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The Fejér-Riesz inequality for Siegel domains
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Introduction. The classical Fejér-Riesz inequality ([2]) was extended
from the unit disc of the complex plane C to balls and polydises of C”
([41, [9], and [10]). For unbounded domains, Hille and Tamarkin derived
an analogous inequality. Let fe H?(R%),1 < p < o, where R’ denotes
the upper half-plane {z€ C|Imz > 0}. Then the following holds for every
x€ R ([5, Theorem 4.1]):

(1) [, 1f@ +irdy s 27 su | |+ iw)ldz,

where R, denotes the positive numbers. Kawata [6] and Krylov [8]
showed that the main results of the Hille-Tamarkin’s H? theory are
valid for all p > 0. The inequality (1) is also seen to hold in this case.
Our purpose is to deal with this inequality in a setting of higher dimen-
sions and a wider class of functions. We shall obtain an inequality of
the same sort for functions # such that w = 0 and log % are plurisubhar-
monic on certain Siegel domains in C" x C™. The principal result is
Theorem 1 in Section 2. Section 3 is concerned with Hardy space
results.

1. Preliminaries. Let u be a real-valued function on R:. If u =0
and log % is subharmonic we shall call % a log. subharmonic funetion. Such
functions are called functions of class PL and then basic properties are
found in [11]. We shall denote by LH?(R%), 0 < p < oo, the class of log.
subharmonic functions u satisfying the condition

(2) M(u, p; R): = sup SR“(“ + 1y)Pdx < oo .
y>0

Let 2 be an open cone in R™ which is the interior of the convex hull
of » linearly independent half-lines starting from the origin. We shall
call 2 an m-polygonal cone. The tube domain with base 2 is defined by
T,={X+1iYeC"|XeR", Ye}. Let u be a real-valued function defined
on T, and w = 0. If logwu is plurisubharmonic we shall call « a log.

Partially supported by the Grand-in-Aid for Scientific Research, the Ministry of Eduecation,
Science and Culture, Japan.



582 N. MOCHIZUKI

plurisubharmonic function. We define the class LH?(T,),0 < p < oo, as
the family of log. plurisubharmonic functions u satisfying the condition

M, p; To) = sup | w(X +i¥)dX < oo,

where dX=dx,- - -dx,, the volume element in R*. The Hardy space H*(T))
consists of holomorphic functions f on T, such that M(|f|, p; To) < o0
([14]). The Siegel domain of type II we shall throughout consider is the
domain in C™ X C™ defined by an mn-polygonal cone 2 c R" and an Q-
hermitian form @:C™ x C™ — C", i.e., D = D(2, @) = {(Z, W)eC" X
C"ImZ — (W, W)e}. If n=1,2=R,, and W, W) =37, |w,| for
W = (w, --+, wa.), the associated domain, D, is biholomorphic with the
unit ball of C™*. Let u be a log. plurisubharmonic function on D. Then
wX + (Y + (W, W)), W) is an upper semi-continuous function of (X +
1Y, W)e T, x C™. We define the class LH?(D), 0 < p < oo, as the totality
of log. plurisubharmonic functions # on D satisfying
M(u, p; D) = gggsmxcmu(X + WY + oW, W)), W)ydXdW < oo,

where dW means the volume element in R*™ = C™. The Hardy space
H?(D) is the class of holomorphic functions f on D such that M(| f|, »; D) <
o (7). If f;eH D), 5 =1, ---,1, then >\i.,|f;| € LH*(D). If uwe LH*(D)
and v is any plurisubharmonic function bounded above, then ue® € LH?(D).
Thus LH?(D) contains discontinuous functions.

We shall frequently use the following basic result. This is found in
[14, (4.9) in Chapter II] and is valid without the assumption of continuity
of u.

LEMMA A. Let u(x + 1y) be a subharmonic function on the half-
plane R%: and v = 0. If u satisfies the condition (2) with p = 1, then
u(x + 1y) — 0 as 2* + y* — oo, provided y = p for a constant o > 0.

2. The Fejér-Riesz inequality for the domain D. We begin by
proving some lemmas. Arguments concerning R: were suggested by the
methods of [1] and [2]. However, they must be substantially reformu-
lated to work for the unbouded domain.

LEMMA 1. Let f(x + 1y) be a holomorphic function on R:. Then
the following inequality holds for 0 < r < R,0 < T

3) 1Py s | 5@+ inrds + | 15w+ iR)Pda

+ {171 + ipray + [ 17T + iwldy .
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Proor. Let E and E’ be the rectangles in R with vertices — T +
ar,1r, iR, —T + tR, and 4r, T + ir, T + 1R, 1R, respectively. Then the
Cauchy integral theorem applied to the holomorphic function f(z)* with
respect to £ and E’ implies

iSR flyydy = — So_Tf(ac + ir)ds + iSR F(=T + iyrdy + S_ f@ + iRy dz
- ST f + iryds + iSRf(T + iyydy — ST f& + iRyde .
It follows that

2 S” f(iy)Zdyl < S:lf(oc + ir)dz + D f@ + iR)Pdw

+ 1=+ iy + {1 AT + iplay

If f(2) is real-valued on the imaginary axis in RZ, this becomes the
inequality (3). In the general case, let g(z) = 27(f(z) + F(—2%)), h(z) =
(20" f(z) — f(—%)), 2€ R%.. Then g(z) add h(z) are holomorphic on R
and real-valued on the imaginary axis, so satisfy the inequality (8).
Note that | f(i9)|* = 9(1)* + h(1y)*, y € R, and |g(2) " + |h(2)|* =27'(| fF(2)|" +
| f(—=2)]), ze R:. It is easily verified that the inequality (3) is valid for
f(z). The proof is completed.

We shall write P(x, y) = n7'y(2* + ¥*)~', the Poisson kernel for R?,
and u,(x + 1y) = u(x + (o + y)) for a constant p.

LEMMA 2. Let we LH'(R%:) and let wu,.(x + 1Y) = (wo(x + 1Y) + &)**
Sfor p,e > 0. Let

(4) ho (& + 3Y) = Sﬂlog Up ()P — t, y)dt, © + iyc R .

Then h,. is & harmonic majorant of log u,. on R:.

PrOOF. The sum of two log. subharmonic functions is log. subhar-
monic, so the function log u,. is upper semi-continuous on the closure
ITi of R%, and subharmonic on R}. Lemma A implies that log %, .(x + ty) —
27'loge as * + y*— <,y = 0. Thus log u, () is bounded on R and &, is
defined and harmonic on the whole of R%. We can choose a sequence of
bounded continuous functions u,(f) on R such that u,(t) = u.(t) = --- and
() — log u, () as k— . Let

T + iy) = Snuka(x —t,y)dt, z+iyeR., k=12 -
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Then h, are continuous on RZ, harmonic and satisfy 2~'loge < h, on
R:. Since log u, . (t) = u,(t) = h,(t), te R, the maximum principle for
subharmonic functions implies that log u,. <k, on R%. Letting k— oo
we get the relation log u,. < h,.. The proof is completed.

LEMMA 3. Let wue LHY(R%:) and 0 > 0. Then the following inequality
holds for every xz € R:

S w( + iy)dy < 2—18 wp(@)de .
Ry R

PrOOF. We may assume that x = 0. Let ¢ > 0 and define the function
ho,. by (4). Let F(z) = exp(h,.(2) + 19,.(?)), 2 € R}, where g, is so chosen
that h,. + 79, is holomorphic. From Lemma 2 we see that w,(z) + ¢ =
exp(2h, () = |F(z)]>. Let 0 <r < R,0 < T. The inequality (3) applied
to F(z) implies that

R R
210r, B): = 2| wptiy)dy < 2| Fiiy)l'dy
T
< S PG + in)lde + ST |Flo + iR) [dx
—_ -T
R . R .
+ STIF(—T + iy Py + SJF(T + iy)dy .
Using inequalities
P = (| w. P —t,wdt) = | w.0rPe -t pat,
we have
T T 2
2I(r, R) < S dxg Yo (8 P(@ — t, 7)dt + S (g U (P — t, Rt) de
-T R -T R
R R
+{av wrP(—T = t, mydt + {"dy| s (72T~ ¢, pat .
Letting ¢ — 0 we see that
T

oI(r, R) = S:dxgnu,,(wp(x — t, rdt + S T<Snu,,(t)”2P(x —t, Rydt >2dac

R
+ S dyLu,,(t)P(—— T —t, y)dt + SRdyERu,,(t)P(T — ¢, y)dt
=:I(r, T)+ LR, T)+ I(r,R, T) + I(r, R, T) .

Clearly, L(r, T) < qu,,(wdt. We treat I, j = 3,4. Let

WFT, ) = | wOPET 1, )it .
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Since u,(t) — 0 as |t| — « by Lemma A, we can take K > 0 such that
u,(t) < R~ for |t| > K. Using the inequality y(a* + ¥*)* < a'for a, y >
0 and taking an arbitrary T > K, we can see that

oWFET, y) < B + g UOPCFT — t, 9)dt < B + (T — K)“Snup(t)dt .

It
It follows that

I(r,R,T)< R+ (T — K)“Rgnu,,(t)dt , T>K, j=34.
To estimate the integral I(R, T), let
Gz, y) = SRup(t)“zP(x —t,y)dt, x+iyeR:.

Since u,(t)"* € L*(R), we have G(z, y) = Cv(x), ¥y > 0, where C is a constant
and v(x) is the Hardy-Littlewood maximal funection of u,(x)"?. Note that
v(z) € LAR) and G(x, R)* >0 as B — . Now in the inequality

2I(r, R)
=< Skup(w)dx + SRG(w, R)Ydx + 2R 4+ 2(T — K)“IRSRu,,(x)dx , T>K,

letting first T'— o and then R — o, r — 0, we have
2| wiindy = | wi@as,
R4 R

which completes the proof.

LEMMA 4. Let T, be a tube with base 2 which is an m-polygonal
cone in R*. Letue LH(T,) and let u,(X + 1Y) = w(X + (o + Y)) where
0=(0y -, 0,)€R2. Then for any XcR"

(5) Sgu,,(X +iY)dY < 2 Snnu,,(X)dX .

PROOF. To begin with, we suppose £ is the first octant in R", i.e.,
Q={Y=(, -, ¥.)€ER" |y, ---,y, > 0}. Clearly we may consider T, as
R: X --- X R, the Cartesian product of » half-planes. Let Q' = {Y’' =
Wy * s Yu)| Yo+, Yo > 0}. Then we can write Ty = R X Ty and X +
1Y = (%, + 1y, X' + 1Y) for X + 1Y eT,. We shall show that if 2z, € R2
is fixed then u(z,, Z’) belongs to LHY(T,) as a functionof Z' e T,.. Itis
clear that u(z,, Z’) is log. plurisubharmonic on T,. Take r > 0 such that
4d={weC||w—2z|=<r)cR. and let 6 =Imz, —r. Since u(w, Z') is
subharmonic as a function of w = x, + 1y, for an arbitrary Z’' =
X' +4Y'eT,, we have
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u(z, 2') = (71'7"2)“15424,(901 + 1Yy, Z")dx,dy,
= (nrz)‘IS:erylSRu(xl + 1y, Z')d, .
Integrating with respect to dX’' = dx, --- da, we get
[, e 200" < @ an| i + i, 20ax

= (@rd)"2rM(u, 1; T,) .

Similarly, it is seen that if Z’e T, is fixed then wu(z, Z') belongs to
LH'(R*) as a function of z,€R: ([14, p. 116]). The inequality (5) is
proved in Lemma 3 for » = 1. Now we assume that it is valid for » — 1.

Writing 0" = (0., -+, 0.) € 2', we obtain
Sgu,,(X +iv)ay = | dn| we +ito, + v, X+ it + YAV
+

< 2§ ax' | utw, +ilp, + v, X' + i0)dy,
.

RN—1
gz—ng u(X)dX .
R™
If 2 is an m-polygonal cone we can proceed as in [14, p. 118]. Take =
linearly independent vectors generating 2 and let A be the matrix with
these vectors as its columns. Then the linear map X — AX, X ¢ R, trans-
forms theNﬁrgt octant 4 onto 2 and can be extended to C" by A(Z) =
AX +1AY,Z =X +1YeC". The function u-A belongs to LH*T,), so
we have

Sgu(X + i + Y)Y = [detA]S (e AXEX +i(p + DAY
< 2-%|det A SM (e AYX + ip)dX

=9 S wX + ip)dX ,

which completes the proof.

THEOREM 1. Let D = D(2, @) be a Siegel domain in C™ X C™ with
an m-polygonal cone 2. Let we LH?(D),0 < p < . Then for any X¢€
Izn

sg Cmu(X + (Y + oW, W)), W)ydYdW < 27"M(u, p; D) .

Proor. It suffices to prove for p =1. For ¢ = (¢, -+, ¢,) €2 and
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WeC™ put v(Z; e W)=uZ+i(c+O(W, W), W), Z=X+1YeT,.
Then it is seen from the same argument as in [12] that v(Z; ¢, W) belongs
to LHYT,) as a function of Z. It follows from (5) that for any pe R

Sgu(X Lo+ e+ Y + O(W, W), WydY
< 2_"Sm WX + i(o + & + O(W, W), W)dX .
Integration with respect to dW and arbitrariness of o + ¢ imply the

desired inequality. The proof of Theorem 1 is completed.

REMARK. It should be noted that the condition we imposed on the
cone £ is not restrictive when » =1 and 2. Thus all the results hold
for general Siegel domains for these cases.

Recall that D, is biholomorphic with the unit ball of C*™. We write
| W] = S, Jw,]* for WeC™.

COROLLARY 1. (i) Let we LH*(T,). Then for any Xe R"
Sgu(X FiYYdY < 27 Mu, p; Ta) .
(ii) Let we LH?(D,). Then for any x€ R
SR+Xcmu(x + iy + |WP), WydydW < 2-*M(u, p; D,) .

REMARK. The Poisson kernel for the unit dise U provides an example
that the Fejér-Riesz inequality does not necessarily hold for harmonie
functions on U (|2, p. 311]). Similarly, the Poisson kernel P(x, y) shows
that (i) is not necessarily valid for harmonic function on R:.

The following result is related to [13, Theorem C] and the first half
is known for | f|?, f € H?(R%) ([6]). We write r < sif and only if s — r¢
{0}U R for r,se R, and |Y|* =37, y* for YeR".

THEOREM 2. Let we LH?(D), 0 < p < oo, where D = D(2, ®) with an
n-polygonal cone 2. Let

WV = wX+ (Y + O, W), WydXdW, Yeg.
Then (Y) is a decreasing function of Y. If Y=Y, for some Y,€Q
and |Y| — oo, then 4(Y)— 0.

Proor. It is sufficient to prove for p = 1. First we prove the
assertions by induction on » assuming that £ is the first octant in R”
and w € LH(T,;). We denote by ™ (Y) the integral of (X + 1Y) with
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respect to dX over R*. Let we LH'(R%). Suppose u is continuous and
let v = 4*%. Then v is subharmonic and M(v, 2; R%) < . It is proved
implicitly in [13, Theorem C] that in this case +"(y) is a decreasing
function of ¥y>0. When u is only upper semi-continuons, let G,={x+11y €
2 |y > p}, 0>0, and let u,(x+1y) be the function defined to be the mean
value of u over the disc of radius », r < p, centered at the point z + 7y.
u, is a continuous subharmonic function on G, aud {u,} tends to u de-
creasingly as r —0. It is seen from Fubini’s theorem that M(u,, 1; G,) <
M(u, 1; R%), hence +"(y), the integral of wu,(x + 7y), is a decreasing
function of y > p. Taking limit as » — 0, we can get the same conclusion
for u. Let h(x + iy) be the Poisson integral of wv,(f) with a constant
© > 0. Then from the same reasoning as in Lemma 2 we can see that
v,(x + 1y) is majorized by h(x + iy) on R%. The maximal function of v,
belongs to LR), so (0 + y) tends to 0 as y — . Next supposing
¥ (Y") is a decreasing function, we can easily see that ™ (s) < 4™(r)
if r<sin Q. If|Y|=|,Y) >, Y=Y, we may suppose ¥, — oo
increasingly. Let t, =y, —¢>0, ¢ >0. From Y = (¢, Y;) we have

pO () = ey + ity X+ ¥DAX = | ax'| uie+ ity X+ iV,

Here, the inner integral tends to 0 decreasingly as t, — o for every
X'eR", so y™(Y)—0 as y, > . Let 2 be an n-polygonal cone and
A be the matrix employed in the proof of Lemma 4. Then we can write

ST = ]detA!S (e AYX + )X,

where ¥ = AY, Ye 4. Since » < s in 2 if and only if # < § in 4, 4™(Y)
is seen to be a decreasing function. The second assertion follows from
the fact that |Y| — o if and only if |Y| — . Now let we LHD) and
r<s,r,scf. Take cef so that r =¢ + p,s =¢ + o for some p, o€ L.
Then v(Z; ¢, W)e LHY(T,) for any WeC™, so we have

(6) Smu(X +i(e + o + O(W, W), W)dX

=, #X + e + o + (W, W), W)X .

It follows that +r(s) < 4(r). Finally take ¢ € 2 such that Y, = ¢ + Y for
some Y¥eQ. Then Y=¢+Y* Y* =Yy and |Y*| — c. Therefore

SRnu(X File + Y* + O(W, W), W)dX

< SMMX +i(Y, + (W, W)), W)X,
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the left-hand side tending to 0 as |Y| — c. The dominated convergence
theorem shows that 4(Y)— 0 as |Y| — . The proof is completed.

COROLLARY 2. Let we LH?(D). Then w(Z + 1@(W, W), W) belongs
to LH?(Ty) as a function of Ze T, for almost every WeC™,

Proor. Let p = 1. We can take a sequence {¢'}C 2 such that ¢ =
e® = ..., 9 -0 and () — M(u,1; D) as j— . For WeC™ let
0 (W) = | w(X +ie? + oW, W), WX, j=1,2---,
R7T

g(W) = s;,ugsmu(X + (Y + O(W, W), W)dX .

Then from the inequality (6) and the choice of {¢'¥’} it follows that
9{W)—g(W) increasingly as j— o for every WeC™ We can see that
g(W) < o for a.e. W from

Scmg( W)AW = lim () = M(u, 1; D) < oo .

3. The case of holomorphic functions. If fe H?(R%),0<p < oo,
the boundary value f*(x) exists for a.e. x€ R. Here f*e L?(R) and
f@ + iy) — f*(x) as y — 0 in the sense of L’-convergence. As a conse-
quence of Corollary 1 and Theorem 2 we have the inequality (1).

ProPOSITION 1. Let fe H(R%),0 < p < . Then for any x€ R
[, 1r@+ ipdy = 2| |7 @ids.
Ry R

Let D be a Siegel domain in C*xC™ and f € H?(D),0 < p < c». Then
the boundary value f* exists almost everywhere, i.e., f*(X + i@(W, W),
W)=limy_, f(X + (Y + &(W, W)), W) for a.e. (X, W)e R" x C™, and f* ¢
L*(R" x C™) ([12)).

PrROPOSITION 2. Let D = D(2, @), where 2 is an n-polygonal cone in
R, Let feH(D),0<p< . Then for any X R"

gr)xcmlf(X + UY + oW, W)), W)|PdYdW

< 2—n§ P oW, W), WlrdXaW

R™ x
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