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Abstract. We compute the .E^-term of Borel's spectral sequence for
certain holomorphic fibrations. Among some of the applications considered
are the representation of automorphic cohomology of a flag domain, and
the derivation of new cohomology vanishing theorems for certain compact
projective varieties.

1. Introduction. In this paper we consider diagrams E —>X—>Y
where 1 - ^ 7 is a holomorphic fibre bundle (with compact fibre F) and
E —> X is a holomorphic vector bundle; the problem then is to relate the
Dolbeault cohomology of X with coefficients in E to suitable cohomologies
of Y and F. For general E there does not seem to be any way of
achieving this for the space Hp>q(X, E) with p>0 in a manner accessible to
explicit computation. However if E is assumed to be locally trivial over
Y the problem is more tractable: in this case there is the (generalized)
Borel spectral sequence relating H~d{Y) and a suitable fibre cohomology
to Hd (X, E) and a convenient form of the i£2-term of this spectral
sequence (or, more accurately, family of spectral sequences) can be found
by the techniques of [1], [3], [12], [13] and [14]. In all generality the E2-
terms are determined by holomorphic vector bundles Hr'*(E), associated
with E —> X, whose fibres are suitable (r, s)-cohomologies of the fibres
of X—>Y; for p — 0 one concludes the bundles Hr'\E) "represent" the
direct images of the sheaf g?{E) which thus are locally free.

The "cohomology bundles" Hr>8(E) thus are crucial for the description
of the E'g-terms of the Borel spectral sequence and merit some attention;
we present the calculation of such bundles in some important special
cases and also indicate some applications. As an example if X and Y
are homogeneous spaces of a Lie group G and if E -> X is a homogeneous
vector bundle, it is locally trivial over Y and the cohomology boundles
Hr>8(E) are homogeneous as well. This interesting fact has, among others,
the following application: Let &D-+MD be the linear deformation space
of a maximal compact subvariety of a flag domain D. In [26] Wells and
Wolf show that under suitable conditions MD is a Stein manifold and
establish a representation of the automorphic cohomology of D (with
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respect to a discrete subgroup F) in the space of /^-invariant holomorphic
sections of a certain bundle over MDf cf. [26, Theorem 3.4.7]. We show
below that if L is the stabilizer of the compact subvariety Y, then this
bundle over MD can be described as an associated vector bundle of a
canonical principal L-bundle A —> MD, induced by the action of L on the
cohomology of Y. In a sense, this result is "best possible" since it is
known that, in general, MD is not a quotient of Lie groups.

In Section 4, we investigate the "transform" of Hr>8 under a discon-
tinuous action of a group F on a diagram E —> X -+Y; when E is trivial
over Y, this "transform" is determined by an automorphic factor which
we compute explicitly in Theorem 4.4.

In Section 5, this result is combined with the Borel-Bott-Weil theorem
and results of [27], [28] to derive new vanishing theorems for the cohomology
of compact normal projective varieties F\G0/T; here Go is a connected,
non-compact semi-simple Lie group, T is a Cartan subgroup of Go con-
tained in some maximal compact subgroup KaG0 such that Go/K is
Hermitian symmetric, and finally F is a discrete subgroup of GQ acting
freely on Go/K. Theorems 5.24 and 5.27 are the main results of this paper
which also subsumes a note announced in [3] as "Construction of cohomology
bundles in the case of an open real orbit in a complex flag manifold".

2. Borel-Le Potier diagrams. Let X, Y be complex manifolds and
assume that TU:X —>Y is a holomorphic fibre bundle with compact fibre
F. Moreover let E-+X be a holomorphic vector bundle (with fibre E)
with projection a. One says that E is locally trivial over Y if there
exists a holomorphic vector bundle Eo-+ F (with fibre E) such that
TUoa: E —>F is a holomorphic fibre bundle with fibre Eo and group GL (Eo),
the group of all holomorphic automorphisms of Eo (i.e., all fibrewise
linear biholomorphisms Eo —> Eo); it is known that GL (Eo) is a complex
Lie group, cf. e.g., [13]. In this case,

(2.1) E->X->Y

will be called a Borel-Le Potier diagram (BL-diagram). More explicitly this
means that each ye Y has an open neighbourhood U over which there
is a holomorphic trivialization fo: n~\U) =U x F which is covered by a
holomorphic isomorphism ^ of the vector bundle E\7V~\U) onto U x EQ:

(2.2) | |
r-» UxF

U
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the diagram commutes and ^ is fibre wise linear. The following are
some examples:

( i ) Given TC: X^>Y, a holomorphic bundle with compact fibre, and
the holomorphic vector bundle W->Y, n*W^> X-+ Y is a BL-diagram;
this is the case originally considered in [1].

(ii) Let H be a complex Lie group, L c E a closed complex subgroup
and suppose that p: Z->Y is a holomorphic principal .ff-bundle. Set X =
Z/L and suppose that X has a complex structure such that the natural
map o\Z-*X is a holomorphic principal L-bundle. Lastly, assume that
H/L is compact. The natural map TC:X->Y then yields a holomorphic
bundle with fibre H/L such that TZ°G = p. If X: H-+ GL(E) is a finite-
dimensional holomorphic representation, then we can form the holomorphic
vector bundles Ex = Z x HE -* X and Eo = H x LE -• if/L. Under these
conditions

(2.3) tfa->x-*r

is a BL-diagram: If UaY is a sufficiently small open set, there is a
holomorphic section s:U —>Z of p and this section is used to construct
both <pu and <fu in the following manner: For (z, e)e ZxE and (h, e)e HxE
let [2;, e], [h, e] be their respective equivalence classes in Eh EQ. Then
set fc\y, hH) = o(s(y)h) for (?/, h)e U x H; this yields a trivialization of
Z\U = p~\U). A covering isomorphism o/r̂  in the sense of (2.2) then is
obtained by setting fu\v, [h, e\) = (<j>u\y, hH), [s(y)h, e]).

(iii) Let P c SL(4, C) = G be the parabolic subgroup defined by
a2i = a31 - a41 - a32 = a42 = 0; let V = SU(2, 2) n P = S(f/(1) x C7(l) x 17(2))
and K = S(U(2) xU(2)), so that K is a maximal compact subgroup of
the real form Go - SU(2, 2) of G. Set F+ = Go/V, M+ = G0/JST; thus there
is the "double fibration"

P3
+ <̂  F i >̂ M+

where P3
+ c P3(C) is the "projective twister space", of importance in

mathematical physics in connection with the so-called Penrose transform,
cf. [24] for some details. Let H-^ P3

+ be the restriction of the hyperplane
bundle of P3(C). Then it can be shown that for every integer m a*Hm ->
F5 —> M+ is a BL-diagram.

(iv) We shall give more examples later (Sections 3 and 4). Another
interesting example is used by Fisher in the study of the cohomology
of compact complex nilmanifolds, cf. [4],

In the situation of (2.1) we also write Xy for the fibre 7r~\y) at y.
With this set for each pair of natural numbers (r, s)
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(2.4) H"\E) = U Hr-'(XV, E\X9).

Here Hr>° denotes the (bundle-valued) Dolbeault cohomology of type (r, s).
Since Xy — F is compact these cohomologies all are finite-dimensional and
one can prove the following:

THEOREM 2.5. Hr'8(E) is a holomorphic vector bundle over Y with
fibre Hr>8(F, Eo), associated with the bundle n:X-^Y.

Explicit local trivializations will be indicated below; cf. also [1], [3],
[13]. The importance of these "cohomology bundles" lies in their use in
the computation of the J^-terms of the Borel spectral sequence for the
3-cohomology of holomorphic fibre bundles with compact fibre; in brief
the spectral sequence is obtained as follows: Let Ap>q{X, E) be the space
of smooth ^-valued forms of type (p, q) on X. This space has a natural
decreasing filtration "in terms of base forms": one defines FrAp'q(X, E)
to be the space of those (p, g)-forms which may be written as finite sums
of forms of the type n*a A 0 with aeAa>\Y), /3eAc'd(X, E) such that
a + c = pf b + d = qsLiida + b^r. Then FrA9>qz>Fr+1Ap>q andd(FrAp'q)a
FrAp>q+1. If one fixes p, one thus obtains a decreasing filtration of
AP''(X, E) = 0 g A

p'q(X, E) which is compatible with 3 and is regular, etc.
Accordingly, one obtains a spectral sequence (pE?yt) which converges to
the 3-cohomology HP>'(X, E). The main result, due to Borel in the case
E = n* W and to Le Potier in the more general case, is the following:

THEOREM 2.6. Let E^>X-*Y be a Borel-Le Potier diagram as in
(2.1). For each p ^ 0 the E2-term of the Borel spectral sequence is given
by

(2.7) PE^ = © fP'-'C Y, Hp-l

i

For p = 0 in particular, one obtains °Ei'* = H°'8(Y, H°'\E)) =
H*(Y, ^(W'\E)) where £?(..) denotes the sheaf of holomorphic sections.
Now for p = 0 the Borel spectral sequence coincides with the Leray
sequence and one can show that ^(HOtt(E)) = Riz^iE)), establishing
that these direct image sheaves here are locally free; we omit all details
and refer instead to [1], [12], [14] for more information—including the
case p > 0 where the Borel sequence no longer is the Leray sequence of
any "standard" locally free sheaf over X.

In the situation of Example (ii) above more can be said about the
cohomology bundles: Again Eo is the homogeneous vector bundle H x LE
over F = H/L. In particular H acts on the cohomology Hr>8(F, Eo) "by
left translations" and one now shows that Hr'8(Ex) is associated with the
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principal JT-bundle Z —• Y under this action of H:

(2.8) W>\E) = Zx HHr>\F, Eo) .

This yields:

COROLLARY 2.9. With the notations of Example (ii), for each p ^ 0
there is a spectral sequence (pEyM) which converges to HPt'(Z/L, Ex) and
whose E2-term is given by

(2.10) PE^ = © H^-\Z\B.y Z x HHp-ut+i(H/Lt Eo))
i

where Eo = H x LE.

This corollary generalizes an earlier theorem of Bott [2] to the case
p ^ 0. In [4], Fisher obtains a result similar to (2.8) and uses it in
conjunction with (2.7) to generalize the classical Mumford-Matsushima
vanishing theorem for line bundle cohomologies on a torus (cf. also [15],
[18]).

REMARK. Given a diagram (2.2), the restrictions tpUtV = ^n\Xy: Xy —>
F and fUtV: E\Xy-+ Eo induce isomorphisms Hr>8(F, Eo) ^ Hr>\Xyy E\Xy)
in an obvious way and these isomorphisms yield a holomorphic trivializa-
tion of the cohomology bundle HTt8{E) over UdY.

3. Remarks on a representation theorem of Wells and Wolf. In
their paper [26], Wells and Wolf establish—among other things! —some
conjectures of Griffiths ([6], [7]) on the geometric representation of certain
automorphic cohomologies; cf. also [8], [22], [23], [25]. The framework is
the following:

If D is a period domain or, more generally, a flag domain and YczD
is a maximal compact subvariety of dimension s then there is a diagram

(3.1) MD^^D^D

where r is holomorphic, n\ ^D —> MD is a holomorphic fibre bundle with
fibre Y; MD is the space of linearly deformed compact subvarieties of
dimension s. Wells and Wolf prove the (difficult!) result that MD is
a Stein manifold provided that D has compact isotropy, D being a
homogeneous space D — Go/V, cf. below. They then establish their
principal representation theorem: For non-degenerate homogeneous vector
bundles Ex = GQ x VX over D = GQ/ V, there exists a Frechet injection

(3.2) H°(D, &{EX)) -> H\MD, R°n*(&{x*Ex))) .

In this assertion A, is an irreducible unitary representation of V; cf.
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[26, Theorem 3.4.7]. The injection is G0-equivariant and thus permits
the representation of automorphic cohomology with respect to a discrete
subgroup of Go.

In this section we show that

(3.3) z*E,->^D->MD

is, in fact, a BL-diagram; since the fibre Y is compact this amounts to
showing that z*Ex is locally trivial over MD. We then indicate how to
compute the cohomology bundles Hr'8(z*Ex). Furthermore, the direct
image sheaf R87C*(z*Ex) is locally free and coincides with ^>(Er)t'(z*Ex));
this yields an explicit description of the right-hand side of (3.2).

Some of the details are the the following: G is a connected complex
semi-simple Lie group, P c G a parabolic subgroup and Go a non-compact
real form of G. We assume once and for all that V = Go D P is
compact.

If one chooses maximal compact subgroups M, K of G, Go, respec-
tively, such that VaKczM, then V=Kf)P = Mr\P, the real orbit
Go • 0 of the neutral coset 0 6 G\P is open in the complex flag manifold
X = G/P and thus D = Go/V = G0-0 inherits a complex structure. M/V
and K/V also possess complex structures, being equal to G/P and
Kc/Kc H P, respectively.

Finally, if X:V-+GL(E) is an irreducible unitary representation, it
extends uniquely to an irreducible holomorphic representation of P and
it follows that the homogeneous vector bundles GoxvE^>D, KxvE->K/V
inherit holomorphic structures as holomorphic pull-backs from G0-0 and
KCKC n P.

We put Y= K-OaD, A = {aeG\aYdD}( = Gc{D} in the notations of
[26]) L = {aeG\aY = Y}(zA, a closed complex Lie subgroup of G, and
we let o:G -+G/L, /3:G -*G/LC[P be the natural maps (which are holo-
morphic principal bundles). Now A is open in G, AL = A; furthermore
setting

(3.4) M = MD = a A c G/L (open)

%s = %/D = /3AaG/LnP (open) ;

it is clear that e.g., a~\M) = A and we conclude that a\ A: A —>M is a
holomorphic principal L-bundle. Similarly, (i~\3/) = A and j3\A: A-^Y
is a holomorphic principal (L n P)-bundle. If e: G/L n P->G/L is the
natural fibration, e~\M) = ^/ and the fibration s \ ̂ /\ ^/ —> M is the linear
deformation space of Y.

Setting A = A/L n P, let 7C2: A-+A be the quotient map. It then
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is clear that the map /3a —> 7r2a, ae A, identifies A and ^/ and also that
TT2: A —> A is a holomorphic principal (L f! P)-bundle. We are thus in
the situation of Example (ii) of Section 2 (with H = L, L = L f] P,
Z — A, etc.) and any holomorphic representation X of L f] P on a finite-
dimensional vector space E yields a BL-diagram

(3.5) EX-*A-+M

where n: A —> ikf = A/L again is the natural map. If we set Eo = L x
£np£> then the cohomology bundles of (3.5) are given by

H'-'(EX) = A xLHr>°(L/L n P, Eo) .

In the applications X will be the restriction to L n P of a holomorphic
representation of P.

By the very definition of A the natural map z:G/Lpi P-^X = G/P
restricts to a map r: ^ —> D(z/3a = a-0 for a 6 A). Let also i: Z> —> X be
the inclusion. A direct, albeit somewhat lengthy computation then yields
the following:

THEOREM 3.6. Let X be a holomorphic representation of P on the
finite dimensional vector space E and Ex = G x PE the corresponding
homogeneous vector bundle over X = G/P. Set X = X | L f] P and Ze£ Ex-+ A
be the induced bundle. Then, under the bundle isomorphism of e: ^/ —>

TT: A —> Jkf mentioned above, the diagram

(3.7) r*#r -> J ' -> M

is isomorphic to

EX-+A-*M.

In particular (3.7) is a BL-diagram (as claimed in (3.3)) and its cohomology
bundle of type (r, s) is given by

(3.8) Hr>°(z*Ex) = Ax LHr'9(L/L n P, #o)

where Eo = L x LnF2£.
One concludes that the E2-term of the Leray spectral sequence of

(3.7) is given by °Ei'* = H°>8(M, A x LH°'\L/L D P, ^0)). Since we assume
V to be compact, the main result of [26, Section 2.5] asserts that M is
a Stein manifold; accordingly, the spectral sequence degenerates: °E2

8it = 0
for 8 > 0 and we see that

(3.9) #°'*(^, z*Er) = H°'°(M, -A x LH°>q(L/L n P,

for g ^ 0.
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Suppose, in particular, that X is the holomorphic extension to P of
an irreducible unitary representation of V in E and let Ex = Go x VE be
the corresponding homogeneous bundle over D with the holomorphic
structure described earlier. Then if Ex is non-degenerate in the sense
of [26], the results of Schmid [21] imply that Hq(D, Ex) = 0 for q =£ s =
dimY and that the induced map

(3.10) H8(D, Ex) -> H\%/, r*Ex)

is a Frechet injection. Lastly, one has to argue that (3.9) is an iso-
morphism of Frechet spaces (using the open mapping theorem as in [26]).
(3.10) and (3.9) then imply the representation theorem (3.2).

As a by-product one obtains the following:

COROLLARY 3.11. Let x°>8 be the representation of L on H°'8(L/L n P, Eo)
induced by left multiplication. Then the space H°(MDf R

87t^{(^{z""Ex))) of
(3.2) coincides with the space of all maps

/ : A -> H°'8(L/L n P, Eo)

satisfying the conditions:
( i ) f is holomorphic
(ii) f(al) = n^l-^fia) for (a, l)eAxL.

4. Discontinuous group actions and automorphic factors. LetE—>
X-^Y be a BL-diagram and suppose that the group F acts freely and
properly discontinuously on E, X and Y such that n: X—>Fand a: E —>X
are equi variant and that the action on E is fibre wise linear. We then
show that F\E->F\X-^F\ Y again is a BL-diagram and we relate
the cohomologies of the two diagrams. In the special case where E is
globally trivial over IT (i.e., E=XxE0, X= YxF in the earlier notations),
the cohomology bundles of the quotient diagram are determined by an
automorphic factor which we compute below; applications will follow in
Section 5.

First of all, we recall some well-known results (which, in any case,
are easily verified): Let X be a complex manifold and F a group acting
on X, say on the left, by holomorphic maps: F x X-^X maps (7, x) to
7x and x —> 7x is holomorphic; the group F is considered to be discrete.
The action is properly discontinuous (p.d., for short) if for each compact
set KaX, the set of 7Gf with 7Kf] K^0 is finite. If F acts freely
and properly discontinuously, then the quotient F\X is a complex
manifold in a natural way such that the quotient map q: X—> F\X is a
holomorphic submersion (and is, in fact, locally biholomorphic).

Let E -* r \ X be a holomorphic vector bundle with fibre E such that
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X x E = q*E and let ^ be a fixed such trivialization. Since (q*E)x =
Eq{x) = Eq(rX) = (q*E)rx, the trivialization induces the linear maps 4>J£Q$9

of E, denoted by j(7,x). Clearly j(7fx)eGL(E) and x-+j(7,x) is
h o l o m o r p h i c . M o r e o v e r j ( 7 d , x) = j ( 7 , dx)-j(d, x) f o r 7, d e F a n d x e X : j
is an automorphic factor FXX—>GIJ(E). In turn J defines a left
operation of F on X x E by: 7-(sc, e) = (7a?, i(7, a?)e) and one shows that
E= F\(X x I?) as a vector bundle over F\X. The action of F on
X x E is automatically free and p.d. and we also denote F\(X x 2£)
by tf(i).

REMARKS. Given the automorphic factor j : F x X-+GL(E) and a
holomorphic map fe: X—>GL(J5), jh(7, x) = h(7x)oj(7, x)oh(x)~1 defines another
automorphic factor and we see that E(jh) = E(j) — and conversely.

The holomorphic sections of E(j) coincide with those holomorphic
f u n c t i o n s f : X - > E w h i c h s a t i s f y f ( 7 x ) = j ( 7 , x ) f ( x ) f o r ( 7 , x ) e F x X
( = holomorphic automorphic forms).

One now obtains the following basic result:

THEOREM 4.1. Let E-> X-^Ybe aBL-diagram, o: E-> X and TT: X-*
Y the projections. Suppose that the group F acts on the left on E, X
and Y by holomorphic maps such that

(a) the actions are free and properly discontinuous',
(b) the maps a, % are equivariant;
(c) the action on E is fibrewise linear.

Then there are induced maps a: F\E —> F\X and ft: F\X —> F\Y such
that

is a Bh-diagram. Moreover the cohomology bundles of the two diagrams
are related by

(4.2) ^*ffr's(r \E) = Hr>8(E)

with q: Y-*F\ Y the natural map.

In the proof one uses the following fact: each ye Y has an open
neighbourhood U such that 7UC\U = 0 for 7 ^ 1 and then U-+q(U) is
biholomorphic. This shows, e.g., that fc: F\X-+ F\Y is a holomorphic
fibre bundle with fibre F( = fibre of X-*Y). Similar arguments then
imply that f \ £ is a holomorphic vector bundle over F \ X with fibre
E, the fibre of E and that it is also locally trivial over F\Y with fibre
EQ. The verifications are straightforward and are omitted here.

Let p: X-*F\X be the natural projection. Then py = p\Xy maps
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the fibre Xy = rc~\y) biholomorphically onto 7c~\q(y)) c T \ Xand is covered
by a bundle isomorphism E\Xy^F\E\7i~1(q(y)); thus it induces an iso-
morphism p* of Hr'8(r\E)(Hy) onto Hr'8(E)y since these simply are fibre
cohomologies. The maps pi yield the isomorphism (4.2).

Next we consider the case where the basic diagram (2.1) simply is
E =XxE0-*YxF-^>Y where Eo is a holomorphic vector bundle; in other
words E is globally trivial over Y with fibre Eo. In this case Hr>8{E) is
the trivial bundle Yx Hr8(F, EQ). (4.2) therefore yields an isomorphism

(4.3) <j>:Y x Hr8(F, Eo) = q*Hr'8(F\E) .

Accordingly, there is an automorphic factor j$: F x F—• GL(Hr'8(F, Eo))
such that Hr'8(F\E) = E(j^) and the following theorem determines j+:

Observe, firstly, that the action of F on X = Y x F necessarily is
of the form 7-(y, f) = (7y, 7(7, yf), / -> I (7 , y)f) holomorphic in / (and
also in y). By assumption F acts on E by bundle automorphisms
covering this action on Y x F and this implies that the holomorphic
automorphism 1(7, y) of F is covered by an automorphism 7(7, y) of Eo;
y —> 7(7, y) still is holomorphic. Accordingly, there are induced auto-
morphisms of the vector spaces Hr>8(F, Eo), denoted by 1(7, y)*. With
these notations:

THEOREM 4.4. The automorphic factor j$ derived from (4.3) is given
by

(4.5) i,(7f y) = (1(7, yYT = m~\ vT

for (7, y)e F xY. The cohomology bundles Hr'8(E) are the trivial bundles
Y x Hr>8(F, Eo) and

(4.6) Hr>8(F \E) = r\(Y x Hr8(F, Eo))

where F acts on the product by 7-(y, h) = (7y, /(7"1, vy)*h).

Once again the proof is straightforward and will not be reproduced
here.

5. Vanishing theorem for projective varieties F \ G0\T. Let Go be
a connected non-compact semi-simple Lie group admitting a faithful finite-
dimensional representation; Go is a real form of a connected semi-simple
complex Lie group G. We assume here that G is simply connected.

Let KczG0 be a maximal compact subgroup such that Go/K has a
G0-invariant complex structure (thus is a Hermitian symmetric space).
Since Go and K now have the same rank, we can choose a Car tan sub-
group T of Go such that TaK; G, Go and K satisfy the assumptions of
Section 3.
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Let g, I and t be the complexifications of the Lie algebras g0, l0
 a n ( i

t0 of Go, K and T, respectively, and for a Car tan decomposition g0 =
Io © ft» set p = $ ; here pQ = fo

x with respect to the Killing form ( , ) of
g0. Let A be the set of non-zero roots of (g, t) and let An, Ak be the sets
of those roots aeA whose root spaces ga satisfy Qaap respectively gacf
(compact, non-compact roots). Choose a system of positive roots compatible
with the complex structure of Go/K, i.e., such that the following holds:
If AX — A+ fl An and if p = p+ © p~ is the splitting of the complexified
tangent space at QeG0/K induced by the complex structure, then

(5.1) P± = 2{Q±a\aeAi).

The compatibility condition on A+ may be rephrased as follows: Every
non-compact root aeA+ is totally positive: this means that if ft€Ak is
such that a + /3e A, then in fact a + /3e Ai. Equivalently one can say
that p± are Testable abelian subalgebras.

With Ai = A+f]Ak, set bk = t ®2{g_a\ae At], u - I © | r , & = I ©
^{0-Jae ^+h and let now KC

9 P
±

f U, Bk and I? be the closed complex
subgroups of G corresponding to these Lie algebras. Bk c Kc is a Borel
subgroup such that Kf]Bk= T, Bk = Kc f] B and we set

(5.2) F= K/T= Kc/Bk ;

in the notations of Section 3, V = T for the choice P — B. The following
is fundamental:

THEOREM 5.3. (Harish-Chandra [9], [19], [31]). The subgroups Kc, P±

and U are closed in G and P± are simply connected. The exponential
maps p± -> P± are diffeomorphisms, Kc normalizes P± and U = KCP~,
a semi-direct product, is a parabolic subgroup of G such that Go fl U =
K. The map (x9 k, y) —> (exp x)k(exp y) of p+ x Kc x p~ into G is a
biholomorphism onto a dense open subset Q = P+KCP~ in G containing
Go. Given ae Q let

(5.4) a = a+k(a)a-

be the corresponding decomposition, k{a) e K€. In particular, (ak)+ — a+,
k{ak) = k(a)k for a e Q, k 6 Kc. Then the map £: Q -> p+ given by

(5.5) C(a) = log(a+)

induces a biholomorphism of Go/K onto Z(G0); C(G0) is a bounded domain
in p+.

Now set Y = Go/K and define J:GoxY-^ Kc, following Satake [16],
[20], by
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(5.6) Jr(a,») = fc(aexpC(»));

one has J(ab, y) = J(a, by)J(b, y) for a,beGQ and letting 0 = IK be the
neutral coset, J(a, 0) = k(a)f in particular: J(k, 0) = k. J(a, y) is C00 in
(a, y) and holomorphic in y and is called the canonical automorphic factor
of Y. If moreover r: Kc —> GL(2£) is a holomorphic representation, we
set jz = zoj and obtain what is called the canonical automorphic factor
"of type r" ([16]).

With the notations introduced above, BdG is a Borel subgroup such
that Go D B = T; hence GQ/T inherits a complex structure as the open
(real) orbit G0-0cG/B. Similarly, the complex structure of Y = G0/Kis
the one of the orbit GQ-0c:G/U.

From [10; Lemma 2], one obtains the following:

PROPOSITION 5.7. The map <p(aT) = (aK, J(a, 0)Bk) = (aK, k{a)Bk) of
Go/T onto Y x F is biholomorphic and the action of Go on GJT trans-
forms into the following action on Y x F:

(5.8) a(y,f) = (ay,J(a,y)f).

Since the argument in [10] appears to be somewhat incomplete we
include a proof of the assertion: ^ is injective since KPi Bk—T and k(ak) =
k(a)k for aeG0,keK. Next, k(a)~lkBke F for aeG0,ke Kc and so we
can write k{a)~lk = kobo with koe K, boe Bk. With this 0(akoT) = (ak, kBk)
and ^ is surjective. Using once more that J(a, 0)k0 = k(a)kQ — kb^1, one
derives (5.8) by a direct computation. Note also that $ certainly is C°°.

Next, by the definition of the holomorphic structure of Go/T9 $~l will
be holomorphic if and only if the composite map (aK, kBk) —• akQB e Go • 0 c
G/2? is holomorphic. Since BkcB and lfc normalizes P~(zB, we have
ak0B = atyay'kB = a+kB (cf. Theorem 5.3) and by (5.5), aK-+a+ is
holomorphic and, of course, so is kBk —• &B. Accordingly, (aiT, feB*) —•
a+kB is holomorphic and maps Y x F to G0«0cG/I?; hence 0"1 is holo-
morphic. Thus ^ is a diffeomorphism such that 0"1 is holomorphic and,
therefore, ^ itself is holomorphic. This completes the argument.

Now we fix a C°° character X of T and form the line bundle Lx —
GQ x TC->G0/T; since X extends uniquely to a holomorphic character of
B, Lx has the structure of a holomorphic line bundle over G0/T("(zG/B").
Also define Eo = Kc x B]eC-> F = Kc/Bk. Then:

PROPOSITION 5.9. Let again Y=G0/K. Then LX->GO/T-^Y is a
BL-diagram with cohomology bundles Hr'8(Lx) = Y x Hr8(F, EQ).

For the proof, observe first of all that the map ^ of Proposition 5.7
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is a global trivialization of the holomorphic bundle Go/T -*Y. We define
a map o/r from Lx to F x Eo covering ^ by

(5.10) f ([a, s]) = (aiT, [fc(a), *])

for (a, 2)eG ox C. Since X extends to Bk and k(at) = k{a)t for a6 G09

t G T, a/r is well-defined. A simple verification shows that ^ is a fibrewise
linear bisection and it is obvious that ^ covers <j>. There still remains
to be shown that o/r is holomorphic, in which case it will be a biholo-
morphic bundle isomorphism.

The point here is to show that [a, z] —> [k(a), z] is holomorphic from
Lx to Eo since [a, z\-*aT->aK clearly is holomorphic. Now the repre-
sentation X extends up to B and therefore EQ is the bundle induced on
F by the bundle G x BC->G/B under the natural map F = KcIBk.-+G/B.
On the other hand, if j:G0/T -+G/B again is the natural map, the
definition of Lx shows that this bundle is holomorphically isomorphic to
j*(G x BC); explicitly, these bundle isomorphisms are given by

i([k, z]) = (kBk, [k, z]) , (k,z)eKcxC,

for EQy and

i ( [ a , z\) = ( a T , [a , z\) , (a,z)eGoxC,

for Lx.
Now the map [a, z] —> k(a)Bk is the composition [a, z] —> aT -* <p(aT) =

(aK, k(a)Bk) -»k(a)Bk and thus is holomorphic. There remains the map
[a, 2] —> [&(a), 2]: P~ c [B, B] implies X(P~) = 1 and so in G x BC, one has
[&(a), z] = [(a4")"1^ 2] where a+ again is defined as in Theorem 5.3; by
the same theorem, this is holomorphic in [a, z] since it is holomorphic
in aK. With this, the proposition is established.

COROLLARY 5.11. Under the isomorphism <fr: LX=Y x Eo the action
of Go on Lx transforms into the action a-(y, [k, z\) = {ay, [J(a, y)k, z]): =
(ay, J{a, y)[k9 z]) for aeG0,yeY, (fc, z)eKc x C.

In order to mention explicitly the representations involved in their
construction, it will again be convenient to denote homogeneous bundles
such as LXi Eo, etc., by Kc x BjXf Go x TX, etc.

Given k e Kc, let lk denote left translation by k in F = Kc/Bk as well
as, e.g., in EQ. With this, we set

(5.12) /(a, y) = lJ{a>y): F-^F; /(a, y) = lj^y): Eo -> Eo

for (a, y)eG0 x Y. It is clear that I (a, y) is a bundle map over I(a, y).
If 12: Hr>\F, E0)-^Hr'8(F, Eo) is the induced action, then the representation
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nr>8 of Kc in Hr>8(F, Eo) is given by xr>8(k) = li-i.
Recall that Go acts on Y x F by a(y, f) = (ay, I(a, y)f). Let now F

be a discrete subgroup of Go which acts freely on Go/K — Y. Then the
action of Go restricts to a free and p.d. action of F on Y x F and the
same holds for the action o n 7 x EQ; the projections Y x Eo —• Y x F and
7 x F - ^ 7 are T-equi variant. Thus, all the assumption of Theorem 4.4
are satisfied and, since (1(7, y)~1)* = 7rr'8(/(7, y)) = jKr,8(7, y), one has:

THEOREM 5.13. F\Lx->F\G0IT-^F\Y is a BL-diagram and its
cohomology bundle of type (r, s) is Hr>8(F\Lx) = F\(YxHr>8(F, Eo)) where
F acts by 7-(y, h) = (yy, jxr..(7, y)h).

An equivalent description of Hr'8(F\Lx) may be obtained as follows:
Suppose that r: K->GL(E) is a finite dimensional representation of K
in the complex vector space E; z extends holomorphically to Kc and then
to U = KCP~ by requiring that z\P~ = 1. Using [16], [17] and [19], one
concludes that the bundles E(jT\F xY) and F\(G x nz)\Y are holo-
morphically equivalent where the restriction to Y of G x nz is taken
with respect to the Borel embedding Y = G0IK-+G0-lU(zG/U. With
this we have:

COROLLARY 5.14. Hr>8(F\Lx) = F\(G x u7i;r>8)\Y.

Applying Theorem 2.6, we obtain:

COROLLARY 5.15. Under the assumptions of Theorem 5.13 there is
for each p ^ 0 a spectral sequence (*£>'*) which converges to HP'(F\GO/T,
F\LX) and whose E2-term is

(5.16) *El* = ®Hi>8-i(F\ Y,F\(Gx ^ - ' • '
i

In particular °E^ = H°'8(F\Y, F\(G x ^ ^
Next, the Borel-Weil theorem [11] implies that the representations

K0>t vanish for all t except t = qot an integer determined by X and
described in detail below. Thus we conclude:

COROLLARY 5.16.

H°>'(F\G0/T, F\LX) = H0>q-q°(F\Y, F\(G x v7i^)\Y)

for every q; cf. also (5.18) below.

This result was first established by Ise [10, Proposition 8] under the
additional assumption that F\Y is compact; we do not require this
restriction here.

Next we investigate when the spaces in Corollary 5.16 vanish:
Identify X with an integral element X in the dual t* of t, i.e., a linear
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form X such that

(a, a)

recall that ( ,) denotes the Killing form of g. Also set 28 = 2j+a, 28k =
, 2dn = Ij+a = 28 - 28k and let Wk be the subgroup of the Weyl

group W of (g, t) generated by the compact root reflections. Since A+ is
compatible with the complex structure of GQ/K, one knows that wAi =
//+ for we Wk and (Sn, a) = 0 for a e At. A linear form rje t* is said to
be J-regular (Jfc-regular) if ()?, a) ^ 0 for ae A(ae Ak). With this, we
define F[ct* and Pu)aA as follows: 4e FJ if and only if A is integral,
A + 8 is J-regular and

(5.17) (A + 8, a)>0 for a e At; a e PU) for a e A if and only if {A + 8, a)>0
whenever A + 8 is ^/-regular.

Thus PU ) is a system of positive roots corresponding to the J-regular
element A + 8. The Borel-Weil theorem states that it0'1 vanishes for all
t if there is ae At such that (X + 8k, a) = 0; if this is not the case, then
X + 8k is ^-regular and the value of qQ in Corollary 5.16 is

(5.18) qo= \{aeAt\(X + 8k,a)<0}\ = \w(-At) n Ai\

where w e Wk is the unique element such that (w(X + 8k)f a) > 0 for every
ae At and where \s\ denotes the cardinality of the set s.

Moreover nOt9° is an irreducible representation of K with //^-highest
weight

(5.19) r ( \ w): = w(X + 8k) - 8k .

With the above choice of w it is a straightforward computation to
prove:

PROPOSITION 5.20. z(\ w) e F'o if and only ifX + 8 is A-regular.
In this case P^^ = WP{X).

At this point we nearly are in a position to apply some results of
[27] and [28] to obtain vanishing theorems for the spaces H°'9(r\G0IT,
F\LX); however some additional notation will be needed:

Let A be integral and such that A + 8 is J-regular. Given (wu r)
in W x Wk, we define:

(5.21) QA = {aeAi\U + S,a)>0}, P«> = P'A) n An

28{A) = 2{a\aePU)} ,
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^\wT'za e -P'A)) .

Assume now that F\Y is compact. In this case, the main theorem [28,
Theorem 4.3] applies to the right-hand side of Corollary 5.16. Among
other things this theorem states that if izA is an irreducible if-module
with 4f-highest weight AeF'o and if H°'9(F\ Y, F\(Gx^)| Y) * 0, then
there is a pair (wl9 z) e W x Wk such that

(5.22) q = | AAtTtWl | - 21QA n 4 v ,W l | + | Qi | .

One has At c ^ P M ) , ^, r ,W l = #<% - 0? and r(5 + 8 - SM)) - wx(A + 8 -
8{A)) = A + 3 - 8{A); also, AAtTtWl, 0^ and {ae P<A)\vae - PiA)} are contained
in {a G P^} | (4 + 3 - §U), a) - 0}, with #J-i c {a e At \ (A + 8 - dU), a) = 0}.

We now assume that X e t* is integral and such that X + 8 is J-
regular; one notes that X + 8k is J^-regular, so that the Borel-Weil
theorem gives the highest weight z(\ w) of (5.19) and Proposition 5.20
yields z(\ w) e Fr

Q as well as P^x>w)) = WPU). One concludes that PirU'w)) =
and hence that

(5.23) AratW)tTtWl = wAx>TWtWlW .

Similar a r g u m e n t s show t h a t QT{X,W) = wQx, z(X, w) + 8 - 8{Ta'w)) = w(X +
8 - Su)), Q^x>w)) = wM~Pu)) n wPu). Hence Corollary 5.16 and the equa-
tion (5.22) yield:

THEOREM 5.24. Let Xet* be integral, Lx-+G0/T the corresponding
holomorphic line bundle. Suppose that the discrete subgroup F c Go acts
freely on Y = Go/K such that F\ Y is compact. If X + Sk is not At-
regular, then H°t9(F\G0/T, F\LX) = 0 for every q. On the other hand
if X + 8 is A-regular then X + 8k is Ak-regular and there is a unique
element we Wk such that (w(X + 8k), a) > 0 for every ae At- Then for
every q

H°"(F\G0/T, F\LX) = H°'q-9°(F\Y, F\(G x u7c^)\Y)

where 7C0i9° is the representation of K with Ai-highest weight w(X + 8k) —
Sk and q0 is given by (5.18). / / H°>9(F\G0/T, F\LX) =£ 0 there is a pair
(wl9 z) e W x Wk such that the following hold:

( i ) q = q0 + \AX)TWtWlW\ - 2\QX n AXfTW>WlW\ + \QX\;
(ii) At c wxwPa\ wAx>TWtWlW = v-'w.i- Pu)) fl (wPu) - 0k

T-i), TW(X +
§ - du)) = w,w(X + 8 -Sa)) = w(X + 8 -Su)), 0k

T-ia{aeAt\(w(X + 8 -
8<»), a) = 0};

(iii) wAx>TWtWiW, wM~Pa) n wPa)) and {aewPiX)\zae - wPiX)} are
contained in {a e PiX) \ (w(X + 8 - Sa)), a) = 0}.
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Because of its generality this theorem—like [28, Theorem 4.3] — has
several corollaries of which we mention the following:

Firstly, assume that (X + 8 - 8{X\ a) ^ 0 for every aePiX). By (iii),
one has AX}TWtWlW = 0 and so (i) gives q = q0 + \Qx\-

COROLLARY 5.25. / / X is integral, X + 8 is A-regular and (X +
8-8a\ a) is ^0 for every aePiX), then H°>q(r\G0/T, F\LX) = 0 for
Q^Qo+ \Qx\-

Next suppose that X is z/^-dominant. Then we must have w = 1 and
so #0 = 0. If moreover (X + 28, a) < 0 for ae At, one finds that Qx = 0
and (X + 8 - 8U\ a) < 0 for aez/+ = - P ^ ; this yields the following
known result:

COROLLARY 5.26. If X is Ai-dominant integral and (X + 28, a) < 0
for aeAi, then H°^r\G0/Tf r\Lx) = 0 for q =£ 0.

This result can also be obtained directly from the Kodaira vanishing
theorem. Another specialization of X leads to the following result:

THEOREM 5.27. Let X be integral such that X + 8 is A-regular and
suppose that Pa) is compatible with an invariant complex structure on
Y = GQ/K (cf the beginning of this section). If H°>9(r\G0/T, r\Lx) ^
0, there exists a parabolic subalgebra 0 = x ® u of g, r the reductive and
n the unipotent part of 6, such that if 0Uf7l denotes the set of non-compact
roots in u and A(x) the set of all roots in x, then

( i ) Q = Qo + 2|0u>n n wQ\ + \Ai — wQ\ — |0U,J with q0, w as in
Theorem 5.24;

(ii) 6 contains the Borel subalgebra t + I{ga\ae wPu)};
(iii) (w(X + 8 - Sa)), a) = 0 for ae A(x).

The result follows from Proposition 5.20, the calculation in (5.23),
and [27, Theorems 5.24 and 2.3], once one observes that since p{T{X>w)) =
wPn] and we Wk, every non-compact root in p{vU>w)) actually is totally
positive.

A very simple application of Theorem 5.27 is the following: Assume
that X actually is J+-dominant. Then Pa) = A+ (so that every non-compact
root in Pa) is totally positive), 8U) = 8, w = 1, q0 = 0, Qx = Ai, 6Utn =
wPa) - A(x) = At - A(x) c At; hence by (i) of Theorem 5.27, q = 2\6un -

COROLLARY 5.28. If X is A^-dominant integral and if HOq(r\Go/T,
F\LX) =£ 0, then q — |0U,J for some parabolic subalgebra 6 = x © u c g
containing t + Ia+ga.

Moreover (X, A(x)) = 0. If Go is simple then the set of numbers \ 6Utn |
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for 0 such that 0z>t + I^ga is determined completely in [27, Table 3.4].
In particular H°>q(r\GQ/T9 r\Lx) = 0 for q < \{aeJi\(\, a) > 0}|.

We conclude with some (more or less known) remarks about the
cohomology of Go/T:

By Proposition 5.9 and the fact that the spectral sequence °E}'*
degenerates since Y — Go/K is Stein, we obtain:

THEOREM 5.29. With the above notations, for any integral X and
all q^O

( i ) H°>'(G0/T, Lx) = H°>%Y, Y x H°-<(F, Eo)) = H°>\Y) (x)H*«(F, Eo) .
Hence if there is ae Ak such that (X + dk9 a) = 0 then by the Borel-Weil
theorem H°'9(G0/T, Lx) = 0 for all q. If X + dk is Ak-regular let w, q0 be
as in Theorem 5.24. Then H°>q(G0/T, Lx) = 0 for q ^ q0 and H°'q°(G0/T,
Lx) = H0>°(Y) (g) H°>q°(F, Eo) where H0>q°(F, Eo) is an irreducible K-module
with At-highest weight w{X + 8k) — 8k.

COROLLARY 5.30. In particular suppose that (X + 8k, a) < 0 for a e
At. Then q0 = \At\ = s = dimc K/T and hence H0>q(G0/T, Lx) = 0 for q =£ s.

Equation (i) of Theorem 5.29 may be regarded as a Hermitian version
of the representation formula (3.2): in the present situation the fibration
%sD-+MD of (3.1) collapses to G0/T-^G0/K by [26, Proposition 2.4.7].
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