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0. Introduction. In this paper, we state an application of the inter-
change operators introduced in the previous paper [8]. We consider the
following problem. We give a point 7z in an augmented Schottky space
@;“(fo) associated with 5, which represents a compact Riemann surface
S with nodes. Then for any sequence of points {z,} in the Schottky space
@g(fo) associated with 5, tending to the point 7z, does the Riemann sur-
faces S(z,) represented by 7, converge to S as marked surfaces as n — ?

The answer to this problem is negative in the general case, namely
in the case where 3, is a basic system of Jordan curves (see §1.2 for
the definition). However the answer is affirmative in a special case,
namely in the case where 3, is a standard system of Jordan curves (see
§1.2 for the definition). Now the following question arises: To what
Riemann surfaces does the sequence of Riemann surfaces {S(z,)} converge
as marked surfaces as m — o in the general case? The answer is the
main result (Theorem 2 in §6) in this paper.

We use the same notation and terminologies as in [8]. In §1, we
will define convergence of Riemann surfaces, and in §2, we will show
the following: For any point = in an augmented Schottky space, there
exists a sequence of points {z,} in the Schottky space tending to 7 such
that the sequence of Riemann surfaces {S(z,)} represented by z, con-
verges to the Riemann surface S(z) represented by 7 as marked surfaces
as n— . In §3, we will construct a new surface from a given surface.
From §4 through § 6, we will state and prove the main theorem. In §7,
we will explain the result by an example.

1. Definitions and terminologies
1.1. We use the same notation and terminologies as in the previous
papers [7, 8].
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DEFINITION 1. Let S be a compact Riemann surface of genus g with-
out (resp. with) nodes. We call the set ¥ = {a@,, a,, -+, @;; V3, Yoy =5 Vags}
of loops (resp. loops and nodes) on S having the following property a basic
system of loops (resp. a basic system of loops and modes) on S: Each
component of S — Ui, a;, — U%*7; is a planar and triply connected
region of type [3, 0] (resp. [3, 0], [2, 1], [1, 2] or [0, 8]), where a surface
of type [m, n] means the sphere with m disks removed and »n points
deleted. If, in particular, the number of nondividing loops (resp. the
number of nondividing loops and nondividing nodes) is equal to g, we call
X a standard system of loops (resp. a standard system of loops and mnodes)
on S.

Let {G,) be a marked Schottky group generated by A,,, 4y, -+, Ao,
<G0> = <A0,1’ AO,Z; ) A0,0>'

DEFINITION 2. If mutually disjoint Jordan curves C,,, C,., « -+, Co 2
Co,sg415 Corzgray *+*5 Coag_s ON c=cC U{e} have the following properties (i)-
(iii), then we call 3, = {C,,, -+, Cysp} Cospstr ***+ Cougs} @& basic system of
Jordan curves for {(G,: (1) C,,, Cy 4115 Coz Cogies * = *5 Cogy Coap are defining
curves of A,,, A, -, 4,,, respectively. Namely they comprize the
boundary of 2g-ply connected region @, and A4,, maps C,, onto C,,,, and
A, (@w)Nw,= @ for eachi =1,2,---,9. (i) Cori 1=1,2,+--,29 — 3)
lie in w,. (iii) Each component of w, — U%%* Cy oy is @ triply connected
planar region. If, in particular, a basic system of Jordan curves 3, has
the following property (iv), we call §, a standard system of Jordan curves
Jor {Gyy: (iv) For each 1 =1,2,---,gand 7=1,2, ---,29 — 3, C,; and
Cy,p+: lie on the same side of G, ;.

We let Cyiu, Couer **5 Coitirr Cogrvrary = *5 Cogrvan an~d Co i Coiry =+ s
Coimy Cogrirary ** s Cogeirmy be the defining curves in 5, in the interior
and to the exterior to C,,,.;, respectively, where i(1) < --- <i(k) = 9,
T < <D =g K- <Jm =g, A< - < Jn) £9.
Then we say that the curve C,,.; gives a partition {i(1), ---, i(k),
g+, -, 9 +7OIUEQ), -+, J(m), g + 5°Q), -+, g + 5'(m)} of the set
{11 2’ ) 2g}-

Let S be a compact Riemann surface of genus g with or without
nodes and let 3 = {a, -+, @,;; 7y, * -+, Vo_s} & basic system of loops and
nodes on S. Cut the surface S along the loops and nodes «; (1=1, 2, ---, 9).
We denote by ;. and ag,,, the resulting two topological circles or two
points for each 4. We call 3’ = {a}, a}, -+, @3y V1, =+, Voy_s} the set of
Jordan curves and points induced from X, or simply the induced set from
3. Each 7, devides the set {af, as, -- -, a},} into two parts {alu, -, @i,
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Qgiiryy ** gy} and (@G, * -+ Wy Qoijrwys *°*y Agrjrw), Where 4(1) < - -+
<k =g, T <TD =g I <gm) =g, SO L
7'(n) £ g. Then we say that 7; gives a partition {¢(1), - - -, i(k), g+2'Q), - - -,
g+ ’i’(l)}U{j(l), ct 0y j(m)v g+ .7'(1), e, g + j'(?’b)} of the set {17 2’ ct Y 29}-
If each 7; (=1,2, --+,29 — 3) gives the same partition as C,,,.;, we
say X' is compatible with .

Let S, and S, be compact Riemann surfaces of genus g with or without
nodes. Let 2, = {au, Qgy ** 0y Uygy Viny Vo =00y '71,211—3} and %, = {azu Qogy ** °y
Qg Yoy Yazy ***y Va2g—s) D€ basic systems of loops and nodes on S, and S,,
respectively. Let X! and Xj be the induced sets from X, and X,, respec-
tively. If each 7v,; (=1,2, ---, 29 — 3) gives the same partition as 7, ;,
we say X! is compatible with X;.

1.2. Let S be a compact Riemann surface of genus g with or with-
out nodes. We denote by N(S) the set of all nodes on S. From now
on, we assume that g = 2 and that each component of S\ N(S) has the
hyperbolic metric, that is, the Poincaré metric. The Poincaré metric
Mz)|dz| on S is defined as the Poincaré metric on each component of
S\N(S).

DEFINITION 3 (Abikoff [1, p. 30]). Let S, and S, be compact Riemann
surfaces of genus g with or without nodes. If the following (i) and (ii)
are satisfied, we call a continuous surjection f:S, — S, a deformation,
and denote it by (S, S,, f>:

(i) f7*|S; is a homeomorphism, where S; = S,\ N(S,).

(ii) f~*(node) is a node or a simple loop.

Let 3, = {ay, @y, * ) Qg5 Viy Yoy ** 7, 71,241—3} and 3; = {Q, Qu, -+ +, s
Yary Yoz *++y Vong—s) D€ basic systems of loops and nodes on S, and S,
respectively. We assume that X, and 3, have the induced sets 3 and
2, respectively such that X} is compatible with X}, and we write 3, ~ 3,
for the fact. From now on, we consider a deformation (S, S,, f) satis-
fying the following (i) and (ii): (i) If a, (resp. 7,;) is a loop, then f~*(a)
(resp. f7'(7,;)) is homotopic to ay, (resp. 7). (i) If a, (resp. 7,;) is a
node, then f~'(ay) = ay, (resp. f~'(7y;) = 7,;) in the case where «,; (resp.
7,;) is a node, and f'(a,) (resp. f7'(7.;)) is homotopic to aj; (resp. 7,;)
in the case where a, (resp. 7,;) is a loop. Set P(S) = f(N(S,). We
note that P(S)) D N(S)).

Let Sand S, (n =1,2, ---) be compact Riemann surfaces of genus
g with or without nodes. Let ¥ and 3, be basic systems of loops and
nodes on S and S,, respectively, with ¥, ~ 3. Let <S,, S, f.> be a defor-
mation satisfying the above (i) and (ii).
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DEFINITION 4. If the following condition is satisfied, a sequence of
Riemann surfaces {S,} converges to a surface S as marked surfaces:
There exists a locally quasiconformal mapping ¢,: S\ N(S) — S,\P(S,)
such that

(i) Mu(6.(2)ds,(2)| uniformly converge to \(z2)|dz| on every compact
subset of S\ N(S), where \,(z)|dz| and \(2)|dz| are the Poincaré metrics
on S, and S, respectively,

(ii) ¢, maps a deleted neighborhood N(a;)\{a,} (resp. N(7;)\{7;}) of
a; (resp. 7;) to a deleted neighborhood N(a,,)\{a;.} (resp. N(7; . .)\{7;.})
of a;, (resp. 7;,) if a;€ N(S) (resp. 7;€ N(S)), and

(iii) ¢, maps a neighborhood N(a;) (resp. N(7;)) of a, (resp. 7;) to
a neighborhood N(e,,) (resp. N(7;,)) of a,, (resp. 7;,) if a, & N(S) (resp.
7; & N(S)).

When S, converges to S as marked surfaces, we write (S,, 2,) — (S, ).

1.3. From now on, we fix a marked Schottky group (G,) = {4,
Agyy vy Ageyy and a basic system of Jordan curves X, = {C,., - -, Coop
Cosgsrs ***y Cogg_s} for (G,>. We denote by 2(G,) the region of disconti-
nuity of {G,). Then S, = 2(G,)/{G,> is a compact Riemann surface of
genus g without nodes. Let IT;: 2(G,) — S, be the natural projection. Set
&oy,e = HO(CO,i) (1=12---,9) and Yo,5 = Ho(Co,2g+j) G=12---,29 — 3).
Then X, = {1, Aozy =5 Qo g; Voriy Vo2 ***s Vorog—st 1S @ basic system of loops
on S,.

We denote by &,(,) and @;"(fo) the Schottky space and the augmented
Schottky space associated with 5, respectively (see [7, p. 28] and [7, p.
32] for the definitions). Lette @;“(fo). Let S(7) be the compact Riemann
surface with or without nodes represented by = (see [7, p. 33] for the
definition). Let (G;(z)) ( =0,1, ---, 29 — 8) be the j-th marked Schottky
groups associated with 7, which are defined in [6, pp. 73-75]. In particular,
if e®,3), then (G;(r)) = T;{G(t))T;* for some T;e Mob. Let 2(G4(7))
be the region of discontinuity of (G;(z)). Let 2'(G,(7)) be the set 2(G;(7))
deleted the set of all images of the distinguished points under {(G;(7))
(see [7, p. 81] for the definition of distinguished points). We denote by
A9(z, 2)|dz| the Poincaré metric on 2'(G,(7)).

Let I and J be subsets of {1,2, ---, g} and {1, 2, ---, 29 — 3}, respec-
tively. We define the set I(J) as in [7, p. 30]. We assume that I D I(J)
throughout this paper. We define subsets 6’6,(3), 6776,(5,), -+ of the

augmented Schottky space é»;f(Z’o) as in [7].

PROPOSITION 1. (1) Let t€6'S,(5,). Suppose that {r,} < &,35,) is
a sequence of points tending to the point t. Then 2(G(z,)) tends to 2'(G(7)).
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Furthermore, N(<,, 2) uniformly converges to Mz, z) on every compact
subset of 2'(G(7)).

(2) Let t€8"'6,(5,). Suppose that {r,} < 'S,5,) is a sequence of
points tending to T. Then 2'(G,(z,)) tends to 2'(G;(t)) for each j = 0,1,
2, ---,29 — 8. Futhermore, N9(c,, 2) uniformly converges to N9 (z, 2) on
every compact subset of 2'(G;(7)).

This proposition is shown by similar method as in Bers [3] and Sato
[6]. From Proposition 1, we easily see the following.

PROPOSITION 2. Given 7¢€d"'S,3,). Then there exists a sequence
(r.} € &,5,) tending to 7 such that for each j = 0,1, ---, 29 — 3, N9 (z,, 2)
uniformly converges to NY'(t, 2) on every compact subset of 2'(G;(7)).

2. Construction of locally quasiconformal mappings. We use the
same notations as in §1. Here we will construct locally quasiconformal
mappings ¢, of 2'(G;(7)) into 2'(G,(z,)) in three cases, Case I in §2.1,
Cases II and III in §2.2.

2.1. Case I. Let t€d'6,(%) and let {r,} < &,(,) be a sequence of
points tending to <.

Let (G(z,)) = (Ai(Tn 2), ATy 2), =+, Ay, 2)) and (G(7)) = {A(z,
z)|1¢ I>, where the latter represents a marked Schottky group generated
by Az, 2) (t¢I) to the number of ¢ — |I| and |I| is the cardinality of
I. Let C(z,), C,.i(z,) 0 =1,2, ---, g) be defining curves of {G(z,)). We
denote by w(G(z,)) the fundamental domain for {(G(z,)> bounded by the
29 Jordan curves Cy(z,) and C,.(z,) (:1=1,2,---,9). Let Ci(r) C, ()
(t¢I) be defining curves for (G(z)>. We denote by w(G(zr)) the funda-
mental domain for {G(z)) bounded by the 29 — 2|I| defining curves. For
simplicity, we write @ for w(G(z)). We may assume that C,(z,) (resp.
C,.i(t,)) converge to Cy(z) (resp. C,.(7)) for i¢I. Let p,, and p,.., be
the repelling and the attracting fixed points of A.z,, z), respectively.
We write p,, p,.; (1€I) for the distinguished points of the first kind
(see [7, p. 81] for the definition). We set &' = w — {p;, p,:|1€I}. We
may assume that for ¢el, C(z,) and C,.,(z,) converge to p, and p,.,,
respectively, and that w(G(z,)) converges to w'.

For 7¢I, we define deleted r(n)-neighborhoods N,(p,) and N,(p,..)
n=1,2,..--) of p, and p,,,, respectively, as follows, where r(n) are posi-
tive numbers: If p,#c0 and p,.;+# o,

N.(p) = {ze@'||z — p;| < r(n)}

and
Nn(pa+i) = {z € a),l lz - pg+i| < /r(/n)} ’
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if P; = ©© O Py = 00,
N.(p) = {zeo'||2] > 1/r(n)}

or
N.(D,0) = {z€ @' [|2] > 1/r(n)} .

For simplicity, we write C; and C,,, for C,(z) and C,,,(7), respectively.
Similarly, we define r(n)-neighborhood N,(C;) and N,(C,.;,) of C; and C,,,,
respectively:

N,(C) = {ze &'|ds(2, C)) < r(n)}
and
N, (Coi) = {ze @' |ds(z, Cpri) < r(n)},
where dz(z, C) denotes the Euclidean distance from the point z to the
curves C.

We denote by oN,(p,),oN,(C,), --- the boundaries of N,(p;),
N,(C), ---. Set B,(p,) =N, (p)N@'. B,(044:) = 0N, (p,0)N@', B,(C)) =
ON,(CH)N® and B,(C,,,) = dN,(C,.)Nw'. We note that N,(p,), N,(9,+)
(1e€I), N,(C,) and N,(C,,;) (k¢ I) are mutually disjoint if r(n) is suffici-
ently small. We choose a sequence {r(n)} (n =1, 2, ---) as follows:

(i) »A)>r@) > -+ >r(n)>rn+1)>--- and lim,_., r(n) = 0.

(ii) B,(p:), Bu(py+s) (t€1) and B,(C,), B.(C,yi) (k¢ I) bound a 29-ply
connected region w, contained in w.

(i) B.(p) C @(z,), B.(p,.) C @(z,) (i€ I), B,(C,) C @(z,)and B,(C,.i) C
w(t,) (kel).

We denote by D, , (resp. D,.;,) the annulus bounded by B,(p,) (resp.
B,(p,.)) and Cy(z,) (resp. C,.(z,) for iel. Similarly, we denote by
D,,, (resp. D, ) the annulus bounded by B,(C,) (resp. B,(C,.,)) and Cy(z,)
(resp. Cyiin(To)).

We construct a mapping ¢, of 2'(G(r)) into 2(G(z,)) in Case I as
follows.

First step. (1) ¢, = id. in ®,, where id. means the identity mapping.
(2) In N,(p,) (resp. N(p,.;) for iel, ¢, is a locally quasiconformal
mapping of N, (p,) (resp. N,(p,:.)) onto D, , (resp. D,,,) such that ¢, = id.

on B,(p;) (resp. B,(p,.)).
(3) In N,Cy) (resp. N,(C,,.) for keI, ¢, is a locally quasiconformal

mapping of the closure of N,(C,) (resp. N,(C,.,)) onto the closure of D,,
(resp. D,i:,,) such that ¢, =id. on B,(C,) (resp. B,(C,.;) and that ¢,
satisfies a relation

Ai(Tr $.(2)) = ¢,(Ai(z, 2)) for zeC,.

Second step. ¢, is exteded to the domain 2'(G(z)) as follows. For
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2 € 2'(G(7)), there exists an element A(z, z) of G(r) with A(z, 2) € @', which
is represented as a word in A,(z, 2), -+, 4,(7, 2):

( 1 ) A(T: Z) = W(AL(T; Z), ) Ag(z-: z)) .

Let A(z,, 2) be the word obtained by replacing A,(z, z) in (1) with A,(z,, 2)
forallt=1,2, ---,9. By setting

$.(2) = A7N(z,, $.(A(z, 2))) ,
we define a mapping &, of 2'(G(z)) into 2(G(z,)). We write again ¢, for &,.

2.2. Case II. Let 7€6'6,(%,) and let {r,} < 6’6,(%,) be a sequence
of points tending to .

We similarly define w; = w(G,;(r)) and w(G,(z,)) as in Case I. Set
w; = w;N2'(G;(r)). We set

I; = {{|p, are the distinguished points of the first kind in w;}
and

I; = {¢|C, are defining curves for (G,(7)) in w;}.

Set
J; = {l e J|p#(r) are the distinguished points of the second kind in w;}

(see [7, p. 31] for the definition of the distinguished points of the second
kind). See [6, pp. 16-18] for the definitions of I;, I} and J;. We set
|I;] + |I}| = g;. Then g; is the genus of the Riemann surface S;(7) =
2(G(1))/{G(1)).

The sets N,(p:), Nu(Dy+:) (P € 1), N(C}), No(C,i) (k€ 1)), B(Dy), Bu(Dg+4),
B,(C,) and B,(C,,,) are similarly defined as in Case I. Let p,(z,) and p,..(z,)
(tel;) be the distinguished points of the first kind for 7, in w;. Let
N.(p,(z,)) (resp. N,(p,.(7,)) be the set N,(p,) U {p}\{pi(z,)} (resp. N,(p,.)U
{pﬂ+i}\{pﬂ+i(z-n)})'

For leJ;, we define deleted 7(n)-neighborhood N,(p#) as follows: If
pifF# o,

N,(pF) = {ze wj||z — pr| < r(n)};
if pff = oo,
N,(pF) = {ze wj||z| > 1/r(n)} .

We set B,(pi) = ON,(pi) N w;.

Let C,,,(z,) (I€d,) be Jordan curves in w(G;(z,)) which give the same
partitions of the set {1,2, ---, 29} as C,,,,, (see [7, p. 33] for partition).
We choose a sequence {r(n)} (n =1, 2, ---) as follows:
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(i) ) >r@)> - >rn)>rn+1) > --- and lim,_, r(n) = 0,

(ii) B.(p:), Bu(p,4) (te 1)), B, (Cy), B(C,y) (kelj) and B,(pi) (Led;)
bound a 2g; + |J;|-ply connected region w, contained in ®, and

(iii) B.(s), Bu(Dy1s) (t€1)), B(Cy), B,(Coyi) (kKelj) are contained in
®(Gi(z,)) and G, (z,) (l€J;) are contained in N,(pi).

Let D,,, D, (keI be the same annuli as in § 2.1. We denote by D;,
(e d;) the annuli bounded by C,,.,(z,) and B,(pf).

A mapping ¢, of 2'(G;(r)) into 2'(Gy(z,)) in Case II is defined as
follows.

First step. (1) ¢, =id. in w..

(2) For each 1€1l;, ¢, is a locally quasiconformal mapping of N, (p,)
(resp. N,(p,+.)) onto N,(p(z,)) (resp. N,(p,,(7,) such that ¢, =id. on
B,(p,) (resp. B,(py14))-

(8) For each kel], ¢, is similarly defined as in Case I, (3) in N,(C,)
and N,(C,..).

(4) For each ledJ;, ¢, is a locally quasiconformal mapping of N,(pf)
onto Dj, such that ¢, = id. on B,(pf).

Second step. ¢, is extended to the domain 2'(G,(z)) by the same
method as in the second step of Case I.

Case III. Let 7€67/6&,8,) and let {r,} = &,5,) be a sequence of

points tending to <.
In this case, a mapping ¢, of 2'(G;(r)) into 2(G(r,)) is defined by
combining the methods of Cases I and II.

2.3. Let S be a compact Riemann surface of genus g with or without
nodes. When Y is a basic system of loops (or loops and nodes) on S such
that 3’, one of the set induced from 3, is compatible with §,, we write

3 ~ 3, for the fact.

PROPOSITION 3. Given t¢€6™'6,S) c &xS). Suppose that {c,} C
S,5,) is a sequence of points temding to the point T so that N9(c,, z)
uniformly converges to N9(z, z) on every compact subset of 2'(G;(z)) for
each 7=0,1,2, ---,29 — 3. Let ¥, and X be a basic system of loops on
S(z,) and a basic system of loops and modes on S(z), respectively, with
3. ~3%3, ~3. Then S(t,) converges to S(t) as marked surfaces, that is,
(S(z,), 2,) — (S(z), 2) as n— oo.

PrOOF. Let ¢, be the quasiconformal mapping of 2'(G;(r)) into
2(G4(z,)) as defined in §§2.1 and 2.2. We define a function \}Y(z, 2) on
2'(G;(7)) by setting

AT, 2) = N9z, $.(2))dga(2)/d2] .
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By the above construction, A}Y(z, 2) uniformly converges to A% (z, z) on
every compact subset K of 2'(G;(r)), since for sufficiently large =, ¢,|K =
id. and so A*Y(z, 2) = AY(z,, 2) for ze€ K, and AY(c,, z) uniformly con-
verges to A9 (z, z) on K by the assumption.

Let IT,: 2(G,(z,)) — S(z,) and IT: 2'(G,(7)) — Si(z) be the natural projec-
tions, where Sj(z)=S;(7) \(S;(z) N N(S(z))) if we set S;(7)=2(G;(7))/{G,(T)).
We define AF9(2)|dZ| and N9(2)|dZ| on Si(z) by setting

M2 d2] = Mz, 2)|dz|
and
AP(R)d2| = Nz, 2)|dz] ,
respectively, where 2 = II(z). Since \Y(z, z)|dz| and A\}Y(z, 2)|dz| are
invariant under (G;(z)), M}9(2)|dZ| and \“¥'(2)|dZ| are well-defined. Fur-
thermore, we define A (2)|dZ| on S(z,) by setting
M(R)d2| = N (z,, 2)|dz] ,
where Z = IT,(z). This is also well-defined.
We easily see that
A(B)dZ] = MP(Z)IdE, ],

where 2 = II(z) and 2, = I1,¢,(2) for z € 2'(G;(z)). By the above, we easily
see that A}9¥(%2)|dZ| uniformly converges to A (2)|dZ| on every compact
subset K; of Sj(r) for each 7 =0,1,2,-.--,29 — 3. If we denote by b
the projection of ¢, onto Si(z), we have that

A2 d2] = M(B.(2)) dB.(2)] .
Therefore \($,(2))|dp.(2)| uniformly converges to \9(2)|dZ| on every
compact subset of Sj(z) foreachj = 0,1, 2, ---, 29 — 8. Hence (S(z,), 2,) —
(S(z), ). Our proof is now complete.
From Propositions 2 and 3, we have the following.

THEOREM 1. Given a point reéi;*(fo). Then there exists a sequence
of points {r,} C &,(%,) tending to t such that S(z,) converges to S(r) as
marked surfaces.

3. Constuction of new surfaces.

3.1. Let (G, 5, 3, and S, be as in §1. Let I and J be subsets
of {1,2, ---,g}and {1, 2, - -+, 29 — 8}, respectively. Assume that I(J) C I.

Given 7 €07'6,(%,), there exists a compact Riemann surface S(z) of
genus ¢ with |I| + |J| nodes represented by z. We will construct a
new surface from S(z) as follows.
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We denote by J, the subset of J consisting of all j such that 7, ;
are dividing loops on S,. Let J, = {j, 75 -, 7.} be any subset of J\J,.
Set I(J,) = {41, %3y **+, 1.} We denote by 3, and X, the images of 5, and
Y,, respectively, under the interchange operator I,(¢., ji,) Where %, €
I{7,)) (see [8] for the interchange operator). We set J,, = J,\{jiy}. We
denote by I,(J,) the set I(J,) defined for cycles in 3, (see [8]). We note
that I,(J,) < I(J,).

Choose J,.) €Jy such that I,({7,,}) N(I(J) \{tw}) # Q. We apply the
interchange operator I,(iyu, fim) to 3, and X, where 4, € I,({j.o}) and
Tew 7 tew. We denote by 5, and ¥, the images of 5, and J,, respectively.
We set J;, = Ju\{liw} = L \{jiwy 1w} We write I,(J,) for I(J,,) defined
for cycles in Y,. Then I(J,)CI(J,). We choose j,5 €, such that

L) N TT) \trw, tew))#=D. We apply the interchange operator I,(iyq),
_7“3)) to 5, and 3,, where 1,,,(3) e L({jie}) and ks # %k, tkw. We denote
by 5, and 3, the images of 5, and 3, respectively.

By the same method as above, we determine the following: j,.), %k,
J24; fu 24’ I4(J24); try jl(A)’ ik(s), Jz,ar S;n 239 Ia(Jz,s)' Here s is the integer
satisfying the following (i) and (ii):

(1) L_({g1ah) NI \{tew) Tk ** 5 Trw-) =D

() LD S llews %een =+ *y e} for any jeLo\{Jiw, i = *s Jimhe

We set J; = IN(J,ULY), I, = {5, jm), tt Yy jl(s)} and J; = J,\J,. Set
I =INIJ) and I, = {tew), Te@y = s T} We note that I, I(J,). Set
L =1I(J,) and Iy =IN([,UL;UI). Let I, be a subset of I,, Set I,=I\1,
I* = I\I, and J* = J\J..

3.2. In §3.1, we obtained a basic system of Jordan curves 5, from
S, by applying interchange operators in succession. We write 3¢ for I,
Suppose that S* and 3* = {af, - - -, af; v¥, - -+, 7¥_,} are a compact Riemann
surface of genus g with nodes and a basic system of loops and nodes on
S* such that one of the sets induced from 3¢ is compatible with 3¥, and
that a} (1€ I*), v¥ (jeJ*) are nodes and af (i ¢ I*), v¥ (j¢J*) are loops,
where I* and J* are as defined in § 3.1.

From the construction in §3.1, we see that the pair (S*, X*) has
Property (A) (see [8] for the definition). Therefore, by Theorem 2 in
[7], there exists a point 7* €6™7°S,(5¢¥) with S(c*) = S*.

4. Main theorem—The first step. From this section through section
6, we will prove the following: For a given point 7 ¢'&,5,), where
I> I(J) # @, there exists a sequence of points {z,} in @,(fo) such that
7, — T and S(z,) does not converge to S(z) as marked surfaces as n tends
to . We consider it in the case of J = {j} and I(J) # @ in §4, in the
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case of J = {j(1), 7(2)} and I(J) #+ @ in §5, and in the general case in
§ 6.

4.1. The first step: The case of J = {5} and I(J) # Q.

We have the following two cases.

Case I. There are at least three elements k& of the set {1, 2, ---, 2g}
such that C,, is behind C,,,.;, which is denoted by C,,.; < C,, (see [8]
for the definition).

Case II. There are two elements & of {1, 2, - - -, 29} with C,,,,; < C, ;.

Fix an element 4 of I(J). Both Cases I and II are divided into the
following six cases. Here J; means the direction of 7,; in the ordered
cycle L,, (see [8]).

Case I-1 (Case II-1). C,uu; < Coiy Cosgrs £ Copriy 0;=—1 (1 #1),
where C,,,.; < Cy,+: means that C, ., is not behind C,,,.; (see [8]).

Case I-2 (Case II-2). Cyspr; £ Coiy Coogri < Cogusy 05 = +1 (1 % 1).

Case I-8 (Case II-83). Coopii < Coiy Cosgri 4 Cogisy 05 = +1 (2 # 1).

Case I-4 (Case II-4). Cyopri € Coiy Coogrs < Cogisy 0; = —1 (1 % 1).

Case I-5 (Case II-5). Cyop4j < Coyrsy 0; = +1 (2 = 1).

Case I-6 (Case II-6). C,u4j < Coyryy 0; = —1 (2 = 1).

REMARK. Cases I-1,1-2, ---,1-6 are Cases II, I, I’, II', III, III' in
[8], respectively.

4.2, We only consider Case I-1. The other cases are treated simi-
larly and so omitted. Given feé”’@,(fo). Then we have two marked
Schottky groups <{Gu(z)) = (A (7, 2), ="+, Aoy(7, 2)) and (Gi@) =
<A,-(1)(Z', 2), "+, Ai(ﬂj)(z-’ )y and defining curves Cyu(z), C,rm(t) (K =1,
2, -+, ¢) and C;0,(2), Cors(@) @ =1,2, -+, g,) as in [6, pp. 73-75]. Fur-
thermore, we have the fixed points P, (), Dyrow(T) of Aow(z, 2) (resp.
Diw(T), Dgrin(t) of }i,-(,,(z', 2)), the distinguished points of the first kind
Doczge+(T)y *+ 7y po<7g0+m0)(7) (resp. ﬁj(nj-}-l)(z.)’ ) Z\ij(zgj-}-mj)(f))’ and the distin-
guished point of the second kind pj(z) (resp. p7(z)).

Let S(z) be the Riemann surface with nodes represented by z. Let
a(t) (kel, ie., k=0Q), .-, 0(g,), 1), -+, j(g9;)) be the projections of
C.(tr), and ay(r) (leI) (resp. 7;(r)) the projections of the distinguished
points of the first kind p,(7) (resp. p#(z)). Let 7, (z) A1 17 —-1,7+1<
1 <29 —3) be loops on S(z) such that 3 = {a,z), -+, a,(7); 7.(z), - -,
Y.,—s(7)} is a basic system of loops and nodes on S(z) with I ~ 5. Let
Coyri(t) for I with v, © Si(v) = 2(G(7))/{G(T)) (resp. @,H(r) for | with
7, € S;(7) = 2(G;(7))/{Gi(7))) be the liftings of 7,(z) to w,(z) (resp. @;(7)),
where y(7) (resp. @,(7)) is the fundamental region bounded by C,,(7) and
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Cogin(@) (k= 1,2, -+, g0) for (Gy(0)> (resp. Cim(r) and Cyusmn(c) (m =
1’ 2’ tt gJ) for <Gj<T)>)°

4.3. From §4.3 through §4.5, we will construct a Riemann surface
S* from S(z), a basic system of loops and nodes X* = {a¥, ---, a*; Y¥, -,
v _s} from ¥ and a point z* e@;*(f;‘) from 7, where 3# is the image of
5, under the interchange operator I,(s, 7).

(1) We will define points pfu), Piiow (B =1,2, -, 90), DPlagern € =
1,2 -.--,m,) except pf and pj., and Jordan curves Cf,,, Cfow k=1,
2, o+, 90) bY Dy = Do (T), Do = Porory(T); Diogerny = Doczge+1(T); Com =
Cows(7), C¥rowy = Corom(t). We set p¥ = p,.(7) and p},, = pj(r) and set
Ck i = Cyp(t) for I with C, oy 5 € Cyagri, namely for I with v, © Sy(7).

(2) We will define points D}, Drjwm (B =1,2,--+,9;), Blogrn € =
1,2, ---,m;) except p¥ and P, and Jordan curves éf(k), é;’;,-(,,) k=1,
23, trty gj)v by E‘k(k)v: Diw(T)y Diviwm = Bivim(0); ﬁfugﬁz) = ﬁﬁ29j+z)(f)? Ciw =
Cin(®@), Cljmy = Coijr(7). We set pf = p7(r) and P}, = P(r), and set
(j;‘;ﬂ = vw(z') for | with C,,,.; < Cy o541, namely for [ with v, C S;(7).

4.4. By using multi-suffices, we write Cy (3, %5 *- -, %x), Cy(ty, - - -,
Ty ***y 4,) and Cy(Jyy Joy ++ 5 Jo) for Cooprjy Gy and C, .., respectively.

(1) We choose Jordan curves K, and Ifz as follows: K, (resp. 152)
forms the boundary curves of a triply connected region o*(j, -+ -, J,—1)
(resp. 0-*(7:1, ] iv—l)) together with C*(ju Tty ja—l) and C*(ju ) ja—ly
1 —7,) (resp. C*(, ---,1,_;) and C*(3,, -+, 4,_,, 1 — 4,)), and contains the
point p¥ (resp. P}..) in the interior.

(2) We determine a Mobius transformation T as follows and fix it:
T(p¥) = ¥, T(p}.,) = pf. and Kf = T“(IZ'Z) lies in the interior to K.
Then we note that the outside IZ} is mapped to the inside Ky under the
mapping T-'. We write C},; for K}.

(3) Weset Cyyy = T7HCiw), Coviy = T Csm), Piw = T (D) and
i = T (D5iw) k=1,2,---,9;), and Degjrn = T_l(f)}k(zgﬁn) (=1,
2, -+, m;). Weset Cf, = T‘l(é;;H) for I with C,,,.; < Coori. We note
that all these points and curves are contained in the interior to C3,;.

4.5. For each k = 0(1), ---, 0(g,) (resp. I = j5(1), ---, 4(g;)), we define
a Mobius transformation Aj(z, z) (resp. Aj(z, 2)) by Al(zr, z) = Az, 2)
(resp. Af(z, 2) = T7A(c, 2)T). Let tf (|tf|<1) (k=0Q),---, 0(g),
j@), «-+, j(g;)) be the inverse of multipliers of A¥(z,2). We set tf =0
(k € {1’ 27 ] g}\{O(l): ) 0(g0)y j(l)’ ) j(gj)}’ i'ew ke I)-

By the same way as in [7], we determine of (I =1,2, ---,29 — 3)
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from pf, - -, p¥ with respect to 3¥. We set

T* = (tl‘.ky "'yt:y Pf, "’;P;u-a) .
Then r*e@,‘,“(f:). Let S* = S(z*) be the Riemann surface with nodes
represented by z*.

Let af (k=0Q),---,0(g), 5Q1), ---, 5(g;)) (resp. af (leI)) be the
projections of C¥ (resp. py) onto S*. Let v} (1=1,2, ---,2g — 3) be the
projections of C},, onto S*. Now we define a basic system of loops and
nodes 3* on S* by

¥ = {a:9 t a:; 7;“’ ""7;;1—3} .
We note that 3* ~ 3'*.

4,6, Here we will construct basic systems of loops I* with 2} ~ ¥,
and a sequence of points {t}} ¢ &,(3¢¥) such that ¥ — z* and (S(z}), 3¥) —
(S(z*), 2*) as » tends to «, where S(z*) are the Riemann surfaces repre-
sented by z}.

Forl=1,2,---,29 — 3, wesetC},,,=Ck,,(n=1,2,---). Forke¢l,
we set Cf, = Cf, Cliin = Citp, PEn = 0 and DJin = D5 (0 =1,2, - ).
We set A} .(z) = A}(z,2). Forlel, we choose Cf,and C},;,(n =1,2, --:)
as follows:

(i) Each Cf, (resp. C}, . is a circle of the radius 7(l, n) (resp.
r(g + 1, n)) about p¥f (resp. p}, such that lim,..r{, n) =0 (resp.
lim,... (g + I, n) = 0).

(ii) For each l€I, let Af,(z) be a Mobius transformation satisfying
Al (k) = PEay AlLa(DF41,) = Do, and AL(CE,) = Cfyy.. Then (GX) =
(Af.(z), -+, A} .(2)) is a Schottky group.

(iii) If we set

2': = {C;':m Sty C‘:‘ﬂ,n; Cz":rﬂ,m Tty C:;—s,n} ’
then $* is a basic system of Jordan curves for (G*> with $* ~ 5%,

where 5* ~ 5¥ means that for each [ =1,2, ---, 29 — 3, C%,, . gives the
same partition of {1, 2, ---, 29} as C¥,..

REMARK. We may choose »f¥., Drikn Cr., Ckoi. and Cf,,, as
follows:

(i) pé.—of and pfypn— Pl 6=1,2,---,9) as n— oo,

(ii) For keI, C¥,— C} and C}y,, — C¥, as n — .

(iii) For each kel, C¥, (resp. C}.,) is a Jordan curve with the
diameter r(k, n) (resp. r(g + k, n)) such that »(k, n) — 0 (resp. (g + k, n) —
0) as n— oo and pf, (resp. ... is contained in the interior to Cj,
(resp. Cjis,n)-
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(iv) Let A¥.(?) k=1,2,---,9;n=1,2, ---) be Mobius transforma—
tions satisfying AZ.(pi.) = Dia Al(D5e, n) = Piikn Aba(Chn) = Cliepm
and lim,_ .. \f, = M (resp. o) for k¢ I (resp. k€ I), where A\, and A\f
are the multipliers of AF, and A}, respectively. Then (G*) = (AF,(2), + -+,
A¥.(2)> is a Schottky group.

(v) If we set:

= {C;':m ct C;;,n; C2}':7+1’ Tty CZJ——s} ’
then ¥ is a basic system of Jordan curves for (G*)> with 5 ~ 37

Let 7} € &,(Z¥) be the point corresponding to (G¥> (cf. Theorem 1
in [7]), that is, <GX) = {(G(zx)). Let II,: 2(G(z})) — 2(G(zx))/{G(zx)) =
S(z¥) be the natural projection. We set af, = II,(Ct,) k=1,2,---,9;
n:]-fzr "') and '72':,,—’:]],,(02";,“,") (l—_—l’ 2, "';29—'3;/”/:112: "')'
Then X} = {af,, -, @ Yy <oy Vo s} is a basic system of loops on
S(z¥). By the same way as in §2, we see that z} — ¢* and (S(z}), 3¥) —
(8(z*), 2*) as m — oo,

4.7. Let X, = {0 ¢y Qgns Yins ** %y Yogsm}y T and {G(z,)> be the
images of X}, ¥ and (G(z}) under the interchange operator I (s, ),
respectively. Then we see that 7,e€&,(3) and that ¥, is a basic system
of loops on S, = 2(G(z,)/{G(z,)> with ¥, ~ 5. Let 3* ={ar, ---, &%
J¥, -+, 7% _s} be the following basic system of loops and nodes on S* =
S(*):a@r = af (k+1), &r=7F =7 (1 +#7) and 9F = aF. Then we
note that $* ~ 5, From §4.6, we have that 7, » 7 and (S(z,), 5,) —
(8(z*), £*) (# (S(z), %)) as m — o.

5. Main théorem——The second step.

5.1. The seg\ond step. The case of J = {f(l), f(2)} and I(J) + @.

Let (1) e I{7(1)}). Let 3, be the image of 3, under the interchange
operator I,(i(1), f(l)). We set J, = {f (2)}. We consider the case of
IJ)N\{i(1)} # @ with respect to 3,. Let i(2)eI(J,). We write 3, for the
image of §, under the interchange operator L(#(2), f(2)).

The second step is divided into the following three cases: Case 1.
Coitny < Cogrim; Case 2. Cyyifey < Cyitw; Case 3. There is no relation
between Cy,, 7y, and Cuie, that is, Cyipy £ CZg+f<2) and Cyife £ Cogidr-
For C,, and C,.;y (resp. C;, and C,,,,), we have either C,,,3, < C,,, or
Coprtny < Chpsy (resp. Cypidey < Cipy OF Copity < Coiiy). We only consider
the following case:

Coyrty < Ciy and  Cypifo < Gy

Other cases are similarly treated.
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In the above case, there may be the following twelve cases:

Case 1. Cyipn < Cyifey, therefore in this case C, 5 < Cin and
Copitor £ Coriye

Case 1-1. Cyifyy < Coriyy Cogidr £ Citare

Case 1-2. Cyijw £ Corricnr Copifr £ Ciy.

Case 1-3. ng+f(1) < Cg+t(2)7 Coptinr < Ciyy.

Case 1-4. Cyiiwy £ Corie, ng+f(2) < Ciy.

Case 2. Cyife < Cyyijwy, therefore in this case C,,p. < C, and
ng+f(1) { Cg+i(2)' 1

Case 2-1. Cyify < Crriay Coyiioy £ Cin-

Case 2-2. Cyifer < Copiny Copity < Cipy.

Case 2-3. Cyijem £ Corinnr Copiiy € Cine

Case 2-4. Cyifo % Coriany Cogidny < Ciggye

Case 3. Cyifw £ Coyrjr and Coyyfiy % Cogyjnne

Case 3-1. Cyifwy € Coricrry Coprfr £ Corsrnye

Case 3-2. Cyiin < Chiiey Coyitay € Corricre

Case 3-3. Cyifwy € Coriery Coprdr < Corsrr-

Case 3-4. Cyiiw < Corienr Copitr < Cpriye

5.2. Here we only consider Case 1-3. Other cases are similarly
treated. We use similar procedures as in §4. First, we use Cy s, Ci
and C,,,, instead of C,,;, Cvi and C,,,; in §4, respectively. In this case,
it is slightly different from the way in §4 Namely, we have three
Schottky groups <Gy(z)), <Gm)(7~')> and (Gy,(0). We set i = Piu,
pm) Doris Diw = Dhw, pm) = p:(z)y Diriy = Dgrirs p](z) = p:(2) and pﬂ+i(1) =
P.w, and then we use the same procedure as in § 4 for (G,(z)> and <Gm)(r)>.
We denote this procedure by [Cy.iw; Ciws Coriw]. We denote by (G, ;i
C, C,,,) the procedure in §4. Second, we use C}. .}, CN’:‘M,Z), and C},
instead of C,,y;, C; andNC,,H in §4, and we use the same procedure as in
§4 for (G¥(z)y and (Gjw(2)). We write [Cpin; Ciw Corem] = (Clhsten,
Ck i Ciy) for the above two procedures.

Given a point 7 €87'&,(5,). We get a point c* €&, from 7 by
using the procedure [C,,.}u; Ciw)y Corsw], and a point z** e@;“(fz) from z*
by using the procedure (Cj ju; Cfiiwy Ciw). Let 3** = {a*, ---, aF*;
Yk, oo, %) be a basic system of loops and nodes of S(z**) which is
obtained by the same method as in §4. We note that 3** ~ 5, Next
we construct the following sequence of points {r}*}c&,(3,) by a similar
method as in §4:

¥ —** and  (S(zr*), 2x*) — (S(c**), 2**)
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as m — oo, where I** is a basic system of loops on S(z**) with I** ~ 5,
Whlch are obtained by the same method as in §4. We set ¢} = I;7(:(2),

(2))(1'**) and 7, = I;*(:(1), J (1))(1'*) Then it is easily seen that 7, & (fo)
and 7, >7 as m— . Let 3** = (@r*, -, &% ’?i“*, .- ,72,_3} be the
following basic system of loops and nodes on S(z**): a,u, T, am, =77,
al’:* =agy* (k#1(1), 1(2)), '71(1) = aum 7{(2) =ajfs and 7f*=7F* (I 7&.7(1), .7(2)),
We set ¥, = I,(i(1), .7(1))‘1 ,(4(2), _7(2)) (3**). Then we have that

(S(z.), Z.) = (S(x**), $**) as m— oo,

5.3. Other cases can similarly be treated to the above. For each
case, we use the following procedures:

Case 1-1. (Cyitws Ciwy Corun) = (Ciiitws Clay Clrim).

Case 1-2. (Cyitu; Ciny Corean) — (Coiiis Clany Covim)-

Case 1-3 was already treated in §5.2. Case 1-4 does not occur.

Case 2-1. (Cyiiw; Ciwy Corin) — (Ciidmi Clayy Corsen)-

Case 2-2. (Cyijws Cuwy Corin) — (Ciitas Clay Covim)-

Case 2-8. [Cyiin; Citnyy Crrin] — (Ciisrs Ciay Cori)-

Case 2-4 does not occur.

Case 3-1. (Cyiin; Citns Cori) — (Chiders Ctorr Clria)-

Case 3-2. (Cyiin; Ciny Corin) — (CHhidin; Clayy Chri)-

Case 8-3. [Cyiiw; Ciyy Corin] — (Chifin Clayy Clriar)-

Case 3-4 does not occur.

6. Main theorem—The third step. Last, we will treat the general
case. Letzeo"'&,(5,) be as in §3, where I D I(J) # @. Let 5¥ be as
in §3, that is,

f:‘ = Ig(":k(m jzm) e Iy(ik(l.)’ jl(l))(go) .
We write @ for I(tys), Jus) *** L(tews Jiw). Let I* and J* be as in §3.
By the same methods as in §§ 4 and 5, we determine rle@*(fl) from 7,
Tzeé:(fz) from 7, .-+, 7, G@*(Z&") from z,_,, where Zt = I(Tkw, Jl(t))(g -1)
t=12,-- ,s) and Z’o =2,

We set t* =7,. Let 3* = {a¥, -+, a¥; ¥, -+, 7%_;} be a basic sys-
tem of loops and nodes on S(z*) with 3* ~ ¥ which is obtained by the
same method as in §§4 and 5. We note that af (keI*) and 7} (leJ¥)
are nodes, and af (k¢I*) and v¥ (I¢J*) are loops. As in §§4 and 5,
we construct the following sequence of points {t}} C &,(3¥): t¥ — z* and
(S(z¥), Z*) — (S(z*), 2*), where 3* are basic systems of loops on S(zy)
with 3* ~ $¥ which are obtained as in §§4 and 5. We set ¢, = @7(z}).
Then the sequence of points {z,} € &,(F,) satisfies the following:

z,—7 and (S(z,), 2,) — (S(z*), £*) as m— o,
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where 3, = ¢7%(F¥) and 3$* is the basic system of loops and nodes on
S(z*) with 3* ~ 5, which is obtained from X* as in §§4 and 5. Then we
have the following main theorem.

THEOREM 2. Let (G, and 5, be a fired marked Schottky group and
a fixed basic system of Jordan curves for (G,), respectively. Given a
point T € 677'&S,(5), where I D I(J) +# @. Let S¥ I* and J* be as in § 3.
Let 7* € 8™7°&S,(3¥) be the point obtained from t as in the above. Then
there exists the following sequences of points {z,} C &,(5,):

z,—7 and (S(,), 5,)— (S*),5*) as m— o,

where X, and S$* are a basic system of loops on S(f") with 3, ~ 5, and
a basic system of loops and modes on S(t*) with 2* ~ X, respectively,
as above.

COROLLARY. Given t e&”@,(fo), where I~ DIWJ). If IJ)+# @, then
there exists a sequence of points {r,} C &,(%,) such that (i) z,—7 as
n — oo and (ii) S(z,) does mot converge to S(z) as marked surfaces.

REMARK. By similar ~methods as in [5] and in the proof of Theorem
1, we easily show that if Y, is a standard system of Jordan curves, then

S(z,) converges to S(z) as marked surfaces for any point 7 € &*(S,) and
for any sequence of points {7,} C &,(2,) with 7z, — 7.

7. An example. Here we will give an example for Theorem 2. We
write (a, b; ¢, d) for a matrix
a b
e o)
For n = 10,11,12, ---, we set
Ay, =, —1/n; n, 0),
A, = (0 + 3, —(2n* + 6 + (1/n?); n?, —2n?) ,
Cinilzl =2/3,
Co.ilz —2|=1/n",
Cinilz — 1| = 3/(2n?) ,
Cinilz — @1 + @/nh)| = 1/n’,
Csnilz — 1| =5/n*.
In particular, we set A, = A4,,, (1 =1,2), {(G,) = (4,, 4,), C,=C,,

(1=1,2384,5 and 5, =(C,C,C,C;C}. Then (G is a marked
Schottky group and 2, is a basic system of Jordan curves for (G,>. We
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apply the interchange operator I,(1,1) on 3, and (G,>. If we set 3¢ =
I, 1)8) = {C¥, Cx, C¥, C¥, C¥}, then we have Cf = A7Y(Cy), C¥ = C,, C¥ =
C,, Cf = A7Y(C,) and Cf = C,. If weset (GF) = I,(1, 1)({G) = (A¥, A¥,
then we have A¥ = A, and A} = A'A,.

We set <(G,) =<{A,., A4;,.) (n=10,11,12, ---) where {(G,> = (G,).
We easily see that (G,) are marked Schottky groups (n = 10,11, ...).
Let 7, = (i, tony 01,.) be the points in &,(3,) corresponding to <G,> (n =
10,11, ---). If we set (Gx) = I,1, 1)({G,)) = (Af,, A¥.>, then we have
A¥, = A, ,and A, = A, A,, = (n, —2n; —3n, 6n + (1/n)). Let X = (t¥,,
t¥., o¥.) be the points in &,5¥) corresponding to (G}>. Set Si =
LGEH/IKGE) and S, = 2(G,)/{G,>. Let II, (resp. II*) be the natural pro-
Jections of 2(G,) (resp. 2(G7)) onto S, (resp. S}). We set a,, = I1,(C,,)
(t=1,2), 7,,=1I,C,), af,=ILXC) (1=1,2) and ¥, = II}(Cf,).
Then 3, = {a, ., . 7.} and 2% = {af,, aF,; vF,} are basic systems of
loops on S, and S}, respectively, and X} = I,(1, 1)(X,).

Let Ni,n, Pin. and p,,,, (resp. Nf,, ¥, and p¥,,) be the multipliers,
the attracting and the repelling fixed points of A,, (resp. A},), respec-
tively, for » =10,11,12, ---, where |X\,,| > 1 (resp. |A},| > 1). Then
we have .
Din=m—V0—4)2n, D=0+ V0 —4)2n,
Do, = B(n* + 1) + V'n* —6n* + 5)/2n*,

D = B(* + 1) — V'n* — 6n® + 5)/2n*,
M = (0P — 2+ 0t —4)2,
Ao = (0t — 602 + 7 + 1V'n® — 12n° + 50n* — 84n® + 45)/2 ,

Din = DPinyr  Din = Don s
i, = Bn + A/n) + V490" + 10 + (A/n?)/6n ,
p¥, = 6n + A/n) — V'490* + 10 + (1/nd)/6n ,
Moo =N, and
N, = (49n° + 12 + (1/n)
+ 172401n* + 11760° + 238 + (24/n%) + (1/n%)/2 .
Let T, be the Mobius transformations determined by
T.(p,.) =0, T.(ps,) =1  and T (p2,n) = o0

for » =10,11,12, ---. Then p,, = T,(p,,). By simple calculation, we
have

o = w48 — /W 6w B — m/w =4y
e dnv'n? — 4V nt —6n +5 ’

Hence p,,—1 as n — oo,
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On the other hand, let T'* be the Mobius transformation determined by
TX(pt,) =0, TX(ps,) =1  and TX(pk,) = o
for » =10,11,12, ---. Then we have

32n* + 96n® + 64 + (4/n?%)
9n* — 5 +1V'n* — 41/749n* + 10 + (1/n?))*

Hence o, — 8/7 as n — oo,

Since t;,=1/n;, and t}, =1/}, (1=12), z,—7=1(0,0,1) and
¥ —>7*=(0,0,8/7) as n — . 7 (resp. *) is a point in the augmented
Schottky space @;“(fo) (resp. C%;“(fs“)). Let S and S* be the Riemann
surfaces represented by = and 7*, respectively. Let 3* = {af, aF; 7¥} be
a basic system of loops and nodes on S* with 3* ~ ¥ such that af
(i =1,2) are nodes and 7¥ is a loop. Let 3* = {@F, @F; 9¢} be a basic
system of loops and nodes on S* such that &* = v*, &f = aF and ¥* =
af. We note that S* ~ 5. Then by using the method of the proof of
Theorem 1, we have that

(S¥, 2%) —(S*, X*) as m— oo,

1 —(1/pt) =

Since S, = S} except markings and S = S*, we have that
(S'rn Zn)-)(s*, ZA*)(¢ (S, Z)) as mn — oo,
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