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Introduction. Let p be a prime number, and denote by Z, the ring
of p-adic integers. In our previous paper [9], we have constructed
certain cyclotomic Z,-extensions M., = U,z M, such that the Stark-
Shintani invariants for M, are units of M, for each n = 0. In this
paper, we study the image of these units in the completion of M. at a
prime over p.

Let F' be a real quadratic field embedded in the real number field
R. Let M be a finite abelian extension of F' in which exactly one of
the two infinite primes of F, corresponding to the prescribed embedding
of F into R, splits. Let f be the conductor of M/F. Denote by Hx(f)
the group consisting of all narrow ray classes of F defined modulo f.
Let G be the subgroup of H.(f) corresponding to M by class field theory.
Take a totally positive integer v of F' satisfying v + l1ef, and denote
by the same letter v the narrow ray class modulo | represented by the
principal ideal (v). For each ce Hy(f), set {u(s, ¢) = >, N(a)™°, where a
runs over all integral ideals of F' belonging to the ray class ¢. Then
the Stark-Shintani ray class invariant X,(c¢) is defined by

(1) X,(e) = exp (£x(0, ¢) — Cp(0, ev))
(Stark [12], [13], Shintani [11]). Put Xi(e, @) = TI,es X;(cg).

CONJECTURE ([12], [13], [11]). For some positive rational integer m,
Xi(e, G)™ is a unit of M (Yee Hy(f)/G). Moreover, {X(c, G)"}*" = X(cc,, G)™
(Ye, ¢,€ Hp(f)/G), where ¢ is the Artin isomorphism of Hy(f)/G onto the
Galois group Gal (M/F).

Denote by M+ the maximal totally real subfield of M. Then Shintani
proved that the conjecture is true if M™* is abelian over the rational
number field @ ([11]). In our previous paper, we have studied the integer
m in the conjecture when M~ is abelian over @, and we have constructed
abelian extensions M of F with the following property (P) for an odd
prime number p (cf. Theorem 1, Propositions 8, 9, 10 and 13 of [9]):
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(P) Let M. = U,z M, be the cyclotomic Z,-extension of M. Then
X, (¢, G,) is a unit of M, for each ce H,(f,)/G,, where f, is the conductor
of My/F and G, is the subgroup of H(f,) corresponding to M, (Yn = 0).
Moreover, X; (¢, G,)"" = +X, (cc,, G,) (Ve, ¢o€ Hy(f,)/G,).

In this paper, we assume that M has the property (P) for an odd
prime number p with p}[M: F']. Further we assume that the following
condition (D) is satisfied:

(D) For any subfield M’ of M/F with M’ ¢ M™*, any prime divisor
p of f is a divisor of f(M’') or a divisor of p, where f(M’) is the con-
ductor of M'/F. Moreover, if p is a prime divisor of » with p}) (M),
then the decomposition field of p in M'/F is (M')*.

For a number field k, denote by E(k), A(k) and h(k) the group of
units of %, the ideal class group of % and the class number of % respec-
tively. Put EM) = {ue E(M); Ny,u+(u) =1}. Denote by C(M) the
subgroup of E(M) generated by —1 and Xi(¢, G) (c€ Hx(f)/G). Then we
can show that C(M) is a subgroup of E(M)~, and we can rewrite Ara-
kawa’s class number formula as follows (cf. [1], [9]):

(2) R(M)/h(M™) = [E(M)~: C(M)] X (a power of 2).

Put E; = E(M,)~, C, = C(M,) and h; = h(M,)/h(M}) (n = 0). If there
is a prime divisor p of » with p }{, then we replace C, by the subgroup
generated by —1 and Xi(¢, G)*° (ce Hy(f)/G), where e is the number of
such prime divisors p of ». In §1, we shall prove the following theorem
which is analogous to classical results on cyclotomic units and elliptic
units.

THEOREM 1. Notation and assumption being as above, we have
(i) h; =[E;:C,] X (a power of 2) (n=0),
(ii) N, wCn)=C, (mznz=0),
where N, , ts the norm map of M, to M,.

COROLLARY. Put B, = {ce€ A(M,); Ny, /u,+(c) =1, the order of ¢ 1is
odd}. If hi is prime to p, then the natural homomorphism B, — B, is
injective for any m = n = 0.

In §4, we shall study the image of C, in the completion of M, at
a prime over p by using a result of Coleman ([4]). §§2-3 are devoted
to preparations for the arguments in §4. As a consequence of Theorem 1
of [9], Theorem 1 and the main result in §4 (Theorem 3), we obtain

THEOREM 2. Let p be an odd prime which splits in F (p = pp’).
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Take an integer a of F such that a >0, o’ <0, ach, a¢p® and a¢y
(o' 1s the conjugate of «). Put ac’ = —ap, and assume that a s a
quadratic residue modulo p and Tre() is not. Let M = F(/ ) and let
X1,G6) =@ +y/ @)/2, where x and y are integers of F. If y is prime
to p then h, is prime to p for any n = 0.

REMARK. By (i) of Theorem 1, bt (y) implies p Yhy. On the other
hand, the general theory of Z,-extensions tells that p t 2, implies p t &7
(Yn = 0). But in general, p t hy does not imply » t hy (Yn = 0).

1. Proof of Theorem 1. In this section, we prove Theorem 1 and
Corollary. First, we prove

LEMMA 1.1. C(M) is a subgroup of E(M)~.

PROOF. Put = Xi(¢, G) and B8 = Ty,u+(n). It follows from (P) and
(1) that n°® = +9~*. Since ¢(v) is the generator of Gal (M/M™), this
implies that N,,+®) = *£1. If Nyu+®) = —1, p= (8 + V3 + 4)/2.
Since e M*, n is a totally real algebraic number of M. Hence ne M.
This contradicts to Ny, ,+(®) = —1. q.e.d.

Now we prove the equality (2). Let X be a character of H.(f)/G
with X(v) = —1. It follows from (1) that

(3) #0,0) = 3 Xe)log Xi(c, G) .

ce Hp(1)<G,v
Denote by f, and X the conductor of X and the primitive character
associated to X respectively. Then we have
(4) Ly(s, X) = Lyg(s, X) WI;I“ (1 — X(®)NBP)™) .
22404

It follows from the functional equation of L,(s, ¥) that L0, %) = 0.
Hence we obtain

(5) Li#(0, X) = L0, %) ””giz 1 — X)) -

It is easy to see that X(p) = ¥(») = —1 in (5) under the assumption (D).
On the other hand, the analytic class number formula at s = 0 (cef. p.
200 of Stark [14]) tells us

(6) h(M)/M(M*) = (R(M™*)/|R(M)) . 1(1')[=_1 L0, %),
where R(M) and R(M') are regulators of M and M™* respectively. The

equality (2) follows from (8), (5), (6) and a slightly modified version of
the Frobenius determinant formula.

Proor oF THEOREM 1. Let F. = U, F, be the cyclotomic Z,-
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extension of F ([F,: F] = p"). Since [M: F'] is prime to p, M, = MF,
and any subfield of M,/F is a composition of a subfield of M with
a subfield of F,. This implies that the condition (D) is satisfied for
M,. Hence the equality (2) is also wvalid for M,. This proves the
first half of Theorem 1. Let m = n =1. Denote by PB(f,) the set of
prime divisors of f,. Then %(f,) = B(f,). Let o: H(f,.)/G. — Hz(f,)/G.
be the natural surjective homomorphism, and let v, be the v for f,.
For any character X of H,(f,)/G, with X(»,) = —1, put X’ =X o ®. Then
X' is a character of H,(f,)/G, with X'(v,) = —1. Since LB(f.) = B(f.),
the equality (4) implies that L(s, X) = Ly(s, X'). Then it follows from
(3) that

X(co) log X;,(co, Gv) = >X'(C) log X, (¢, Gn)

co€ H p(fy) I{Gprvpd c€H p(fy) [{Gp vy
= > X(eo){ 3. log X; (¢, Gn)} .
c0€ H p i) [{Gprvy cep—l(eq)

This implies that X (¢, G.) = [Toeo-100p Xin (¢, Gn). Since o(Ker @) =
Gal (M,/M,), we obtain X (@(c), G,) = =N, .(X; (¢, Gn)). Hence
N, .(C,) = C,. When n = 0, it follows from (5) that

L0, X') = L0, X) Wﬂw 1 — X))

= L0, X) x 2° (e = #{p; plp, LT .

The rest of the proof goes similarly to that of the case n = 1. This
completes the proof of Theorem 1.

Put I' = Gal (M../M) (=Z,). Take a topological generator v of I
and fix it. Put I, = Gal (M../M,) and 4 = Gal (M.,/F..). Then Gal (M, /F) =
I’ X 4 and 4 is naturally isomorphic to Gal (M/F). Put p = (6(.))nz0 €
projlim Gal (M,/F') = Gal (M../F'). Obviously ped, p*=1 and p #1.
Put » = [M™*: F'], and let ¢, ---, 0, (€ 4) be a complete set of represen-
tatives of 4/(p). Put 7, = X; (1, G,). It follows from the assumption
(P) that X, (¢, G,) = =X;,(1, G,)° for any ce Hy(f,)/G, and X, (¢, G,)**" =
X; (c, G,)7*. Hence C, is generated by —1 and 7]21’” A=gisr0=25
p" — 1). Furthermore, (i) of Theorem 1 implies that the units 7]‘,’:'7" as
1=<7r,0=<j=<p"—1) are multiplicatively independent. Denote by
Z|I',/I",] the group ring of I',/I", over the ring of rational integers Z
(m=n=0). Then C,/x1 is a free Z[I',/I',]-module of rank »p"
generated by 7y’ (1<i<r, 0<j=<p"—1). This implies that
HYI,/T,,C,) =0 for any k, m =n» = 0. Since [',/I", is a cyclic group
of order p™—, H'([",/I,, C,) = 0 implies that Ker (N, ,: C, — C,) = (C,)"»,
where @, = v** — 1. Further, H°([",/T .., C,,) = 0 implies that C,, N M, =
N, .(C,) = C,. In particular, the natural homomorphism E,/C, — E,/C,
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is injective for any m = n = 0. Thus we have proved

ProposITION 1.2. (i) H*I, /. C. =0, for any k, m = n = 0.

(ii) C,NE, = C,, hence the natural homomorphism E,/C,— E,/C,
18 1njective for any m =mn = 0.

(iii) 0—-(C,)*»—C, N—>Cn — 0 (exact), for any m = n = 0.

To prove the corollary to Theorem 1, we need the following lemma.

LEMMA 1.3. Let B, be as in the corollary. Then we have an injec-
tive homomorphism

Ker (B, — B,) — Ker (N, ,.: By — E;)/(Ex N (E,)") ,
for any m = n = 0.

ProoF. Let ceKer (B, — B,). Take an ideal a of M, in the class ec.
It is easy to see that a can be taken to satisfy a = (a) for some a€ M,
with a®° = a*. Then we put ¢ = a“»~. Since 7, = 7*" induces the identity
map on M,, a~=a, hence (a’) = (a) as principal ideals of M,. So
e =aqa" = ' is a unit of M,. Since a* =a™, cc E,. On the other
hand, N, .(¢) = N, .(a**) =1. Hence we define a map Ker (B, — B,) —
Ker (N, ,.: E, — E;)/(E, N (E,)*) by ¢—emod (E, N (E,)). It is easy
to check that this map is a well-defined injective homomorphism. q.e.d.

Now we prove the corollary to Theorem 1. Since [M: F'] is prime
to p, any prime of M lying over p is totally ramified in M./M. Hence
p ¥ by implies p f h; for all » = 0 by a well known fact in the theory
of Z,-extensions (cf. Theorem 6 of Iwasawa [6]). By (i) of Theorem 1,
the order of the group E;/C, is prime to p. Since I',/I", is a cyclic
group of order p™—", we have H*/I,/I,, E,/C,) = 0. By (i) of Proposi-
tion 1.2, we have H¥I,/I",, C,) = 0. Hence we obtain H*(I",/I",,, E;) = 0.
Since (E,)»Cc E,.N(E,)»cKer (N, ,: E,— E;), and since H'(I",/T,,, E;) =
Ker (N, .: E, — E;)/(E,)*», we have Ker (N, ,: E; — E;) = E; N (E,)* =
(E;)“». Hence Ker(B,— B,) =0 by Lemma 1.3. This completes the
proof of the corollary.

REMARK 1.4. If the number of prime divisors of » in M is one,
p t hy implies p t h,; for all n = 0 (cf. Proposition 13.22 of Washington

[15]).

2. A basis for the local units. In this section, we study the group
of units of certain abelian extensions of the p-adic number field Q,. The
results in this section are slight generalizations of some facts mentioned
in Chapter 7 of Lang [7].
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Let p be an odd prime number and let d (>0) be a divisor of p — 1.
Let @ be the unique unramified extension of @, of degree d. Put @, =
@(,), where £, is a primitive p"*'-th root of unity in a fixed algebraic
closure 2 of @. We choose ({,).s, to satisfy (2., =, for any n = 0.
Put @, = U,2 9., H = Gal (9../@,) and I = Gal (¢../0,). Since [@, Q,] is
prime to p, there is a finite subgroup 4 of H such that H = I" X 4 and
4 is naturally isomorphic to Gal (@,/Q,). Since 4 is an abelian group of
exponent p — 1, any character X: 4 — Q% is Z}-valued. Denote by 4 the
set of all Z)-valued characters of 4. Let ¢ be the unique element of
4 such that ¢|Q,({,) = id and ¢|® is the Frobenius automorphism of 9/Q,.
Let = be an element of 4 such that 7|@ = id and 7|@Q,({,) is a generator
of Gal(Q,(,)/Q,). Let k:Gal(9./®) =1 x (t) —Z, be the canonical
character (i.e. £ is characterized by {2 = (i for any #n = 0 and any g€
I’ x{t)). Then g, , = k() is a primitive (p — 1)-th root of unity in Z,.
Let p; be a fixed primitive d-th root of unity in Z,. Define X, ;¢ 4 by
Xoi(p) = th, Xy ;(v) = pi_, (i€ Z|dZ, je Z|(p — 1)Z).

For any Z,([4]-module A, put AX) = e(X)A, where e(X) = (1/¢ 4)
SeeaX7H(g)g (€ Z,[4]). Then A(X) = {ac A; ga = X(9)a for any gec 4}, and

Let o and o, be the ring of integers of @ and @, respectively (n = 0).
Let p and p, be the maximal ideal of o and o, respectively. Put z, =
{,—1(n=0). Then p = po and p, = 7,0,. Denote by V the group of
(p* — 1)-th roots of unity in @. Put U, ={uco,;u = 1modyp,}. Denote
by N, , the norm map of @,, to @, (m = n = 0), and put U.. = projlim U,
(the limit is taken with respect to N, ,). Then U, is a compact Z,[H ]-
module and U., = @, U.(X). Let 4 be the ring of formal power series
in an indeterminate T with coefficients in Z,: 4 = Z,[[T']]. Let 7 be a
fixed topological generator of I" (=Z,). Obviously, U.(X) = projlim U,(X)
and U.(X) is a compact /"-module, hence a compact 4-module (the action
of T is given by (1 + Thw =" for any wue U.(X)). The A-module
structure of U.(X) is given by the following proposition which can be
proved by the same arguments as in Chapter 7 of [7].

PROPOSITION 2.1. For any Xe 4 with X Yoo the natural projection
U.X) — U,X) induces an isomorphism U.(X)w,U.(X)~ U,(X), where
w,=1+T)y"—1n=0). IfX +#%, %, then we have a A-isomorphism
U.(X) = 4.

Let X # Xy, X,,,. We are going to construct a basis for U.(X) over
A. Take an element M of V with » # 1, and put 6 =X — 1. Then b is
a unit of o and * = A — 1 = A* — 1, because ¢|, is the Frobenius auto-
morphism of @. For any unit « of o, denote by w(x) the unique element
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of V such that w(z) = 2 modp. Put v, = w®d)* "(b* " — x,). Obviously
v,€ U,, and it is easy to check N, ,(v,) =, for any m =« = 0. Hence
v = (¥,)ns0 18 an element of U,. Now we claim that we can choose Ae V
such that v*® = (v:*),s, is a basis for U.(X) over 4. To prove this,
we define homomorphisms «,: 08 —o/p 1 <k < p — 2) as follows:

Let D= (1 + T)(d/dT). For each ucoy, take a power series f(T)e
o[[T]] such that f(z,) = u. Put +,(u) = D*log f(T)|;,—,mod p. This does
not depend on a choice of f(T'). Hence 4, is a well-defined homomorphism.

Note that U,(X) is a free Z,-module of rank one. If X=X, 1=
j=<p—2, then we can check ;(v;*) # 0 for some ne€ V by the same
argument as in §3, Chapter 7 of [7]. If X=1X,,, we can check 0, ,(v°*) %=
Omodp for some A similarly, where d,_, is the Coates-Wiles homomorphism
defined in the next section. Then »{* generates U,X)/ U,(X)?, hence
generates U,X) over Z, by Nakayama’s lemma. By Proposition 2.1 and
Nakayama’s lemma, this implies that +** is a basis for U.(X) over 4.
Hence we obtain

PROPOSITION 2.2. Let Xe d, X # Xop Xouo Then v = (05®),2, 18 @
basis for U,.(X) over A for a suitable choice of M€ V (depending on X).

3. Logarithmic derivatives. We use the same notation as in the
previous section. First, we recall the following result of Coleman ([4]).

ProposiTION 3.1. Let u = (u,) € U,. Then there is a unique power

series f(T)eo[[T]] such that
" rw,) = u, for all n=0
(for f(T) =, a,T™ (a,€0), f*(T) = al"T™).

Let w = (u,) e U., and let f,(T) be the power series associated to u
by Proposition 3.1. Let D = (1 + T)d/dT). For each integer k = 1, we
define the Coates-Wiles homomorphism d,: U, — 0 by
(7) 0x(u) = D*log fu(T)lr=0

= D* (1 + T)fuAT)/fu(T)r= -

Put T=¢?—-1=>,:(Z™m!). Then (dT/dZ)=e¢*=1+ T and

D = (d/dZ), hence
13
(8) uw) = () log £u(e” = Dla

It is easy to see that the map 6, has the following properties (cf.
§13.7 of [15]).
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PrOPOSITION 3.2. The map 0,: U. — 0 is a continuous Z,-homomor-
phism satisfying

(i) 0w = k(9)0u(u) for YgeI' x {z), Yue U,

(ii) 0,(u?) = 6,(w)?* for Yue U.,.
In particular, if we U.(X,;) with j #* kmod(p — 1), then &, (u) = 0.
Further, 0,(h(T)u) = h(k(7)¥ — 1)6,(u) for Ya(T)e A, Yue U..

Let X =2%,; (1,5 #(0,0), (0,1) (0<i<d—-1,1=<j=<p—1). Let
v** be the basis for U.(X) over A constructed in §2. If k = jmod (p — 1),
then 6,(v**) = 0 by Proposition 3.2. So we assume k = jmod (p — 1),
k =1. By Proposition 3.2, we have

d—1 p—1
(9) W) = 2 5 SR )
d—1
=d- =0 #d—isgk(,v)w .
Let | | be a p-adic valuation of @. Let @ be the set of power

series D.sz0a,T" in @[[T]] such that |a,n!| —0 as n — . Let C be the
set of continuous functions from Z, to ®. Then @ and C are Banach
algebras over @ with norms supla,n!| and max,.z, |f(s)|, respectively.
To calculate §,(v), we need the following two facts on a slight generali-
zation of Leopoldt’s I'-transform (see §1 of Lichtenbaum [8]).

LEMMA 3.3. For each je Z/(p — 1)Z, there is a wunique bounded
linear map I';: @ — C such that

rink) = (-
where h(T) = W(T) — p 3PS AEAL + T) — 1) (he Q).
LEMMA 3.4. For any heo[[T]], I';(h) is an Iwasawa function t.e.
there 18 a power series g€ o[[T]] such that
Ii(h)(s) = g(e(7) —1)  (Ys€ Z,) .

We return to the calculation of 0,(v). We recall that v = (v,), v, =
w®) "0 " —7,), b=x—1 for some ne V, A # 1. Then the power
series associated to v is given by

FoT) = w®)b—T).
Put w(THh=(@1+ T)f;(T)/f,,(’:f‘) =0+ T))A+T—N). Then 6,(v) =
(@/dZ) " h(e” — Dlz=oy and A(T)=QQ +T)/A+ T —N) —p* 225001 +
T)/(C1 + T) — ). Taking the logarithmic derivatives of X?» — \? =
TI2=8 (GiX — \), we obtain

JHe” ~ Dlwy (k2 0,k = jmod(p — 1),
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pXr|(X? — W) = S GGX ~ ), where X=1+T,
Hence A(T) = W(T) — h*(1 + T)? — 1), and

() He* = Dlamo = () 7 thte” = 1) = 1" = DYy

= 0,(v) — P*0,(v)? .

Replacing v by v*° in the above equality, we obtain

10) B =t = () TR~ D

0=s=d-1).
By Lemma 3.3, the right side of (10) is I";_,(h*")(k — 1). If k = 2, then
we can solve the liner equations (10) with respect to 6,(v)*:
d—1
(1) 8u)*" = (1 — p**=) 35 pH*=0L (1) — 1)
t=0
0=s=sd-—-1).
It follows from (9) and (11) that
d—1
(12) (L — pip*0u0"™) = d7 3, T () — 1) .

If k=1, then =1 and 7 #0modd. It is easy to check that the
equality (12) is also valid for k = 1. Since a*eo[[T]], I';,_,(h*") is an
Iwasawa function by Lemma 3.4, Hence there is a power series a,(T)e
o[[T]] such that
(13) (1 — pip* )0, (v* ™) = ay(k(V)* — 1)
forany k=1, k=jmod(p —1).

Put b,(T) = a,(k(V)7*A + T) — 1), then b,(T)eo[[T]] and by(k(¥)* — 1) =
ay k(7 —1). It follows from the proof of Proposition 2.2 that
0;(v*?)ymod p = 4;(wi”) = 0. This implies that b,(T') is a unit in o[[T]].
Note g = X(¢). Thus we have proved

PROPOSITION 3.5. Let X = X, ;, X # X0 %o, and let v be the basis
for U.(X) over A constructed im §2. Then there is a unit power series
b(T) in o[[T]] such that

(1 = X($)p* )0, (v*?) = by(k(7)* — 1)
for any k=1, k= jmod (p — 1).
4. The closure of the Stark-Shintani units. Let F be a real
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quadratic field embedded in R, and let p be an odd prime number which
splits in F (p = pp’). Further assume p = 1 mod8. Take an integer «
of F such that «a >0, &’ <0, aehp, a¢p® and a¢p’. Put aa’ = —ap,
and assume that e is a quadratic residue modulo » and Ty e(a) is not.
Put M = FO ), N = F(/p*a), where p* = (—1)*~"2p. Then it is easy
to see that p ramifies in M and remains prime in N, and p’ ramifies in
N and remains prime in M. Put M, = MQ(,)* ({, is a primitive p-th
root of unity). Then M, satisfies the condition (D). Further, M, has
the property (P) by the results of [9] (see Theorem 1, Proposition 10 and
Remark after Proposition 13 of [9]). Hence we can apply Theorem 1 to
the cyclotomic Z,-extension M. = U,», M, of M,.

Let f, be the conductor of M,/F and let G, be the subgroup of
H(f,) corresponding to M,. Put 7, = X (1,G,). We have seen in the
proof of Theorem 1 that

(14) Nn,m(’}m) = inn for any m g n g 0.

Put K, = M(C,), and put K. = U,z K,. Since Q1 p* ) is contained
in Q(,), N is contained in K,. Since p is totally ramified in F(,) and
remains prime in N, there is a unique prime p, of K, = NF({,) lying
over p. Since p splits in F, the completion of F' at p is identified with
Q,. Let @ be the completion of N at p, and let @, be the completion of
K, at p,. Then @ is the unramified extension of @, of degree 2 and @, =
@(C). Hence we are in the situation of §§2-3 with d =2. So we use
the same notation as in §§2-3 without further comment. Note that
Gal (K../F') is naturally isomorphic to H = Gal (9./Q,).

We can view the unit X, (¢, G,) of M, as a unit of @, by the in-
clusions M,c K, c®,. Put &, =72 Then & = 1modp,. Let &, be
the subgroup of E(M,)~ generated by (¢,)"" 0<s=<p —1,1=<t=<
(p —1)/2). Then %, is a subgroup of U,. Let &, be the closure of &,
in U,. Since &, is stable under the action of H, &, is a Z,[H]-module.
Hence we have a decomposition &, = @, Z,(X). It follows from the
definition of z and ¢ that ¢|M, is the generator of Gal(M,/M;) and
(z¢)?~22 induces the identity mapping on M,. Hence (£,)? = &' and
(6)#? "% =g . This implies that &,(X,;)=1 for i =0 or j =
(p — 1)/2mod 2.

LEMMA 4.1. Let X=X, ;, j=(p —1)/2mod2. Then the elements
gur 0<s=p"—1) of Z.(0) are multiplicatively independent over Z,.

PROOF. Put 7 = (p — 1)/2. We have observed that &, = @, Z,(X..,),
where j runs over the » integers satisfying 1 <5< 2r, 5= 7mod2.
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Since (&%) ™ = (g4 & (X) is generated by &@r (0<s< p" —1)
over Z, and the Z,rank of &,(X) is at most p". So it suffices to show
that the Z,-rank of &, equals to rp". But &' 0<s=<p"—1,1<¢t=<7)
are independent units of M, by Theorem 1. Hence they are multiplica-
tively independent over Z, by a theorem of Brumer ([2]). Then the Z,-

rank of &, is rp™. g.e.d.

Let &.. = projlim &, (with respect to N, ,). Then &, is a compact
H-module. For each X, &.(X) = projlim &,(X) and Z.(X) is a compact
I'-module, hence a compact 4-module. Note that ¢ = (¢,).5, is an element
of 2. by (14). Our purpose is to relate the A-module structure of
U..(X)/Z(X) to the values of §, at &.

LEMMA 4.2. Z.(X) = 4°° for any Xe 4.

This lemma is proved by the same argument as in p. 814 of [15].
Now we are ready to prove the following proposition.

PROPOSITION 4.3. Let X be as in Lemma 4.1.

(i) The natural projection Zn(X) >Z,(X) induces an isomorphism
Zo(N)| 0, B =(X) =5 Zo(X) for any n = 0.

(i) 4= Zu) by AT)— AT)E®.

(iii)  (Uu(X)/BrX))™ = U, (X)|Zu(X) for any n = 0, where A™ = Alw, A
for any compact A-module A.

ProoF. It follows from (14) that the natural projection Z.(X)—
Z,(X) is surjective. Obviously w,Z.(X) is contained in the kernel. Let
u = (u,) be in the kernel. Hence u#, = 1. By Lemma 4.2, u = f(T)&"
for some f(T)e A. Then A(T)e* =u, =1 and w,&% = 1. By Lemma
4.1, this implies that f(T) = 0 mod @, 4. Hence ue 0,Z.(X). This proves
the first statement. The second statement follows immediately from
Proposition 2.1 and Lemma 4.2. The natural projection U.(X) — U,(X) is
surjective and its kernel is w,U.(X) by Proposition 2.1. Further it maps
Z.X) onto &,(X) by (i). Hence the natural homomorphism U.(X) —
U,)/Z,(X) is surjective and its kernel is ®,U.(X)Z.(X). This proves
the third statement. q.e.d.

The following theorem is the main result of this section.

THEOREM 3. Let X=X,;,, 1<j<p—1, j=(p —1)/2mod2. Then
there are two power series fy(T)e A, g,(T)eo[[T]] with the following
properties:

(1) U)|ZnX) = A/f(THA as A-modules.
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(i) 1+ p*)0,(8) = gu(k(V)* — 1) for any k=1, k= jmod (p — 1).

(iii) fAT)[[T]] = g(T)o[[T]].

PROOF. Let v** be the basis for U.(X) over 4 in §2. Since Z.(X) =
A c U (X) = Av°?, there is a power series fy(T)e€ A such that &% =
F(THv*?, Then U.(X)/Z.(X) = A/fy(T)A as A-modules. Let b,(T) be the
unit power series in Proposition 3.5, and put ¢,(T) = b,(T)fx(T). Since
g = ¢ and X(¢) = —1, Proposition 3.2 implies that §,(¢) = d,(¢°¥) for
k=1, k= jmod(p — 1) (ef. (9)). Then it follows from Propositions 3.2
and 3.5 that

(1 + p¥90,(8) = 1 + P*)fu(e(7)* — 1)0,(v*®)

= fu(e(7)* — Db((7)* — 1)

= go(£(7)* — 1)
for any k=1, k= jmod (p — 1). q.e.d.

We may view the above theorem as a weak analogue of a result of

Iwasawa on ecyclotomic units and a result of Coates-Wiles on elliptic
units. It is known that the values of 6, at the limit of cyclotomic units
(resp. elliptic units) are essentially the values of the corresponding L-
function at integers and the p-adic analytic function Z,3s— g,(k(7)* — 1)
is essentially the p-adic L-function of Kubota-Leopoldt (resp. the p-adic
L-function associated to an elliptic eurve) (cf. [3], [5]).

COROLLARY. Letp =3mod4. Put h, = h(M,)/hM;), 1, = X1, Gy).
If () # 0 for any odd integer j with 1 < j < p — 1, then h, is prime
to p for any n = 0. )

ProOOF. Since 4;(¢) mod p = ;&) = (9* — L)y;(0), 5(0,) # 0 implies
0,(¢) Z#0mod p. Hence g,(T) and f(T) are unit power series and
U.X)/Z-(X) is trivial for X =%,; 1=<j<(®m-1), j=1mod2 by
Theorem 3. Then it follows from (iii) of Proposition 4.3 that U,(%, ;) =
G, ;) for odd j with 1< j < (p —1). Since &, = @0 %,X,,;) and
the Z,rank of &, equals to the Z-rank of E(M,)~ (=p"(p — 1)/2), this
implies that [E(M,)": &,] is prime to p. Hence h, is prime to p by
Theorem 1. q.e.d.

REMARK. The above corollary gives a sufficient condition for p }t h;
(Yn = 0) in terms of certain congruences which can be calculated by
knowing a special unit », of M,.

Now we prove Theorem 2 stated in the introduction. Note that the
assumption on M and p in Theorem 2 is the same as in the beginning of
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this section except that we need not assume p = 1mod8 in Theorem
2. We keep the notations 9,, U,, 7, ¢, 7 and X,; as before. But in
this time, let M, = M and let M. = U,>, M, be the cyclotomic Z,-ex-
tension of M. Then [M,: F] = 2p™ and M, c MQ(,)* < ®,. Further the
condition (D) is trivial since M/F is a quadratic extension, and M has
the property (P) by Theorem 1 of [9]. Hence we can define 7,, £, &,
and &, similarly. Then it follows from the definition of ¢ (resp. 7)
that ¢|M, (resp. v|M,) is the generator of Gal (M,/M;). Hence g =
& = &' This implies that &, = Z,(X.,) and Z. = &.(X,,) for r =
(p — 1)/2. Then we can prove that the same statements as in Theorem
3 and its corollary also hold for this case. So it suffices to show that
¥,(1,) # 0 under the assumption of Theorem 2. Put 7, = (x + yv/ @)/2 (x
and y are integers of F'). Then x %= 0 mod p, since 7, is a unit of F and
o is a prime element of F, (F, is the completion of F at p and F, is
identified with Q,). Since the ramification index for @,/F, is (p — 1)
(=2r) and M c M(g,) C @,, there is a unit » of @, such that 1" 'a = wu,
w,=C — 1. Write w = g(x,), 9(T) = ay + a,T + +--€0[[T]]. Then a, is
a unit of o. Put f(T)= 1/2)(x + yT"9(T)). Then f(T)eo[[T]] and
7, = f(m,). Recall that D = (1 + T)(d/dT). Then

y = L+ DyT7o(T) + yT79'(T))
x4+ yTrg(T)
= rax yT " mod T o[[T]] .

D(log A(T)

Since D™ (T*)|p=o = 0 if &k = » and D" (T )|;—, = (» — 1)!, we obtain
¥, (1,) = D"(log f(T))|r=, mod p
=7l ax 'y modp .
Since 7! a,x' is a unit of o, (1) # 0 is equivalent to y % O mod p. This
completes the proof of Theorem 2.
We conclude this paper by giving an example of Theorem 2.

ExAMPLE. Let F=Q(1/5). Put e=(3 +175)/2. Let p =11 and
let @ =(—1+ 3175)/2. Then p splits in F and ae’ = —p. Hence the
assumption of Theorem 2 is satisfied. Let M = F(v ). Then it was
shown in pp. 191-192 of [10] that

X1,G) =c+1Va)2.

Hence 11 } h; for any n = 0 by Theorem 2. This is also an example of
the corollary to Theorem 1.
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