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1. Introduction. For equations with finite delay, the variation-of-
constants formula was given in Halanay’s book [2]. Banks [1] pointed
out a mistake in this book and presented the correct result. Since
equations with finite delay were mainly considered, the results were
derived under the restrictive hypotheses: the kernel function %(¢, 6) of
the linear operator L(t, -) (cf. Theorem 2.1) is constant for sufficiently
small 6 < 0.

In the present paper, we start from the following hypotheses: L(t, ¢)
is continuous and the phase space for ¢ is the general space for equations
with infinite delay introduced by Hale and Kato [4]. From the first
hypothesis, the Borel measurability of 7(¢, §) is naturally induced; from
the second, the constant property of 7(f, §) mentioned above cannot be
assumed (see Theorem 2.1). The equation related to the fundamental
matrix is reduced to the standard equation with infinite delay (Proposi-
tion 3.1):

(L.1) ©'(t) = L(¢, x,) + h(?) ,

where h is locally integrable. The representation of solutions in Theorem
3.3, which is already announced in [5], has a form that is somewhat
different from the variation-of-constants formula given in [1], [2], [3].
For the special phase space &, defined in Section 4, our formula is
rewritten in a form analogous to the variation-of-constants formula.
However, it contains a new term depending on the “exponential limit
of the initial function at —~”. Finally, we remark that the present
result is an extension of the work for autonomous equations [6] to the
case of nonautonomous equations.

2. Representation of linear operators. For a function x: (—, a) —
C", let x,:(—c,0]—C", t <a, be defined by =,0) = «(t + 6) for 6 in
(—o0, 0]. Suppose & is a linear space of functions ¢, 4, - -+, mapping
(—o, 0] into C", with a semi-norm |[¢|, [y, -+ having the following
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properties.

H) If x:(—,0+ A)—>C*, A >0, is continuous on [c, ¢ + A) and
x,€ &, then =z, also lies in <& and =z, is a continuous function of ¢ in
[o, 0 + A).

(H,) There exist measurable functions K(t) and M(t) of ¢ = 0, non-
negative and locally bounded, such that

|z,| < K(t — o)sup{|z(s)|: 0 < s < t} + M(t — 0)|a,|

for 0 £t <0 + A and x having the properties in (H,).

(Hy) [4(0)| < K|¢| for ¢ in <& and some constant K.

Hypothesis (H,) implies that the space <& contains the space & of
all continuous functions mapping (— oo, 0] into C* with compact support.
To state the following representation theorem, a definition is needed.
A function f mapping (—oo, 0] into a finite dimensional Banach space,
locally of bounded variation on (—oo, 0], is said to be normalized if
f(0) = 0 and it is continuous to the left in the interior of (— <o, 0].

THEOREM 2.1. Suppose L:J X <& — C", where J is an interval, is
a continuous mapping such that L(t, ¢) is linear im $€ <& for each t
in J. Then there exists an m X m matrix function 7(t, 6) for (t,0) in
J X (—o0, 0], locally of bounded variation for 6 in (—co, 0], such that

@.1) Lt 9) = | _ldant, 0l0) for sez
@2 Var(, ), [-r,0) S dlLt, VK@) for ©>0,

where ¢ is a constant dependent on the nmorm of C* and the integral in
(2.1) is the improper Riemann-Stieltjes integral (cf. [6, Theorem 3.5)).
If 9, 0) in Relation (2.1) is mormalized in 0, them it 1is determined
uniquely by L and is Borel measurable for (t,6) in J X (—o, 0].

PROOF. The first result of the theorem is a direct consequence of
Proposition 8.8 and Theorem 8.5 in [6]; Hypothesis (H,) in [6] is not used
to derive these results. Suppose 7(¢, §) is normalized in 6 and Relation
(2.1) holds. For m =1, 2, ---, define a function X™(¢) by the relation
1"t) = —I, —m(t + 1/m)I, 0 for t in [0, ) (—1/m,0), (—co, —1/ml,
respectively, where I is the n X n identity matrix and 0 the n X n
null matrix. Then by integration by parts one has
lim L(t, 22) = lim m S: ot ndr =1, 6) for 6<0,

since 7(t, §) is continuous to the left for § < 0. This shows that (¢, 9)
is determined uniquely by L. Furthermore, it is Borel measurable for
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(t,0) in J X (—o0,0) as a limit function of the sequence of continuous
functions L(t, X"5). Therefore 7(t, ) is Borel measurable for (¢, 6) in
J X (—oo, 0] since (¢, 0) = 0 for ¢ in J. g.e.d.

3. Fundamental matrix and representation of solutions. Consider
a linear functional differential equation with infinite delay (1.1), where
L: R x &£ — C" satisfies the assumption in Theorem 2.1 and h: R — C" is
locally integrable. Since the operator norm |L(t)| = sup {| L(¢t, ¢)|: [¢| = 1}
is a lower semi-continuous function for ¢ in R, it is Borel measurable;
furthermore, from Lemma 3.1 in [7], |L(¢)| is locally bounded for ¢ in
R. The normalized function 7(t, #), therefore, is locally bounded for
(t, 8) in R X (—o0,0]; in fact,

3.1 I9(¢, 0)] < el L(t) |[K(—6) for (¢ 0)e R X (—eo,0].

For the following discussion, we set 7(t, §) = 0 for 8 > 0. Following the
arguments similar to the proofs of Theorems 2.1 and 2.4 in [4], one sees
that for every (o, ¢) in R X <&, there exists a unique solution x(¢, g, ¢, k)
of Equation (1.1) with z, = ¢ which is locally absolutely continuous for
t in [0, ) and which satisfies Equation (1.1) a.e. for ¢ in [g, ).

To introduce the fundamental matrix of Equation (1.1), we consider
the equation

2(t) = §°

o

(8.2) . den(t, 0)x,(0) + gt) o=t,

z(0) = a,
where g: [0, ) — C" is locally integrable.

ProproSITION 3.1. Under the above assumptions for L, 7 and g,
Equation (3.2) is reduced to Equation (1.1) with initial condition x, = 0.
Thus for every a in C™ there exists umiquely a locally absolutely com-
tinuous function x(t) for t = o such that x(c) = a and that the first
relation of (3.2) holds a.e. in [0, o).

PROOF. Suppose x(t) is a solution having the above properties. If
we set y(t) = 0 for ¢t < 0 and y(t) = 2(t) — a for t = o, then y(¢) satisfies

v =\ dintt, w0 - 1(t, 0 — tha + g(t)

a.e. in t = 0. Since y, lies in & with suppy, Cc [0 — ¢, 0] for t = o,
this relation is reduced to the equation y'(t) = L(t, y,) — 0(t, 0 — t)a + g(t)
a.e. in t = 0. Since 7(t, §) is Borel measurable and locally bounded for
(t, 8) in R?, the function %(t, 0 —t), as a function of ¢, is also Borel
measurable and locally bounded on R. Hence the equation for v has a
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unique solution such that y, = 0: this implies that x=(t) = y(t) + a for
t = o is a unique solution of Equation (3.2) having the desired proper-
ties. q.e.d.

The fundamental matrix X(¢, o) for (¢, 0) in R* is defined to be the
solution of the equation

a

den(t, )X(t + 0,0) a.e. in t=o,
—t

X(o,0)=1 and X(t,0)=0 for t<o.

In case of finite delay, it is well known that the fundamental matrix

has a relation with a certain matrix solution of the formal adjoint
equation

(3.3) (s) + St v, s —ada=b s=<t,

where y and b are in (C")*, the space of n-dimensional row vectors. In
our case, we will see that this relation is also valid.

The following proposition corresponds to Theorem 3.1, Chapter 6, [3]
(see also [1, 2]); the difference is that 7(¢, -) now may not be constant
on (—oo, —r] for any » > 0. Since the proof is omitted in [1], [2], [3],
we give it briefly in the manner suggested in [2] along with the estimate
for the variation of the solution.

PropoOSITION 3.2. Given t in R and b in (C*)*, Equation (3.3) has
a unique solution y(s) for s im (—oo,t] which is locally of bounded
vartation. The total variation of y satisfies

3.4) Var (y, [s, t]) < |b|{exp <Szc]L(a)[K*(a - s)da) — 1}
where K*(r) = sup{K(s):0 < s < 7).

Proor. Suppose y(s) is Borel measurable and locally bounded for s
in (—oo, t] and designate by (2y)(s) the integral term of Equation (3.3).
Since 7(a, s — a) = 0 for @ < s, one has

(Qu)(s) = S‘y(a)nax,s —wda for o<s=<t,

and Var(y? [o, t]) = Var(y?, [0, a]) < c¢|L(a)|K(a — 0) for 0 S a <t, where
7%(s) = P, s — a). This leads to

3.5 Var @y, [0, t) = || 1(@)lel L@ |K(@ — o)dar,

which implies 2y is locally of bounded variation on (—ece,t]. Such a
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function Qv is also Borel measurable and locally bounded on (— oo, t].

From this remark, one can define succesive approximations »™(s) for
m=0,1,2 --- as y(s) = b and y™(s) = b — (Qy™')(s) for s <t. Then,
from Inequality (8.1), one has successively

) — v©) 5 | olbl| L)K@ - s)da

[y (8) — ¥'(8)| = SiclL(a)lK(a - @“:clbl | L(u) | K(u — a)du}da ,

for s < t. Since K(r) £ K*(r) for »r = 0 and K*(r) is nondecreasing, one
can replace K(a — s) and K(u — «) in the above inequalities by K*(a — s)
and K*(u — s), respectively. Thus the following inequality is proved
by induction:

38  lyme - ve)| = 2| o Lwik*@ - 9da}” s,
m. s

for m = 1,2, ---. Therefore y™(s) converges to a function y(s) uniformly
on every compact set of (—oo, t], and

3.7) 9@ < (bl exp {{ el L@)|K*(@ - )da} st

This implies that y(s) = lim,,.. y™(s) = lim,,_.. (b — Qy™7'(s)) = b — Ly(s),
that is, y(s) is the solution of Equation (38.3). Since y™(s) are all Borel
measurable for s < ¢, y(s) is also Borel measurable for s <t¢. Since
Var (y, [0, t]) = Var (2y, [0, t]), one obtains (3.4) by using (3.5) and (3.7).

Suppose z(s) is a solution of (8.3) with b = 0, and set A, = sup {|2(s)|:
0 < 8 <t}. Then, following arguments similar to the proof of (3.6), one
can show that, for o <s<t and m =1, 2, ---, |2(s)] is not greater than
the right hand side of Inequality (3.6) with |b| replaced by A,. There-
fore z(s) = 0, in other words, the solution of (3.3) is unique for 4. g.e.d.

Let Y(o, t) be the matrix solution of the system

08 Y(o, t) + St Y, tp(a, 6 — )da =1 for o<t

Y(,t) =0 for o>t.

From Proposition 3.2, Y(o, t) is locally of bounded variation in ¢. Now,
suppose «(t) is the solution of Equation (3.2). By integration by parts,
one has

3.9) S:[da Y(a, Ox(a) + St Y@, t)d,a(a) = x(t) — Yo, Ha .

By the same argument as in Theorem 3.2 in Chapter 6 [3], the second
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term on the left hand side becomes
|| Y@ o 1dm@, s — aeto)}da + | Yia, Ho@ida .

Using Theorem 2.1, one sees that the Riemann-Stieltjes integral in the
first term is the limit of a sequence of Riemann sums which are all
Borel measurable for a in [0, t] and whose norms are not greater than
¢|L(a) |[K(aw — o)sup {|z(s)|: 0 £ s £ t} for a in [0, t]. From the bounded
convergence theorem, the order of integration and limit operation can
be interchanged; thus, one obtains

S: Y(a, t)dx(a) = SZ[d,{S: Y(a, tyn(a, s — a)da} ]x(s)
+ S: Y(a, )gla)da , for o =t.

Therefore, using the fact that Y satisfies Equation (3.8), one can rewrite
Relation (3.9) as

2(t) = Y(0, a + S Y(a, g(@da o<t.

If one takes a = I and ¢(t) = 0 for ¢ < ¢, one obtains X(¢, 0) = Y(o, t)
for all (¢, o) in R consequently,

(3.10) (t) = X(t, o)a + S’ X(t, a)gl)da o <t.

To demonstrate the main theorem, we introduce linear operators
Sit): =z — <, t =0, by [St)sl0) = é(t + 6) for t + 6 < 0 and [S(¢)¢](8) =
#(0) for ¢t + 8 > 0. Hypothesis (H,) guarantees that S(t)¢ is continuous
in t for each fixed ¢ in .

THEOREM 3.3. Suppose L: B X <& — C" is continuous, L(t, ¢) is linear
for ¢ in B and h:[o, ) — C™ is locally integrable. Then for every ¢
in F the solution x(t, 6, ¢, h) of Equation (1.1) such that x, = ¢ is given by

(3.11) #(t, 0,6, 1) = 60) + | Xt, 9)L(s, S5 — O)g)ds
+ St X(t, s)h(s)ds for t=o0.
PrOOF. From the superposition principle, it follows that z(t, o, ¢, h) =
x(t, 0, ¢, 0) + x(t, 0,0, h) for t = 0. Since 2(t, 0,0, h) is a solution of

Equation (8.2) with ¢ = 0 and g = h, it is equal to the third term on
the right hand side of Relation (8.11). Now consider the function
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2(t) = =(t, 0, ¢, 0) — y(t), where, y(t) = ¢(t — o) for ¢t < o and y(t) = 4(0)
for ¢ > 0. Then 2(t) satisfies 2'(¢) = L(¢, z,) + L(¢, ¥,) a.e. in t = o, and
2z, = 0. Since y, = S(t — 0)¢ for ¢t = o, from Formula (3.10), it follows
that z(¢) is equal to the second term on the right hand side of Relation
(3.11). Therefore, the relation x(t, o, ¢, h) = ¢(0) + 2(¢t) + «(¢, 0, 0, h) be-
comes Relation (3.11) for ¢t = o. q.e.d.

4. Applications to equations with the phase space &>. The represen-
tation formula (2.1) is applicable to functions in &. Is it valid for other
functions in &#? A partial information is given in Theorem 4.4 in [6];
for the space &, defined below, however, a complete answer was obtained
in [6]. In this section, we summarize this result with some comments.

For any fixed 7 in R, let & be the space of continuous functions
¢: (—o0, 0] — C" such that ¢(— ) = lim,,_.. e "¢(f) exists in C*. It is a
Banach space with the norm |¢| = sup {e7|¢(0)|: 6 < 0}, and it satisfies
Hypothesis (H,, H,, H;). Changing independent variables, one knows that
& is isomorphic to the space C([—1, 0], C"), the space of continuous
functions mapping [—1, 0] into C*. This observation yields the following
result due to Hagemann ([5, Lemmal]). If L: R X &, — C" is continuous
and L(t, ¢) is linear for ¢ in &%, then there exist matrix functions A(%)
and 7(t, 6) such that 7(¢, ) is locally of bounded variation for # in
(— o, 0] and that

0
@) Lt ) = AF(—) + lim | dontt, 0lp(o) for pe .
If n(t, 6) is normalized in ¢, then A(t) and 7(¢, ) are determined uniquely
by L and they are Borel measurable.

Let w(7)(), ¥ in R, be defined as w(7)(@) = exp (v0) for § < 0. Then
& is considered as & = W(V)E, = {@(V): 4p: (— oo, 0] — C" is continuous
and +(f) approaches some vector in C" as § — —o}. If A(t)+#0, then
Formula (2.1) is valid only for ¢ in &, with ¢(—o) = 0, which are in
the very restricted subclass of &;. On the other hand, if Relation (4.1)
holds with %(¢, §) normalized in #, then Theorem 2.1 says that x(¢, 6) is
unique for L and is Borel measurable for (¢, ). If one set ¢ = w(7)a,
a in C", then one can compute A(t)a for every a in C"; consequently

A(t) = Lt, o)D) — lim Sondm(t, 0)e? for ¢in R.
This also shows that A(¢) is unique for L and it is Borel measurable.

Finally, if one applies Representation (4.1) to L(s, S(s — 0)¢) in For-
mula (3.11), one obtains the following [5, Theorem]
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#(t, 9, 6, ) = X(t, 0)p(0) + | || X(t, (@)~ ds |§(— =)

+ lim S_R d{S' X(¢, s)n(s, 7 + 0 — 8) ds:|¢(0)

R—oo 4

+ StX(t, s)h(s)ds for t=o, ¢ in & .

This is really an extension of Formula (9) in [1] (see also [3, Theorem

3.2)).

In addition to the formal prolongation of the interval of the

Riemann-Stieltjes integral, there appears a new term dependent on the
limit ¢(— o), “the exponential limit of ¢ at —oo”,
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