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1. Introduction. The study of minimal foliations, totally geodesic
foliations and foliations with bundle-like metrics may be of interest to
us in the meaning that they are geometric properties combined foliated
structures with Riemannian structures. The foliated Riemannian manifold
with a bundle-like metric was defined by Reinhart [15] and is discussed
by him and others ([7], [10], [11]). The Riemannian submersion ([2], [13])
is a special case of this conception. The foliated Riemannian manifold
with totally geodesic leaves is discussed by Dombrowski [1], Ferus [3],
Johnson and Whitt [8], Tanno [18] and others. This case often appears
‘in the differential geometry. Recently, Haefliger [5], Kamber and Tondeur
[9], Rummler [16], Sullivan [17] and many people discuss the foliated
Riemannian manifold with minimal leaves.

In this paper we define a foliation on a Lie group. For a Lie group
G, we take a Lie subalgebra Y) of the Lie algebra g associated to G and
a left invariant Riemannian metric {(, ). Then we have a foliated Rie-
mannian manifold (G, {, >, # ®). On (G, {, ), #(h), we discuss the
totally geodesicness and minimality of leaves and bundle-like-ness of the
metric. We have many interesting examples, for instance, foliated Rie-
mannian manifolds with minimal, not totally geodesic leaves. From these
examples, we may remark that it is not able to extend Oshikiri’s theorem
[14] to the case of codimension =2.

2. Preliminaries. Let (M, g) be an n-dimensional Riemannian mani-
fold M with a Riemannian metric g. The objects under consideration
are of class C~, Let {e,} be a local orthonormal frame field in M and
{w*} be the dual coframe field. Here and hereafter, indices 4, B, --- run
from 1 to n. The connection forms wj on M associated with {e,} are
uniquely defined by

dwt = ——%‘,wz‘;/\wﬂ, wi+wi=0.
We set dw? = —>5,0 ['$cw? A\ w° sy + 'ty = 0, then wi are given by

2.1) wg:%(—F§g+FﬁB—FgA)w°.
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The covariant derivative Fgze, of a vector field e, in the direction of e; is
defined by

Ve, = %‘4 wi(ez)eq .

The 2-forms 24 defined by
B = dwh + 3 wi A wh

are called the curvature forms of M associated with {e,}. The curvature
tensor R = (R#,p,) of M is defined by

5 = (1/2)020 Rioow® N w”, Rigp+ Ripe=0.

The following properties of the curvature tensor R are well-known:
Récn + Rfcn =0 ’ Rﬁon = R%AB ’ Rﬁcn + Ré‘DB + Rsac =0.

The quantity R4,; is called a sectional curvature with respect to the
plane spanned by e, and e¢;. Let S = (S,3 = D¢ R be called the Rieeci
tensor of M and S,, be called a Ricei curvature in the direction of e,.

Now let (M, g, &) be an n-dimensional foliated Riemannian manifold,
that is, an n-dimensional Riemannian manifold M with a Riemannian
metric g admits a foliation .#. The foliation & is given by an integrable
subbundle E of the tangent bundle TM over M. The maximal connected
integral submanifolds of E are called leaves. Each leaf has the same
dimension, say q. Then ¢ is called the dimension of &% and p =n — ¢
is called the codimension of & ([15]).

The following convention on the range of indices will be used through-
out this paper unless otherwise stated: ’

A’B,C,...-_—l,z’...’n
i,j’k,...:1’2’...,q
a,B,7,"'=Q+1,Q+2,"‘,Q+p:’n-

We may take a local orthonormal frame field {e,} in (M, g, &) such
that e, are tangent to the leaves, hence e, are orthogonal to the leaves.
Such a frame field {e,} is called a local orthonormal adapted frame field
with respect to & and g. Hereafter we consider a local orthonormal
adapted frame field {¢,} and the dual coframe field {w4} in (M, g, & ).
Then & is locally given by w* =0. We set

2.2) wi = > hfw? + ; Afw?
J

then the integrability of E implies that h% = h%. We remark that the
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distribution defined by w‘= 0 is integrable if and only if A% = A,
Thus the tensor A = (A%) is called the integrability tensor of the
orthogonal complement bundle E*. The bundle E* is identified with the
normal bundle Q@ = TM/E of & ([13]).

For each point of (M, g, &), the quadratic form >}, ; hfw*-w? is called
the second fundamental form of the leaf through the point in the di-
rection of e,. Thus the tensor (k%) is called the second fundamental
tensor on (M, g, & ). The vector field H = >}, , hie, is called the mean
curvature vector field on (M, g, &), and H* = >}, h% is called the mean
curvature in the direction of e,. A leaf is minimal if H =0 on the
leaf, and (M, g, &) is minimal if all leaves are minimal. A leaf is
totally geodesic if

(2.3) hG =0

on the leaf, and (M, g, &) is totally geodesic if all leaves are totally
geodesic.

The Riemannian metric g on (M, g, &) is called a bundle-like metric
with respect to & if for each point x € M there exists a neighborhood
U of x, a p-dimensional Riemannian manifold (V, §) and a Riemannian
submersion @: (U, gly) — (V, §) such that #7(y) is an intersection of U
and a leaf ([15]). But the following fact is useful to us: The Riemannian
metric g on (M, g, &) is a bundle-ltke metric with respect to < if and
only if

(2.4) &5+ AL =0
for a local orthonormal adapted frame field {e,} ([11], [16]).

3. Foliations on Lie groups. In this section, we construct a foliated
Riemannian manifold (G, {, ), & (§)) and investigate the geometric pro-
perties of this foliated Riemannian manifold. We refer to [6] and [12]
in this and the following sections.

Let G be an m-dimensional Lie group and g be the associated Lie
algebra consisting of all vector fields on G that are invariant under left
translations. We take a Lie subalgebra §) of g, then we have a foliated
manifold (G, # (§)). We denoted by L, the left translation of G by x €
G. Let H be a connected subgroup of G whose Lie algebra is §). For
each point z € G, a submanifold L,(H) of G is the leaf through x of the
foliation .# () of G. If we take a left invariant metric {, ) on G, then
we have a foliated Riemannian manifold (G, ¢, >, & (§)). We assume
that the foliation . (§) of G is of codimension p, and n = p + q.

We apply the discussion in the above section to (G, <, >, # (). Let
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{e.} be an orthonormal basis for g and {w*} be the dual basis. We denote
by C%z the structure constants of g with respect to {e,}, that is, [e,, 5] =
S0 C%sep. By the equation of Maurer-Cartan:

8.1) dwt = (—1/2)1321)01%1,@0B A wP
and (2.1), the connection forms wj are given by wj = (1/2)X, (—C4, +
C3s — Ch)w” ([12]). Hereafter, we take an orthonormal adapted basis

{es} for g with respect to & (§) and (, ), hence {e} is a basis for §.
Since C4 = 0, (2.2) and (3.1), we have

(3.2) hg; = (—1/2)(Ci, + C})
(3.3) % = (—1/2)(C5 + C — Cip) .

ProPOSITION 3.1. Let (G, {, >, () be as above, and the metric
{,> is Ad(H)-invariant. Then the following holds:

Ci+Ct=0, Ci,=0, C5+Ci,=0,
so that all leaves are totally geodesic and {,)> is a bundle-like metric
with respect to ().

PrOOF. By the assumption, for all te R, (Ad(exp (te,))e,, Ad(exp
(te)es) = e €5) = O4p.

Thus we have ([e, el, ex) + <e4 [e, ez]) = 0, that is, C2, + C/% = 0. The
second part follows from (2.3), (2.4), (3.2) and (3.83). q.e.d.

REMARK. If H is compact, then it is well known that there exists
an Ad(H)-invariant and left invariant metric on G.

PROPOSITION 3.2. Let (G, {,>, # (§) be as above. The following
conditions are equivalent:

(i) The metric {, ) is a bundle-like metric with respect to Z (§).

(ii) For all X orthogonal to ¥, VX is orthogonal to §.

ProoF. For all X = 3, f.e. orthogonal to §, we have
VX Ea%‘faf;wf,(ea)ei (mod e;)
= (1/2) 3 fuf A —~Ch + C5 — Cloe,
= (U/2) 35 £ufiCi + Clile.
Thus, by (2.4) and (3.3), we have the equivalence. q.e.d.

REMARK. If curves t — exp(tX) are geodesic in G for all X orthog-
onal to 9, (ii) holds. We refer to Theorem 4.2 in [19].
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Now, we will construct a new foliated Riemannian manifold (G, (, ,

< () with (G, {, >, & (). Given a (p, ¢)-matrix (&) of real numbers,
we set

(3.4)

M

;=€
« = 2. 86 + e, .
J

)

Then we may take a left invariant metric {, ) on G so that {&,} is
orthonormal. Thus we have a foliated Riemannian manifold (G, {, ,
Z (§)). We investigate the relations between old and new foliated
Riemannian manifolds. We denote by C2, the struture constants of g
with respect to {¢,}. By (3.4) and C5 = 0, we have

(8.5-1) Ol = Cu+ S 6Ch — 3 6iCh

@.5-2) Ch=0Ch

8.5-3) Ch=Ch

3.5-4)  Cf = 3 8fCh + 31605 — 3 88000 + X 60k — 35 6eiCa
— 338Ce + Cay

(8.5-5) Oy = Cly + S ECh + S 6iCk .

By (8.2), (8.3) and (3.5), the second fundamental tensor (k%) and the
integrability tensor (A%) are given by

(3.6) A= (—1/2)(Ch + Ci)
= (=1/2)(Cla + Cle + 3 &2Cl + 2 &Ch — 3610k — 2.6CL)
@7 Ay =(-1/2)Cs + Cl — Ciy)
= (=1/2)(Cs + Ct — Ot — 5, ele3Ch — 3, 610k
— 530t + 3 6l8iCly + 3 6i8iCY + S 8Ch)

If the metric {, ) is Ad(H)-invariant, we have, by Proposition 3.1, (3.6)
and (3.7),

he = iCe t1Ce

(3.8) = (1/2)( 3 60t + 3 610%)

8.9) A= (—1/2>(— w — 283650k + 2 6280CT + 3, 6600 + 2l szCzﬁ)
= —"Zfa .

Thus, by (2.4), we have
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LeEMMA 3.3. If the metric {,) is Ad(H)-invariant, then the metric
(> is a bundle-like metric with respect to .7 ().

We introduce a positive integer I(G, ¢, >, & () associated with a
foliated Rimannian manifold (G, {, >, #(§)). We assume that the metric
{,> is Ad(H)-invariant. We consider the orthogonal decomposition of
the Lie algebra g of G with respect to the metric ¢(,>:g=% +m. By
Proposition 3.1, we have C{, = 0. Thus, for each Xe¥, ad(X) is a linear
transformation from m to itself, and we denote by 7(X) the rank of the
linear transformation ad(X). Then we define I(G, {, >Z (h)) by

(3.10) (G, <, ), &) = max 3. ()

{e;}eNB(y) i
where NB()) denotes the set of all orthonormal bases {e;} for Y.

THEOREM 3.4. Let (G, {, ), #(h)) be a foliated Riemannian manifold
with an Ad(H)-invariant and left invariant Riemannian metric {, > and
a foliation &# (§) of codimension p =n — q. Let I(G, <, >, & (V) be the
positive integer defined by (3.10). Suppose that [§, m] = m and p < I(G,
(5, (), then G admits a left invariant Riemammian metric {, »
satisfying the following:

(i) The foliated Riemannian manifold (G, {, >, 7 (§)) is not totally
geodesic but minimal.

(ii) The metric {, ) is a bundle-like metric with respect to .7 ().

Moreover, suppose that G 1is compact and semisimple, and that
[9, m] =m and p < I(G, {, >, F D) with respect to a bi-invariant metric
(,> on G, then G admits a left invariant Riemannian metric {, » satis-
fying the above (i), (ii) and with positive Ricct curvatures in all directions.

Proor. We take an orthonormal basis {e,} for g with respect to
{(,> such that I(G, <, ), & ) =>,r(). For a (p,q)-matrix (&) of
real numbers, we take a new basis {¢,}] for g such that e, =e¢, and
g, = >, &e; + e,. We may take a left invariant Riemannian metric {, )
on G which truns the basis {¢,} into an orthonormal basis for g. Since
the metric {, ) is Ad(H)-invariant, we have, by Lemma 3.3, that the
metric {, » is a bundle-like metric with respect to . (§). By (3.8), we
have 3, h% = 3, 5 £5Cha.

Let 4, be a linear mapping from the space m(p, ¢; R) of all (p, q)-
matrices of real numbers to m defined by

(@) = 3. wiCle. -
Since [, m] = m, we have dim Ker(y,) = pg — p. Thus the set of all (&)
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satisfying
(3.11) .?; &Ct = Z RE =0

is a vector space of dimension pg — p. On the other hand, let « be a
linear mapping from m(p, 1; R) to m defined by, for each <,

Pu((22) = aEE w5Cleee -

Then we have dim Ker(y,) = p — 7(e;). Thus the set of all (&) satisfying
(3.12) 360t =0 (for each 1)

is a vector space of dimension >); (p — 7(e;)). By the assumpsion, we
have pg — »p > 3\, (p — r(e;)). Thus there exists a solution (¢&) of (3.11),
but not of (3.12). We take such a (&f) e m(p, q; R) so that the metric ')
has a property (i)

If G is compact, then G admits a left invariant (and in fact a bi-
invariant) metric {, > so that all sectional curvatures are non-negative
([12]). The sectional curvature K,, associated by e, and ez (A # B) is
given by K,z = (1/4)|/[es es]]|?, where || - ||* = (-, ->, and the Ricci curva-
ture S,, in the direction e, is given by

(8.18) Saa = 1/4) 3. [[[es es]|I* -

Since g is semisimple, we may prove that the Ricei curvatures in all
directions are positive. If S,, = 0 for some A, then (3.13) implies [e,, ez] =
0 for all B. This means that e, belongs to the center of g. This
contradicts that g is semisimple. Under that [§, m] = mand » < I(G, {, ),
(9)), we may construct a metric {, > as above. The metric {, > is a
continuous function of (&). Hence the Ricei curvatures in all directions
with respect to {, » are positive for (&) sufficiently near the zero matrix.

q.e.d.

REMARK. As an example satisfying the condition in Theorem 8.4,
we take a symmetric pair (G, H). But this example is a case of ¢ = 3.
Examples of case of ¢ = 2 are given in section 5.

4. Minimal foliations on non-compact Lie groups. Let g be a non-
compact simple Lie algebra and # be an involutive automorphism of g.
Wesetf={Xeg;0(X)=X},p={Xeg, 6(X)=—X}, then we have g=¥Pp
(direct sum) with [t, £]C ¥t [£, plcp, [p, plct. Let B denote the Killing
form of g, and we define {, ) by

(X, Y) = —B(X, 6(Y))
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for all X, Yeg. Then the metric {(,) is a left invariant metric on G
and, for all Xep, ad(X) is a symmetric linear transformation of g with
respect to {, »>. Let a be a maximal abelian subspace of p and a* be the
dual space. For M ea*, we set

4.1) g =1{Xeg;[4, X] =NMA)X for Aeca}.

Then X\ is called a root if g, # 0, and let 4 denote the set of all roots.
We have

(4.2) g= % 8 goa

[8: 8] C@au for n, ped.

We take an ordering in a*. Let 4% denote the set of positive roots.
Next we consider two subsets 4, and 4, of 4* satisfying

(i) 4,04,

(ii) M ped, N+ ppedt implies M + ped, (r =1, 2).
Moreover, let & and &3 be two subspaces of a such that £ 2.%5. We
set n, = F+ 364, 6: (r =1, 2), then n, is an algebra and n, is a subalgebra
of n, Let N, (resp. N,) be a connected Lie subgroup of G with the Lie
algebra n, (resp. m,). Then we may have a foliated Riemannian manifold
(N, <, >, & (), where {,) denotes a suitable left invariant metric on
N, as below. We now compute the second fundamental tensor (k%) and
the integrability tensor (A%) of the orthogonal complement bundle of
Z (n,). Here we use the range of indices as follows:

1<a,b=<dim.&

dim &£ +1=<14,j<dim &+ %4 =dimN,

dim N, +1 =< a, 8 < dim N, + dim & — dim &4

dim N, + dim &, —dim &£ +1<¢ < dimN,.
We set

{e., e;}: Dasis for n,

Z, eq 4, normal to leaf

tangent to leaf
2, e, 4, €;

a root space
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{es, €.): Dbasis for &
{e;,, e;}: Dbasis for > g;.
Aed;

We may take e; (resp. ¢;) in the root space g,, (resp. g;), and it may
happen that \, =\, for s #¢. We take a left invariant metric (, )
on N, so that {e,, e, e, e} is orthonormal. It is obvious that the
structure constants C}, Ci,, Ci, and Ci, of N, (with respect to the basis
{ea, €y €4y €:}) are not necessarily zero. By (3.2) and (4.1), the mean
curvature H* in the direction of e, is given by

Ha = Z szt = 2 )'i(ea) ’

and the mean curvature H® in the direction of e, satisfies H* = 0. By
(8.3), (4.1) and (4.2), we have
Afe = —Ne(ea)
Al = (=1/2)(C; + G — Cy)
the others vanish.
Then we have the following:
{, > is a bundle-like metric with respect to & (1) .
= N(e,) =0, C;,+CL =0 forall a,1¢7n.
= Nele)) =0, N+ Ngd N4, forall a,q,c¢.

The orthogonal complement bundle of .& (1,) is integrable.

= Ci =0 forall 4¢7.
= N+ N¢&4, forall g7n.

Thus we have

ProposITION 4.1. Let (N, <, >, & (n,)) be as above. Then

(i) (N, <, >, F W) is minimal if and only if >, N(e,) = 0 for all
a,

(ii) ¢, ) s a bundle-like metric with respect to & (w,) if and only
if Nele,) = 0 for all a, & and (4N 4) + 4o) N (4N 4) = @,

(iii) the orthogonal complement bundle of & (n,) is integrable if and
only if (4\4;) + U N\Nd)N4d, = @. And the above three conditions are
independent of each others.

We may show an example of minimal foliated Riemannian manifold
(N, {, >, # (1) such that the metric {,) is not a bundle-like metric
with respect to .+ (n,) and the orthogonal complement bundle of & ()
is not integrable:
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EXAMPLE 4.2. Let g = 8l(n, R) and #:g — g defined by 6(X) = —'X
for all Xe€g. Then we have

t = 30(n)

p={Xeglln, R)|'X =X, Trace X =0}
(I—L 0

a= L ||HiA+ -+ H, =0
ZO Hn)

We define ), ea* by

H, 0
xi ( | | . )) ) Hi
0 H,

Then we have 4= {\;, — N;|1 = 14,5 = n}. If we take an ordering of 4
such that A, > -+ >\, then 4" ={\, — M;|1 =1 < j = n}.
In the case of that n = 4, we set
4, = {7"1 = Ny N = Ngy Ay — Ny Ap — gy Ng — )"4}
4, = {7\'1 — Ngy Ny — 7\'4}
2 0
-2
L =R e < = {0},
0 -1
and then we have a foliated Riemannian manifold (N, <, ), & (n,)) as
above. Then we have the following. (i) (IV, <{, ), & (&,)) is a minimal,
not totally geodesic because (A, — N + X — ANFE) =0 and (A, — N,
(&) # 0. (i) The metric ¢, ) is not a bundle-like metric with respect
to # (n,) because N, — N €4, Ny, Ny — N EL, and (M — Ng) + Ny — Ny) =
A — M €4, \4,. (iii) The orthogonal complement bundle & (n,) is not
integrable because v, — N, € 4\ 4y, Ny — N E A N4y and (W, — X)) + Ny —Ny) =
N, — N € 4.

5. Further examples of minimal foliations.

ExAMPLE 1. Let g be a 3-dimensional unimodular Lie algebra. There
exists a basis {e, e, e¢;} for g such that

[e: &] = Ne, ey e] =N, [e €] = Nt

where A, = 0, =1 (s =1, 2,3). There exist just six distinct cases on the
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signs of \, N\, and »,. By changing signs if necessary, we may assume
that at most one of the structure constants A, \,, s is negative. We
have the following table ([12]):

i Associated o

S/\lfr;hsz, ;’i Lie group Description
+ 4+ 4+ SU(2) or SO(3) compact, simple
+ 4+ = SL(2, R) or 01, 2) noncompact, simple
+ 4+ 0 E(2) solvable
+ - 0 E1,1) solvable
+ 0 0 Heisenberg group nilpotent

0 0 0 RORDPR commutative

1

Let G denote a connected Lie group whose Lie algebra is g.

ExAMPLE 1-1. We consider the cases of (i) v, =X\, = 1,2, = 0, (ii)
ME=LN=—La=0, @) N =1Lx=%=0, (V) M, =X =2 =0. Let
D be an abelian subalgebra of g generated by e, and e¢,, We take a left
invariant metric {, > on G so that {e, e,, ¢,} is orthonormal. Then we have
foliated Riemannian manifolds (G, <, >, # (§)) of the type (i) ~ (iv). The
above four foliated Riemannian manifolds are minimal because H =
—(Cls + Ch)es = 0. Since ki, = (—1/2)(C} + Ci) = (—1/2)( — N, + Ay, the
foliated Riemannian manifold of type (i) and (iv) are totally geodesic,
and ones of type (ii) and (iii) are not totally geodesic. The metrics
{, > on the above four types are bundle-like with respect to the foliation
() because A% = A} = 0.

EXAMPLE 1-2. We consider the case of that A, =\, =1 and \, = —1.
By changing e; = ¢, ¢, = ¢, — ¢, and e}, = ¢, + ¢,, we may assume that the
basis {e,, e, ¢;} already satisfies the following:

[e., ] = 2e, , [es, ] = e, [e, e] = e, .

Let b be a subalgebra of g generated by e, and e,, We take a left
invariant metric {, ) on G so that {e, e, e} is orthonormal. Then we
have a foliated Riemannian manifold (G, {,> % (§)). This is minimal,
not totally geodesic because ki, =h% =0 and A}, = —1. The metric
(,» is not bundle-like with respect to & (h) because A% = 1. This
example is due to Roussarie ([4]).

ExAMPLE 1-3. We consider the case of that A, =\, = X; = 1. Then
g = 80(3). Let .o~ denote the Lie algebra of SO(2) and e, basis for .o/
Let b be a subalgebra of o~ x g generated by e, and e¢,, By changing
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e = €, e = e, e = ae, + ¢, and e, = ¢, for any real number a, we may
assume that the basis {e, e, ¢, ¢;} already satisfies the following:
[eu el =e, [ez, el=e, [es, e,] = —ae, + e,
[ewe] =0 (s=1,2,3).
We take a left invariant metric ¢, ) on SO(2) x SO(3) so that {e, ¢, ¢, ¢;}
is orthonormal. Then we have a foliated Riemannian manifold (SO(2) x
SO(3)’ < ’ >7 y(b))- We have
o="hi =hi =hi, =hi, =0, h}=—a/2
and
A=A =AL=AL=AL, =A,, =0, A, =—-A},= 1/2.
Thus (SO(2) x SO(3), {, >, (b)) is minimal, and if @ = 0 then it is not
totally geodesic. And the metric (, ) is bundle-like with respect to & ().
Next, we compute the Ricci tensor S. We easily have the following:
(i) dw' = —aw' A W', dw'= —w* Aw, dw =w A,
dw®* = —w' A\ w*.
(ii) w} = (—a/2uw®, w; =0, w}= (a/2w', w;=(—1/2)w*,
w; = (@/2)w’ + 1/2)w*, w: = (—1/2)w".
(111) Rg(u = a2/4 ’ R?lz = a/4 ’ Rgos = a’/4 ,
Rg% = _a/4- ’ R;u = 1/4 ’ Réla = (1 - 30/2)/4 ’
R:, = 1/4 (the others vanish) .
By these, we have
Soo = a2/2 ) Soz = ——a/2 ) Su = (1 - a2)/2 ’
S, =1/2, S, =1 —a*/2 (the others vanish) .
Thus the Ricci curvature Sy in the direction of X = 3>, x, e, is given by
Sy = €@eSe + 20228y + XSy + T2 Sy + X525 Sy
= (@@, — )72 + (1 — a") ()" + (%5))/2 .
If |a] £ 1, then the Ricci curvatures in all directions are non-negative.
REMARK. Oshikiri [14] proved the following: If (M, {,), &) is a
compact Riemannian manifold with a minimal foliation . of codimension
one and with non-negative Ricci curvature with respect to the metric
{,>, then all leaves of & are totally geodesic and the metric {,) is

bundle-like with respect to .#. But, by the above example, we can not
extend this result to the case of codimension = 2.
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ExXAMPLE 2. Let R = R? X R” be a foliated manifold each leaf of
which is given by R? X {m} for each m € R*. For positive valued func-
tions s, .-+, f%* R* — R, we may define a metric {(,) on R**? by

() = S (FHAY + S (da)

Then we have a foliated Riemannian manifold (R‘*?, (, >, & (RY). A
frame field {e; = (f*)7'0/ox’, e, = 0/0x°} in R**? is an orthonormal adapted
frame field with respect to & (R%) and <{,). The dual coframe field
{w?, w?} is given by w*= f*dx’ (not sum) and w* =dx*. Since it holds that

dw' = df* N dx’
= > (0f/ox)dx* N\ dx’

= X (@00 )(f) 7w A w'
= —> (dlog filox)w' A w*,

we have wj = 0, wj = 0 and w;, = —w§ = (9log f*/ox*)w’. By (2.2), we have
hEG = —(0log fifox)d,;, A% =0.

Thus we have that

(i) The metric {, ) is bundle-like with respect to & (RY).

(ii) (R"*?, (, >, # (R%) is minimal if and only if f'x-.-.Xx f9=
constant.

(iii) If (R, {, >, & (RY) is minimal, then the Ricci curvature S,,
in the direction of e, is non-positive, that is S,, = —>}; (0 log f?/ox*).

REMARK. If each f7 satisfies that f'(x* + n*) = fi(x*) for some n*¢€
Z, then we may define a minimal foliated Riemannian manifold (777,

o0y F(T).
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