o J H P 1 χ{oo}] = 0,

and

[{0} x P1] [{0} x P1] = 0 .

We now let

Applying the intersections, we have

1 = [F] [{0} x P1] = a and [F] • [P1 x {oo}] = 6 .

But then,

which is equal to the intersection number of the local curves
{(x, tΎ(x))\xe D) and {(x,0)\xeD}. This number is clearly equal to the
mapping degree m(Ύ) of 7. We have thus proved the lemma and hence
have completed the proof of Theorem 1.
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Appendix: IDENTIFICATION.

Al. Let G be a connected reductive algebraic group over C, g its
Lie algebra and Λ" the closed subvariety of g consisting of nilpotent
elements in g. Considering & as the set of all Borel subalgebras of g,
put

g = {(A, b)eg x ^\Aeb} .

By the projection to the first factor, we have

P'Q-^S-

Here p has fibers

p-\A) = {be^\Aeh} = &A (Aeq) ,

and if we denote by grs the open subset of g consisting of regular semi-
simple elements in g,

Prs = P\irt: Qrs = P~\8rs) -> Qrs

turns out to be an etale covering. If we fix a Borel subalgebra and a
Car tan subalgebra contained in it, the covering pr8 acquires the Weyl
group W as its Galois group. We thus have the local system (/O*Q?r,
on gr8 which has the "FF-action under our choice.

Let *(ιO*Q?r, b e t h e DGM extension of (pr,)*Qϊra to g, i.e., the
bounded complex of sheaves of Q-vector spaces on g whose cohomology
sheaves are constructible such that

( i ) κ(pJ*Q*r8ur8 = (Λ.)*Oίr.
(ii) codimfl Supp ^f\π{ρrs)^rs) > i (for all i > 0),
(iii) R£ebmQt(*(ρr.)*Qϊra, Qβ) - '(Λ.)*βϊr.,
(iv) J%*r(pr,)*Qlr8) = 0 for i < 0.

(See [3, §4]. Here we consider the middle perversity and take a shift
of degrees.) Then *(iO*Qev, has the T7-action as an object in the derived
category Dl(Q6) whose objects are bounded complexes of sheaves of Q-
vector spaces on g whose cohomologies are constructible. Lusztig [8]
observed that

Rp*Qt^«(pr8)*Q?rs in DXQJ

since the fibers of p are "small" in the sense of [3]. Thus the direct
image sheaves Rp*Q% on g acquires the W-action which gives rise to the
TΓ-module structures on H*(^Λ, Q) = (R*p*Qt)A.

A2. Since Rp*Q% has the TF-action as an object of Db

c(QQ), the
restriction to
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also has the TF-action as an object of D\{Q^). This TF-action induces
the "standard" PF-action on Ή.*{0, Q) = (R*ρ*Qϊ)0 the special stalk at
0 e ^\ which coincides with the classical "PΓ-action induced by the
topological TF-action on & — K/Tκ where KaG is a maximal compact
subgroup and Tκ is a maximal (topological) torus of K. The work of
Borho-MacPherson [1], [2] gives the following criterion for the uniqueness
of the W-action on R(p\j?)*Qj? on ^K (See the proof of the main
theorem in [1].)

THEOREM Al (Uniquness theorem). A W-action on R(P\S-)*Qjr in
DXQΛ ) is unique if it induces the standard W-action on the special
stalk H*(&, Q), i.e., that induced by the standard topological action of
W on &.

REMARK 1. The theorem is true for the ί-adic cohomology in the
fields of characteristic p Φl. The proof of the identifications in [4]
becomes simpler if we use the above uniquess theorem.

REMARK 2. Borho-MacPherson's result depends on the "deep" de-
composition theorem of Deligne-Gabber-Beilinson-Bernstein for ϊ-adic
sheaves in positive characteristics. Recently, we recovered an analytic
proof of their result, which uses the "Fourier transform" of holonomic
systems ([5]).

A3. Using Theorem Al, we can rather easily identify Kazhdan-
Lusztig's TF-action with Springer's one. We choose a simple reflection
seW and the situation is assumed to be as in §4.

In the P^bundle

p = Id^ x p: ^ x & -» ^ " x

consider the restricted PM)undle

( θ ( x )

There is a C-action on E such that

C x E-+E ((*, A, b) HH> (A, etA(b)))

whose fixed point subvariety is <yV" c E. We shall define an involution
on Rp^Qjΐ on p{^K) which, after taking the direct image by pr: Λ~ x

, will coincide with the s-action on R{p\j?)*Qjr- Choose a closed
neighborhood U of ^ in E such that U properly contracts to ^V* fiber
by fiber in the fibering E -^ pi^sK). The C-action

βt: (A, b) h- (A, etA(b)) (teC)
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gives the C-action on the P'-bundle E-
Taking the antipodal involution a of E, we have

h βt{a{J?)) c U

for sufficiently large t > 0. This gives rise to the morphism

Rp*Qu »Rp*Q? 9

and, since 17 contracts to . ^ fiber by fiber, we have a quasi-isomorphism

We thus have the morphism

σ:

in Aδ(Qp(J>)). Taking the direct image by the projection ρ'\ p(<yK) c
f̂̂  x ^ —> ^ 7 we have the endomorphism

where R(p\j?)*Qjr = Rρ'*Rp*Qjr

LEMMA Al. TΛe endomorphism Rp'*{σ) coincides with the s-action
( = σ in §4) on H*(3?A, Q) ~ {R*(P\jή*Qj?)A under Kazhdan-Lusztig's
construcion for the homology group H*(&A, Q) = the dual of H*(&A, Q).

PROOF. In the maps

UA = {pr o pw)-\A) is a closed neighborhood which properly contracts to
&A. Kazhdan-Lusztig's action is defined, fiber by fiber, through a closed
neighborhood UA on the Borel-Moore homology H*(UA, Q) ~
We have H*(UΛ, Q) = H*(UA, QΓ (the dual). But then ^^%Rp
H*(UA, Q) = Ή*{3PA, Q). Hence our construction of the s-action is the
sheafification of Kazhdan-Lusztig's s-action. q.e.d.

LEMMA A2. The endomorphism Rp'*(σ) coincides with the standard
action of the s on H*(&, Q) at the special stalk A = 0.

PROOF. Easy.

It follows from Theorem Al and the above lemmas that Kazhdan-
Lusztig's T7-action on H*(^?A, Q) coincides with Springer's "PΓ-action.
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