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1. Introduction. Let u:R2-^R be a function the graph of which
is a minimal surface in R3. Then u is a linear function by the classical
theorem of Bernstein.

On the other hand, the same conclusion does not hold in the case of
codimension greater than one. The graph of an entire holomorphic
function on C is a minimal surface of R* = C2 which is not necessarily
a plane.

Recently a generalization of Bernstein's theorem was proved.

THEOREM (do Carmo and Peng [1], Fischer-Colbrie and Schoen [3]).
Complete orientable stable minimal surfaces in iί3 are planes.

A minimal surface is called stable if the second variation is non-
negative for every normal vector field on M with compact support. This
theorem suggests that the essential property is the stability. In fact,
the minimal graphs of codimension one are stable (Federer [2]), whereas
those of codimension greater than one are not necessarily stable (Lawson
and Osserman [5], Kawai [4]).

Since the graph of a holomorphic function on C is stable, it is quite
natural to ask whether or not the complete orientable stable minimal
surfaces in i?4 are congruent to the complex submanifolds of C2 = R\
i.e., transformed to the complex submanifolds of C2 = J?4 by the isometries
of R\

The purpose of this paper is to give a partial answer to this ques-
tion, i.e., to prove the following theorem.

THEOREM. Let M be a minimal surface in R4 which is a graph of
a function defined on the whole plane R2. Suppose that M is stable.
Then M is a plane or the graph of a holomorphic function or the graph
of an antiholomorphic function with respect to a fixed identification
R2 = C. Hence M is congruent to a complex submanifold of C2 = R\

To prove this theorem, we shall show that the second variation is
negative for some normal vector field on M with compact support if M
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is not of one of the three types. The description of minimal graphs in
i?4 by Osserman [6] will be used.

The author wishes to thank Professor M. Adachi for continual
encouragement and Professor K. Sugahara for invaluable suggestions.

2. The second variations. Let M be a surface minimally immersed
in a flat Riemannian manifold N. Suppose that M has global isothermal
coordinates x, y, and the induced metric is ds2 = X\dx2 + dy2) for a posi-
tive C°° function λ. We make use of the same method as Kawai [4],
But we consider the complexified second variation instead of the sum of
the second variations in the directions of a pair of normal vector fields.

We write X = d/dx, Y = d/dy, Z = (X - iY)/2, Z = (X + iY)/2 for
simplicity, and denote various operators and their complexifications by
the same letters. We denote by <V, W} the symmetric product of
vectors V and W. Hence | | F | | 2 — <F, V) for a complex vector V.

PROPOSITION 1. Suppose a C°° cross-section ξ of the complexified
normal bundle vc of M satisfies the differential equation Vzξ = 0, where
V denotes the covariant differentiation in the normal bundle v. Then
for every R-valued C°° function φ on M with compact support, we have

= 4 \ (Zφ)(Zφ) \\ζ\\2dxdy

where I is the index form, and A is the C°° cross-section of v*®T*M(x)
TM defined by the second fundamental form B of M in N.

PROOF. By the result of Simons [8], we have

where Δ = trace VV is the Laplacian in the normal bundle v of M in N,
and *1 is the volume form of the induced metric of M.

Since x, y are isothermal coordinates, we get

VγVγ{φζ)]

j
(Zφ)Fzξ]

~ (2lX2)φR(Z, Z)ξ ,

where R denotes the curvature of the normal bundle v. Hence we have
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, <pξ) = ~(4:/Xη[(ZZφ)φ\ψ + φ(Zφ)(Z\\ξf)]

•+ (2/xηφ\R(Z, z)ξ, !>

+ φ(Xφ)(X\\ξ\Y)

i{(Yφ)(X\\ξ\\*) -

, Z)ξ, f > ,

where Δo = XX + YY = 32/3x2 + d2/dy\
By the theorem of Stokes, we get

\ -(l/λ2)[(Δoφ)<p||£||2 + φ(Xφ)(X\\ξ\\>) + φ(Yφ)(Y\\ξ\\2)

By the identity of Ricci, we have

(2lX*)φ\R(Z, Z)ξ, f> - (A«

K ), Aξ(Z))

Hence we obtain the desired result.

3. Minimal surfaces in R\ Consider a minimal surface M in Rn

defined by

f(%, v) = (/i(«, v), •••, / „ ( * , v))

with respect to isothermal coordinates x, y. Let us define functions ψk

of z = x + iy by

?>* = d/*/da; - dΛ/dy (fc = 1, 2, , n) .

Since a;, ?/ are isothermal coordinates, φk are holomorphic in z and
they satisfy the following identities.

(1) (Φ, Φ> = Φl + Φl + • • • + Φl = 0 ,

(2) ||a/AM|2 = Widyf - y|2/2

Hence the induced metric of M is ds2 = X%dx* + dy2) with λ2 = ||ί4||2/2.
We identify X, Y, Z, Z with their image by the differential of / .

DEFINITION. & = B(X, X) - iB(X, Y).
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By Ruh [7], the normal vector fields B(X, X) and B(X, Y) satisfy
the following identities

Pr{B(X, X)) = VX{B{X, Y)) , PΛB(X, X)) + VY(B(X9 Y)) = 0 .

Hence ς0 satisfies the equation Vzζ — 0.
We shall construct a cross-section ς of vc from ζ0 which also satisfies

the equation Vzζ = 0, and apply Proposition 1 to ζ. For this purpose
we study the properties of ζ0

LEMMA 1. ζ0 = 2B{Z, Z) = Zφ - (Zx2)φ/x2.

PROOF. By the minimality of M9 we have B(Z, Z) = 0. Hence we get

f0 = B(Z + Z, Z + Z) - ίB(Z + Z, i(Z - Z)) = 2B(Z, Z) .

Since the real (resp. imaginary) part of B(Z, Z) is the normal component
of the real (resp. imaginary) part of ZZf = Zφ/2, and \\Zf\\2 = \\Zf\\2 =
λ2/2, we have

B(Z, Z) = Zφ/2 - 2(Zφ/2, ZfyZf/X2 - 2(Zφ/2f Zf)Zf/X2 .

Making use of the identities (1) and (2), we obtain

B(Z, Z) = Zφ/2 - (ZX2)φ/2\2 .

Thus the lemma isjproved.

LEMMA 2. \\A'\Z)\\2 = \(Zφ, Zφ)\2/2X ,

PROOF. By the definitions of A and ζ09 we have

( 3 ) ||A*(Z)||f - (2/λ2) \(AHZ\ Z}\2 + (2/λ2) \{A%Z\ Z)\2

= (2/X2)\(B(Zf Z\ fo>|2 + (2/X2)\(B(Z, Z), ξo)\2

= (l/2X2)\(ζQ, ξo)\2 .

By Lemma 1 and the identity (1), we get the first equality. By Lemma 1,
we have

Since ||^||2 = 2λ2, we get the second equality.
Now we consider the minimal surfaces in iί4 which are graphs of

maps from R2 to R2. These objects are investigated by Osserman [6].

PROPOSITION 2 (Osserman). Let M: f = (flf f2, /3, /4) be a minimal
surface in JB4 where fz(f19 f2) and fA(f19 /2) are functions fx and f2 defined
on the whole plane R2. Then there exists a linear transformation of R2

Λ = Xf f* = ax + by (α, 6 e R9 b > 0) ,
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such that x, y are global isothermal coordinates of M.

With respect to these isothermal coordinates, we have

Φi = dfjdx - idfjdy = 1 ,

Φι = df2/dx — idfjdy = a - ib .

Putting rf = 1 + (α - iδ)2, we get φ\ + φ\ = -d, since φ\ + φ\ + φ\ + # = 0.
In the case d = 0, we show that M is either the graph of a holo-

morphic function or the graph of an antiholomorphic function with
respect to a fixed complex structure of JB2. Because the condition d = 0
implies a = 0 and 6 = ± 1 , the linear transformation in Proposition 2 is
either Λ + i/2 = α? + iy or /i + i/2 = x — iy. The identity φ\ + φ\ = 0
implies that either ^4 = i^3 or ^4 = — iφz. Hence / 3 + i/4 is either a
holomorphic function or an antiholomorphic function of fλ + if2. Of course
M is congruent to a complex submanifold C2 = iϊ4.

Now we consider the case d Φ 0. In this case the condition

(Φi + iφd(Φz — iφi) = ~d Φ 0

implies that the non-vanishing holomorphic function φz — iφA is of the
form φz — iφi = eH{z) where H(z) is an entire function. Hence we get
the identities

(4) φ3 = (Θ^(^ - de~H{z))/2 , ^4 = i(eH{z) + de~H{z))/2 ,

(5 ) Zφ = (0, 0, ff'(e f f + de-^)/2 , iH\eH - de

By Lemma 2 and the above identity (5), we have the following propo-
sition.

PROPOSITION 3. \\Aζ°(Z)\\2 = |ώ|2|£Γ|4/2λ2.

Here we give a property of a minimal surface in /24 which is
congruent to a complex submanifold in C2 = J?4.

LEMMA 3. Λf is congruent to a complex submanifold in C2 = iί4 if
and only if Hf = 0 or d = 0 holds.

PROOF. We show that ||Aξ°(Z)\\2 vanishes identically if M is congruent
to a complex submanifold. We may suppose that M is a complex sub-
manifold. Let us denote by J the complex structure of C2 = jβ4. Then
J induces the complex structure J ' of M and we have

B(J'u, v) = B(u, J'v) = JB(u, v)

for every tangent vector u and v of M at p e M.
Since J is Hermitian, we get by Lemma 1 the equality
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<£., ίo> = 4<JB(Z, Z), JB(Z,

= A(B{j'z, z), B(j'z, zy>

= 4(B(iZ, Z), B(iZ, Z))

= -(ξo,ξo>

This shows (ξ0, ξ0) = 0 which implies the desired result by the identity
(3). The converse is clear, because H' = 0 implies that M is a plane.

PROPOSITION 5. ||fo||
2 = [(1 + α2 + δ2) - 2δ2/λ2] \H'\2.

PROOF. Since

λ2 = [1 + α2 + δ2 + (|eff|2 + |d|2|e-ff|2)/2]/2 ,

we have

| e T + \d\*\e-H\2 = 2[2λ2 - (1 + α2 + b2)] ,

(le^l2 - |dp|e-*|2)2 = 4[2λ2 - (1 + α2 + δ2)]2 - 4|d|2 .

Hence we get

( 6 ) £λ2 = iϊ'(|e*|2-|d|2|e-*|2)/4,

2\ZX2\2IX2 = \H'\2[{2X2 - (1 + α2 + δ2)}2 - |ώ|2]/2λ2 .

By Lemma 2, we obtain

Hfoll2 = IJEΓ'Πe' + de~H\2/4 + \H'\2\eH - de~H\2l4

- |ίίT[{2λ2 - (1 + α2 + δ2)}2 - |d|2]/2λ2

= |H'|2[(1 + α2 + δ2) - 2δ2/λ2] .

4. The proof of Theorem. In this section, we show under the
conditions d Φ 0 and H' Φ 0 the existence of a normal vector field with
compact support for which the second variation is negative. By Lemma
1 and the identities (5) and (6), we have

ςt = H'[(0, 0, (e* + de-*)/2, i(eH - de~H)l2)

- (l/4λ2)(|e*|2 - \d\*\e-«\2)φ] .

DEFINITION. We define a C°° cross section ξ of vc to be the quantity
inside the bracket [ ] in the above expression for £„.

LEMMA 4. Suppose that H' Φ 0. Then we have the following
equalities.

V-Zζ = 0 , \\A\Z)f = \d\2\H'\2βX* ,

Hfll2 = (1 + α2 + δ2) - 2δ2/λ2 ^ 1 + α2 + δ2 .
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PROOF. Since ς = ζQ/H' at the points z with H'(z) Φ 0, we get the
second and the third equalities. Since Hf is holomorphic, we get the
first equality except at the zero points of Hf. These equalities hold on
the whole plane R2, because the zero points of H' are isolated.

By Proposition 1 and the above Lemma 4, we have

( 7 ) I(φξ, φξ) ^ (1 + a2 + V) \ [(Xφ)2 + (Yφ)*]dxdy

-2\d\2\ \
JΛ2

for every R-valued C°° function φ on R2 with compact support. Since

liψξf <Pξ) = UP Re ξf Ψ Re ξ) + I(φ Im ς, φ Im ς)

is the sum of the second variations in the directions of φ Re ξ and φ Im ξ,
we have only to show the existence of an R-valued C°° function φ with
compact support for which the right hand side of the inequality (7) is
negative.

The quantity |iJ'|2 is positive on an open set of R2. Hence it suffices
to prove the following lemma.

LEMMA 5. Let c be a positive constant. Let F be a non-negative
function on R2 which is positive on an open neighborhood of the origin.
Then there exists an R-valued C°° function ψ on R2 such that

\ [(Xφ)2 + (Yφ)2]dxdy < c \ Fφ2dxdy .
JΛ2 JΛ2

PROOF. Let us define a sequence φm (m = 2, 3, •) of functions on
R2 as follows:

<PJrf θ) = 1/3 + 1/5 + .. + l/(2m - 1) (0 ^ r ^ 1) ,

ΨJX, θ) = 1/(2j + 1) + l/(2i + 3) + . . . + l/(2m - 1) - (r - j)/(2j + 1)

U ^ r ^ j + 1, j = 1, 2, , m - 1) ,

φJr, θ) = o (m^r),

where r, θ are the polar coordinates of R2. Then we have

(Yφm)2]dxdy = τr[l/3 + 1/5 + . . . + l/(2m - 1)] ,

\ c\ (Fφ2

m)dxdy

= β'[l/3 + 1/5 + + l/(2m - I)]2

where D(l) = {(«, y) e R2 \ x2 + i/2 ^ 1} and c' = c \ Fdxdy > 0.
JD(I)
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Since 1/3 + 1/5 + + l/(2m - l)-> oo (m-> oo), we have

+ (Yφjψxdy <

for sufficiently large m. Approximating φm by a C°° function, we obtain
the desired result.

REMARK. The first proof of Lemma 5 used the following fact due
to Fischer-Colbrie and Schoen [3], For any non-negative function q, the
existence of a positive function g on R2 satisfying —AQg — q g — 0 is
equivalent to the condition that the first eigenvalue of — Δo — qbe non-
negative on each bounded domain in R2. The above elementary proof
was kindly informed to the author by Professor K. Sugahara.

REMARK. For an orientable parametric minimal surface M in R*, the
following can be proved: M is congruent to a complex submanifold in
C2 = iί4 if and only if ||A%£)|| vanishes identically, i.e., <£0, £0> vanishes
identically on the domain of an isothermal coordinate. This fact may
be useful to generalize Theorem for parametric minimal surfaces in R\
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