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0. Introduction. A foliation & of a closed Riemannian manifold
W is minimal if the leaves are minimal submanifolds of W. A foliation
is taut if there is a metric on W for which the foliation is minimal.

Sullivan [S], Rummler [R] and Haefliger [H] found geometrical and
topological characterizations of these foliations. A codimension one
oriented foliation is taut if and only if every compact leaf is cut out
by a closed transversal (Sullivan). For general codimension there is a
necessary and sufficient condition for & to be taut that depends only
on the holonomy pseudo group of the foliation (Haefliger). If the leaves
of & are all compact then & is taut if and only if & is stable
(Rummler).

Recently, Oshikiri [0], proved that for & of codimension one and
W with non-negative Ricei curvature tensor, .£ minimal implies that
& and & * are totally geodesic, where & * denotes the normal flow
to #. In particular, & is defined by a closed form.

In this paper we generalize this theorem for the case of codimension
two. Precisely, we prove the following:

THEOREM. Let W™ be an oriented closed (n + 2)-dimensional
Riemannian manifold and &7 a minimal, codimension two C= foliation
of W. Suppose the normal distribution of &, say F,, 1s C* and integ-
rable and that both &, and &, are orientable.

(1) If Rice (W) > 0 then e(#;) + 0.

(2) If Rice(W) =0 then either &, is totally geodesic or e(.&;) # 0.
(Both can occur simultaneously.)

(38) If W has non-negative sectional curvature then either e(&,) # 0
or &, and %, are totally geodesic. (Both can occur simultaneously.)
Here e(57,) denotes the FEuler class of &, and Rice (W) is the Ricci
curvature tensor of W.

REMARKS.
(a) For the case of non-negative sectional curvature the theorem
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is a complete generalization of Oshikiri’s result for codimension two.
(Notice that the Euler class of a one dimensional orientable foliation is
always zero.)

(b) For the case of positive Ricei curvature the theorem provides
a topological obstruction to the integrability of the normal bundle of a
minimal foliation. Let us illustrate that with one example.

Let S®c R* be the standard unit 3-sphere of constant curvature.
Set W = S? x S® with the Riemannian product metric. It is easy to see
that Ricec (W) > 0. There are orientable codimension two foliations on
W such that the normal bundle is also an orientable foliation. The
product of two Reeb foliations of S*® is such an example. This foliation
is not minimal.

There are also minimal foliations of codimension two on W. For
instance, consider the fibration 7 = Hox;: S® x S* — S?, where: 7,;: S® X
St — 8¢, m(x,y) =«; H:S*—S* is the Hopf fibration. The fibration
w: S® x 8§ — S? defines a totally geodesic (hence minimal) foliation & of
W where each leaf is a totally geodesic S® x S'c S® x S®. The normal
bundle of this foliation, say & *, is not integrable because e¢( & *)€
H*W, R) = 0.

We wish to express our gratitude to Professor A. Conde, L. Jorge
and M. Djaczer for many helpful suggestions and observations they made
during the preparation of this paper. We are especially grateful to
Professor C. E. Harle for calling our attention to this problem.

1. Notations. Let xe W and U c W"** an open neighborhood of
x. Let {e, ---, e,4o} be a local orthonormal frame defined on U. The
coframe, connection and curvature forms are given by
B,(e;) = 0,4, 0,7 =0 if I#J 6,,=1

n+42
@ (u) = Ve, er) Qi = dwy, — Kz:‘l Wx N\ Wgy

wherel <1, J <% + 2and F/, {, >, denote respectively the Riemannian
connection and the scalar product of M.
The Cartan structure equations are:

n+2

n+2
e, = K§=:41 @z N\Og , dw;; = KZ;;I WxN\Wg; + 215 .
This is the notation used for instance in [Ch].

2. Some computational lemmas. Let W"* be an oriented closed
Riemannian manifold and & a foliation of codimension 2 satisfying the
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following conditions:

(a) .= is orientable, transversely orientable and has C> differenti-
ability class.

(b) The normal distribution &, = #;* is integrable and C~.

(¢) For 7 =1,2, the tangent spaces #;(x) at the point = of the
leaf &7, passing through z satisfy & (x) P F(x) = T,W and uwe F(x),
ve Fy(x) = {u, vy = 0.

Throughout this paragraph we shall denote by .&; both the foliation
and the distributions tangent to them.

As a consequence of (a), &, is also orientable and transversely

orientable.

DEFINITION 2.1. A local orthonormal frame {e, e, ---, ¢,;.} is said
to be adapted if the following conditions (i) and (ii) are satisfied:

(1) e(®), -+, e.(®) € F1(2), €,1.1(2), €n12(x) € Fy(w) for all w.

(i) {e, ey ---, €nssds {e, <-+, €.} and {e,,y, €,4,} are compatible with
the orientation of W, &, and &, respectively.
Let {e, e, +--, €,,,} be an adapted local orthonormal frame defined on

an open set UcCW. Let 4 be the following (n + 1)-differential form
defined on U:
’1/" = E Z sgn (0') sgn (T)@au)/\@u(z)/\ et /\@a(n—-Z)/\@a(n—l)

geSy ‘rESZJ‘

AN SN My
where S, is the group of permutations of the set {1,2, ---, n} and S;
is the group of permutations of the set {n + 1, » + 2}. sgn (¢), sgn (7)
stand for the signs of the permutations ¢ and 7.

Let E={e, &, ---, e—,m}_ be another adapted local orthonormal frame
defined on a neighborhood U c W and 6,, @,; be the respective coframe
and connection forms associated to E. Let

"?\ = Z Z Sgn (0) Sgn (T)@_a(l)/\@_a(Z)/\ M /\@a(n—-l)/\d-)a(n)r(n+1)/\@r(n+2) .

0€Sy rESZ‘L

The following lemma shows that «» is a global form.

LEMMA 2.2.
Ylyas = "T’lvnﬁ .
PrROOF. Set ¢, = D7, ae; QL <=1=n) and e, = D52, @ (n + 1
a<n-+2). Then we have @, = D7, ,0a,0;, 0, = D5, Quls @Dis
S A Ayl for 1= 1, m+1=<a=<mn+2. Thus

2'1 aa(l)i1@i1)/\<jzz=ll aa(2)f2@i2>/\ SRRIVAN

1=

I 1A

Floow = 3 3 sgn (@) sgn (@)

0€Sn TGSZ‘L
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M2
Jp—1

n+
/\< > f<n+z)52@p2> _
Bo=n+1 Unv

n n+2

>, -sgn(o)sgn(7) Aoy Aoy * " °
"esn reSZ‘L J1rdzscrin=1 B1,Bp=n+1

n n+2
u(n—-l)jn_l@j”_l) < E Z ao(ﬂ)anat(n+1)ﬁ1w1nﬁ1>

1 J"—l By=n+1

""II

*Qom)iy” a’r(n+1),51'a'r(n+2)ﬂz

O, NON - NO; A@j 5 NOs,lunT

Jn—1

The fact that ©,A60, = 0 and the symmetry of S, gives us immedi-
ately:

"/"llmU = 2 >, >, 2. sgn(o)sgn(7) Aoy *Be@n *°°

S reSJ' n€8q ]leSJ'
* Qg (ny1(n) * Cr(nt+0pn+1) * Do (nt2)#(n+2)

‘@vu)/\ e /\@rz(n—n/\wv(n)#(n+1)/\@mn+z) Ivnﬁ .

But E is an adapted frame. Then det(a;;)) =1 (1 <14, j < ), det (a,) =1
m+1=<a, B=n+2)and ZGES” SEN (0)Amr) * * * Comnem = 58N () -det (a;;) =

sgn (7).
Similarly
Esll SEN (T)@c(ninpmn  Ceninpmen = SEN (L) .
TeS;
Thus
Yooz = ﬂgﬂ peis‘. sgn () sgn () Oy A+ + AOyiuy A Oriaypinin N\ Ouia)
= Ylynz - O

From now until the end of this paragraph let us suppose that n = 2.
Using the same notations as before we define the forms ¢, and ¢, and
Q2 in A" (W, R) by

n+2
¢ = >, >, sgn(o)sgn(7) <,=,,2+1 waw/\wp.,u))

0€Sy z‘eSé'

/\Qom/\ ot /\@a(n)/\@r(n+1))/\@‘r(n+2) ’
¢ = >, >, sgn(o)sgn (), A - /\ﬁom/\(kZ:.l Dz (nt1)k /\(’)kr(n+z)> ’

0€8n z'(-:SzJ~

‘Q = 2 Zl sgn (0) Sgn (T)@o(l)/\ e /\@a(n—l)/\Qa(n)r(n+1)/\@f(n+2) ’

08y reszj-

for n = 2.
REMARK. ¢, and ¢, and 2 are global forms in the sense that they
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do not depend on the choice of the particular adapted local frame. The
proof of that fact is a straightforward computation similar to that of
Lemma 2.2.

LEMMA 2.3. If n =2, then
dy = (—1)"[((n — 1)/2)¢, + (I/n)g] + (—1)""'2 .

Proor. Let _
(1) dyv=A+B+C,
where
A= anSl" %‘l sgn (o) sgn (7) g(—l)"*‘ﬂm)/\ © ANOogNBO, 5 AByiun A - -
Tes;

/\@a(n—l) /\a)a(n)r(n+1)/\@r(n+2) ’
B= (-1 3, 3. sgn(o)sgn(t)0,y A --- ANOyuy NAWDy(ayenty N\ Oz (nsay

0€Sy res.j‘

C= (_1)n+2 Z Z sgn (0‘) sgn (T)@a(l)/\ e /\@a(n—-l)/\wa(n)t(n+1)/\d@r('ﬂ+2) .

0€8p res,j
Permuting 1 and j on A, 1 # j, we get:
n—1
A = Z Z sgn (0) sgn (T) le (_1)7--”'(——1)j+1d00(1)/\00(2)/\ ttt
s

0%8n cost
Ay ny N @ inye(niny N\ Oc ey -
But dO,, = 2% @, AOg. Thus
(2) A=A + A,
where
A =(m—1) 3 3 sgn(0)sgn (7) @memAOsm Aoy Ny A -+

0&8y reszl
A Oy A D nyznin N\ Orniar s and
A, =(m—1) > 3 sgn(o)sgn (z-)wa(l)r(n+1)/\@T('n+l)/\@a(2)

0€Sy reSQ‘L

ANO; A\ = AOyiuiy N Bgimyeininy N\ Or ey -

Using the symmetry with respect to the group S, and the laws of
commutativity of the wedge product, we get

A, = (n = D(=1)"" X 3 sgn (0)sgn (T)@,mycinin A\ Opereintn

o€Sn reSZJ'

/\@a(s)/\ e /\@a(n)/\@r(n+1)/\@r(n+2) .
Or, equivalently:
(4) 4, = (n — 1)(—1)"-(1/2)¢,

(3)
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Then, using (2) and (4) we get

(5) A=A +n—-1(-1)-(1/2)¢, .
On the other hand

(6) B =B, + B,

where

(7) B, = (~1y"@

and

( 8 ) B2 = (_1)ﬂ+1 Z Z sgn (U) sgn (T>@a(1)/\@a(2) ANEER /\@a(n—l)

GE€Sy reSZL

n+2
/\ (1{21 wa(n)K/\ wKr(n+1)) /\ @r(n+2) .

From (8) we obtain:

(9) Bzsz1+Bzz

and

(10) B21 = (_1)n+1 zS: ZLISgn (0) sgn (z-)@a(l)/\@a@)/\ e /\@a(n—l)
I€Sn eS8,

n—1
A(z; a)a(n)a(j) AN a)a(j)r(n+1)>/\@r(n+2) ’
i=

(11> B22 = (_1)n+1 Z Z sgn (0) sgn (7)90(1)/\90(2)/\ o /\@a(n-—l)

L r€S2‘L

A Bymyemin N\ Oz nroyeinsn) /\ Ocnray -

Using again the symmetry of S, and the laws of commutativity of
the wedge product “A”, the equality (10) becomes:

(12) B, =(-1)""(n —1) >, 3. sgn(o)sgn (1), \O,;u A\ -

€Sn reSZL

/\ @a(n—l) /\ wa(n)o(l) /\ wa(l)z‘(n+1) /\ @r(n+2) .

For C, we have

(13) C=C, +0C,

i.e. where

(14) C, = (=1 Zs‘ ZL sgn (0) sgn (2)0., ANOyiy \ *++ NOyuoyy
9€Sy r€S2

A @y myznt1) \ Oz ini2y0m) N Oy

and
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(15) Cz = (_1)n+2 Z Z sgn (0) sgn (T)@qu)/\ et /\@a(n—l)/\wa(n)r(n+1)

98y resé
NO:ninyemin N\ Ociniyy -

It is easy to see, from (14) that

(16) C. = (=1)""-(l/n)g, .
From (8), (12), (11) and (15), we get

amn A, = —B,,

(18) B, = —-C,.

Using (1), (56), (6), (7), (9), (13), (16), we finally obtain from (17)
and (18):
dy = (—=1)"[((n — 1)/2)¢, + (1/n)¢,] + (—1)"*'2 . ]
Let M, be the leaf of &, passing through a point xe W. M, is an
immersed manifold on W and its metric is that induced by the metric
of W. Let {e, e, -, €. €,s1, €,..} be an adapted frame defined in a
neighbourhood of x€ W. Define 4, = h&@) 1=, j=n, n+1=2a=s
n + 2 by b = V. q e;) = —wi.e;). With these notations it is easy to
see that

n+2

b= —@Dn —2)! S ST (hahd — hihe)w

1=i<j a=n+1

where v is the volume element of W. Or, equivalently:
n+2

¢ = @2Hn —2)! 3 [tr A7 — (tr A)"]v

a=n+1
where
Aaz(h?j ) Ai:AaoAa!

trd, = N0,  trAl= > hihi.

ik=1

Because A, is symmetric, we have
tr A= > (%) .
4,5=1
If <] is a minimal foliation, then

(19) Shi=trd,=0 ntlsasn+2, and

¢ = (21)(n —2)! Sy

where S = 37, >t (k) is the square of the length of the second
fundamental form of M,.
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Denote by &( ;) the Euler class of the tangent bundle to .#;.
Using the notations as before, we can write (see [M]).

e(77) = —(1/21) 3 sgn (T)[(k; wr(n+1)k/\wkr(n+2)) + ‘Qr(n+l)r(n+2)] .

res;

On the other hand,
¢ =mn! > sgn (7-')”1/\<k2=;1 a)r(n+l)k/\wkr(n+2)>

res;
where v, = O,A :-- ABO, is the volume element of .&,. Then
¢ = —2n!e(F;)Av, —n! 3 sgn (D)2 (nsvyemsn AV «

reS;
Let ¢,41,..2 denote the sectional curvature of W in the direction of
the plane determined by e,., and e,,,. According to our notations, we
have

Qn+1,n+2(6n+l, Cnis) = Cntt,nt2 o

Thus
(20) g = —2n! e(F)AY;, + 2! n! eppynie? ©

¢, is the sectional curvature in the direction of the plane determined
byeande, l=i=n, n+1=a=mn-+2 and

(21) Q2= —(n—l)!;cwv.

The following Lemma is an easy consequence of (19), (20) and (21),
Lemma 2.8 and the Stokes theorem.

LEMMA 2.4. If &, is a minitmal foliation, then

(W S, — 2s(.F3) Ay, + Ez Rice (e, )y =0,

a=n+1
where Rice (e,) = D% g+a Cra 18 the Ricci curvature of W in the direc-
tion of e,.
REMARK. Lemma 2.4 remains true even if the normal distribution

to .&;, say .75, is not integrable. Observe as well that 372, Rice (e,)
does not depend on the choice of the particular adapted frame.

3. Proof of the theorem. Suppose n = 2. Let us observe first
that the minimality of .&#; and the integrability of its normal bundle
imply dv, = 0 (see [R]). Then v, is a cycle and v,€ H*W, R), where
H"(W, R) is the n-th de Rham cohomology group of W.

The Euler class ¢(&;) is also a eycle and ¢(#;)e HX W, R).
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We first prove (i). When Rice (W) > 0, suppose that &( ;) =0 as
an element of H*W, R), i.e., e(%;) is an exact form. Consider the cup
product A in the cohomology ring H*(W, R)

AN: H(W, R) x H"(W, R) —» H***(W, R) .

Since ¢(#;) =0, we have &(F )Ay, = 0 H***(W, R). Now, by the de
Rham theorem

S e(F)Av, =0, which contradicts Lemma 2.4 .
w

This completes the proof of part (1) of the theorem.
Suppose now Rice (W) = 0 and ¢( ;) = 0. Then

SW g F)AY, =0 = SW<S + a:}:‘; Rice (ea)>v

by Lemma 2.4. Thus S = 0 and Rice(e,) =0 e, 1 .
If S =0 then & is totally geodesic and this completes the proof

of part (2) of the theorem.

Suppose now &( ;) = 0 and W has non-negative sectional curvature
in the direction of every 2-plane and at every point of W. Then, in
particular Rice (W) =0 and, by part (2) we see that &, is totally

geodesic.
Moreover, the following proposition is a part of a theorem proved

by Abe [Ab].

PROPOSITION. Let &, and &, be two orthogonal foliations of com-
plementary dimensions over a complete Riemannian manifold W with
non-negative sectional curvatures. Suppose F; is totally geodesic. Then
Z, 18 totally geodesic.

This completes the proof of part (8) of the theorem for the case
n=2.

Let us now suppose that n = 1. _&; is now a minimal one dimen-
sional foliation. In other words, .&; is totally geodesic.

Let {e, e, ¢;} be an adapted local frame and set

’ll" = (Dzl/\ea + @2/\(031 .

It is easy to see that + is globally defined (see [A], [BLR]). Ex-
terior differentiation of - and the Stokes theorem give

2 SW e F)NO, = SW(Ricc (e,) + Rice (e,))y .
If &, is totally geodesic and &; = &, is a foliation then d6, = 0.
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The same argument used for the case n = 2 shows that if Rice (W) > 0

then e( ;) # 0.

This concludes part (1).

Part (2) is a consequence of the fact that &, is totally geodesic.
We can prove Part (3) by repeating the argument used in the case

n = 2. 1
REFERENCES

[A] D. AsiMov, Average Gaussian curvature of leaves of foliations, Bull. Amer. Math. Soc.
84 (1978), 131-134.

[Ab] K. ABE, Applications of a Ricatti type differential equation to Riemannian manifolds
with totally geodesic distributions, T6hoku Math. J. 24 (1973), 425-444.

[BLR] F. Brito, R. LANGEVIN AND H. ROSENBERG, Intégrales de courbure sur des variétés
feuilletées, J. Differential Geometry 16 (1981), 19-50.

[Ch] S.S. CHERN, On the curvature integral in a Riemannian manifold, Ann. of Math. 46
(1945), 269-284.

[H] A. HAEFIGER, Some remarks on foliations with minimal leaves, J. Diffrential Geometry
15 (1980), 269-284.

[M] J.W. MILNOR AND J. STASHEFF, Lectures on characteristic classes, Annals of Math.
Studies, Princeton University Press, 1974.

[O] G. OsHIKIRI, A remark on minimal foliations, T6hoku Math. J. 33 (1981), 133-137.

[R] H. RUMMLER, Quelques notions simples en géométrie riemannienne et leurs applications
aux feuilletages compacts, Comment. Math. Helvetici, 54 (1979), 224-239.

[S] D. SuLLivAN, A homological characterization of foliations consisting of minimal surfaces,
Comment. Math. Helvetici 54 (1979), 218-223.

INSTITUTO DE MATHEMATICA E ESTATISTICA
DA UNIVERSIDADE DE SA0 PAULO-BRAZIL





