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1. Introduction. The purpose of the present paper is to give as-
ymptotic expansions as t-+°° of the fundamental solution of a diffusion
equation in Rn.

Let

(1.1) A = ±aάk{x)dάdk + g δ/aOS, + c(x)

be an elliptic operator satisfying the following condition (A). Here d^ — djdx^.
(A. I) There exists a positive constant c0 such that Σy,fc îfc(̂ )ίiίfc ^

c0 |f |2 for all x,ςeltr.
(A. II) The functions ajk(x), bά(x), c(x) are real-valued bounded func-

tions on Rn which are uniformly Holder continuous with exponent θ
(0<θ^ 1).

(A. Ill) There exist positive constants p and M such that for all

(1.2) Σ I ajk(x) - δjk I + Σ <*> I bά(x) I + (x)21 φ ) | ^
3,k=l i=l

where δjk is Kronecker's delta and (x) = (1 + |α|2)1 / 2. Let U(t, x, y) be the
fundamental solution of the diffusion equation

(1.3) dtU(jk, x, y) = AU(t, x, y) in (0, «>) x Rn , U(0, x, y) = δ(x - y) ,

where dt = d/dt and δ(z) is the delta function. For σ in I?1, we denote
by [σ] the largest integer smaller than or equal to σ. One of our main
results is the following theorem.

THEOREM 1.1. Let c(x) = 0 and U(tf x, y) be the corresponding funda-
mental solution. Then for any σ with 0 ^ σ < p/2 there hold the following
formulas for all t > 1 and (x, y) eR2n:

( i ) For n odd,

(1.4) U(t, x,y) = !Σ t-n*-!Uά(xf y) + ϋ.(t, x, y) ,
3=0

(1.5) mx, y)\ ̂  M^x) +
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(1.6) \d\ϋ.(t, x,y)\£ Molt-^-°-\(x) + (y))2σ , I ^ 0 .

Here Mό and Mσl are positive constants independent of t, x, and y.
(ii) For n even,

[σ] [ i / ] „

(1.7) U(t, x, y) = Σ Σ ί-*/2-'(log t)*Uik{x, y) + Ua(t, x, y) ,
i=o fc=o

where Uσ satisfies (1.6) and Ϊ7ifc satisfies the estimate

(1.8) I ^ ( a j , 2/) I ^ Jlf i«aj> +

Furthermore, Uό(x, y) and Ujk(x, y) are of the form Σιfι(%)9ι(y), where
Σ ί is a finite sum. In particular, U0(xf y) for odd n ^ 3 or U00(x, y) for
even n is equal to a uniformly Holder continuous function U0(y) satisfying
and determined uniquely by

(1.9) A* U0(y) Ξ (±dβkaύk{y) - ± dfoiv)) U^V) = 0 in R« ,

(1.10) U0(y) = (4ττ)-*/2 + o(l) as |y|->oo ,

(1.11) U0(y) > 0 .

Here (1.9) must be considered in a distribution sense. For n = 1, U0(x, y)
is equal to U0(y) defined by

(1.12) UQ(y) = π-^aiy)'1 exp [£&(»)** ](1 + exp

where a(x) = an(x) and b(x) = — b

Theorem 1.1 will be proved in Section 4. Asymptotic expansions of
the fundamental solutions for the case c(x)&0 shall be given in Sections
5 and 6. We use the results there in [9] in order to solve a problem of
Simon [10].

Theorem 1.1 is useful in obtaining limit theorems for the diffusion
process Xt with the infinitesimal generator A. Here we give only one
application.

APPLICATION 1.2. Let / be a bounded measurable function on R2

which has compact support. Then Theorem 1.1 shows that for any s > 0

(1.13) [~e-*eiAf(x)dt = C0log(l/s) + g{x) + ε(s, x) ,
Jo

where etAf(x) = ^U(t, x, y)f{y)dy, Co = ^U0(y)f(y)dy, and for some δ > 0

(x)-δg(x) e Leo , lim || (x)-δε(s, x) \\Loΰ = 0
l o
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Thus Theorem 1 in [1, p. 447] and Theorem 1 in [5, p. 804] yield the
following limit theorems (i) and (ii), respectively.

( i ) If / ^ 0 and Co > 0, then

(1.14) limPJίCologί)-1?/(ZJdr > r\ = e~r , r > 0 .
ί-«x> I Jo )

(ii) If Co = 0 and Ct Ξ jU0(y)f(y)g(y)dy Φ 0, then

(1.15) lim P\{CX log ίJ-^Γ/TOdτ > r\ = 2-1(V""d% , r e R1

ί->oo I Jo J J r

Asymptotic behavior as t-*°° of solutions of diffusion equations in Rn

with c(#)—>0 as |as|—>oo has been investigated to some extent. Concerning
the problem whether the diffusion process Xt for A = Σ a<jk(x)djdk +
Σbj(x)dj is recurrent or transient, some criteria of integrability near £ =
oo of the fundamental solution U(t, x, y) were given in [3] and [4] (see
also references there). Simon [10] gave the rate of divergence of the
norm of etΛ, A = Δ + c(x) in Rn(n ^ 3), as a map from Loo to L^. These
results are closely related to the problem of determining the leading term
of the asymptotic expansion as t-*oo of the fundamental solution. As
for the one dimensional case, the leading terms of the asymptotic for-
mulas were given by many mathematicians (see [2], [4], [5], [11], and
references there). Especially Eskin [2] gave the formula (1.12) for 6 = 0 .
Little attension, however, seems to have been paid to the higher dimen-
sional case. The aim of this paper is to give complete asympotic expan-
sions for the higher dimensional case. The complete asymptotic expansions
given are new even for the one dimensional case.

The rest of this paper is organized as follows. In Section 2 we give
some lemmas for the free resolvent R0(z) = (z — z/)"1. In Section 3 we
investigate by modifying the method employed in [8] spectral properties
of the resolvent R(z) = (z — A)"1. Using the results in Section 3 we
prove Theorem 1.1 in Section 4, where further properties of the funda-
mental solution are also given. The fundamental solutions for c(x) ^ 0
are investigated in Section 5. When n ^ 2, there is an essential difference
between the expansions in Theorem 1.1 and those for c(x) ^ 0 (see
Theorems 5.4 and 5.5). Section 6 is devoted to the investigation of
the case that c(x) > 0 in a non-empty open set.

2. The free resolvent. We write D = (—idlf •••, — idn) and <D> =
(1 - Aγ'\ For T, s 6R1 and 1 ^ p ^ oo,

(2.i) wy = {/; | | / I U ; . . EE \\(χy(Dyf(x)\\Lp{Rn) < oo }.
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We write L% = W°p\\ For Banach spaces X and Y, B(X, Y) and C(X, Y)
denote the Banach spaces of all bounded linear operators and compact
ones from X to Y, respectively. We write B(X) = B(X, X). F o r O < δ ^ π ,
we put

(2.2) Σ(β) = {zeC; | a rgz | < δ} .

Let AQ = Δ and R0(z) = (z - A)" 1 for z e C \ ( - oo, OJ. We first recall
the well-known formula

(2.3) Rlz)g{x) = (2π)~n/2^2\x - yIT^Knn-λ^Ix - V\Mv)dV ,

where z1/2\z=1 — 1 and Knf2^{Q is the modified Bessel function of the second
kind. That is, the function L = (2π)-n/2(z1/2/w)n/2-1Kn/2_1(z1/2w) is given as
follows:

( i ) For n = 1,

(2.4) L = Σ ώfc/2w*+V/2 , dfc/2 = (-l)fc+1/2(fc + 1)! .
fc=-l

(ii) For odd n ^ 3,

(2.5) L = Σ dk/tW
k+*-*zk/* ,

fc=0

(iii) For w even,

(2.6.1) L = m Σ ί i W 2 ' + ί - V + Σ β ^ + 2

j=0 i=n/2-l

+ Σ csw
2izn/2-1+i log 2 ,

i=o

(2.6.2) c, = ( - 4π)-"/24-ηj! (n/2 - 1 + j)! ,

(2.6.3) dy = (to)-n'*2n-\-4:)-i(n/2 - 2 - i ) !/ϋ

(2.6.4) e, = (-4π)-n/221"2VA;!(W2 - 1 + fc)! , ifc = i - n/2 + 1 ,
1 /A - l 1 n/2-l+fc 1 \

(2.6.5) / y = 7 - i Σ - + Σ -),
2 \m=i m *»=i m /

where 7 is Euler's constant and log^| z = 1 = 0. Here and everywhere else
the convention is: Σm=i am = 0 when fe < j .

The following lemma can be shown by usual calculations for pseudo-
differential operators. (For pseudo-differential operators, see [6].)
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LEMMA 2.1. RQ(z) is a holomorphic function on Σ(π) to B(Wϊ% Wτ

p

+m'8)
for any τ, s e R\ 0 ^ m ^ 2 when 1 < p < oo cmd 0 ^ m < 2 wΛew p = 1
or oo.

We have the following lemma for the operator E(t) defined by

(2.7) E{t)f{x) = (4πtyn/2\ exp [-1 x - y \2/U]f(y)dy .

L E M M A 2.2. (i) # ( £ ) c a n δe extended to a holomorphic function on

Σ(π/2) to B(WT

P'
8, W;>°) for any r , s e f f and l ^ p ^ oo. (ϋ) Let a be a

multi-index, τ ^ 0,1 ^ p ^ oo, \jpr = 1 — l/p, 0 ^ σ < w/2, 2σ — n/p < s <
n/p', and 0 < d < π/2. Then there exists a constant M such that for all
t e Σ(8)

(2Sί MDYD-Em \
(2.8) || (D) D E{t) ||*<,;.,._„> ^ j ^ j ̂  !_(la |+r)/2 | * |

B(p; s, s') =

PROOF, (i) is clear. We shall show (ii) only for a = 0, τ = 0, and
0 ^ s ^ 2σ, since the proof for the other case is similar. With g(t, x, y) —
|(4τr£)-n/2exp[-|a; - i/|2/4ί]|, we obtain that for all teΣ(δ) and xeRn

)~n/2\g(ί, x, y)dy ^ M , sup ί g(t9 x, y)(y)-ndy ^ M(l + | ί \)~n

where Ωk = {y\ 2k <; (y) < 2k+1}, k = 1, 2, . This together with the
interpolation theorem (cf. [p. 89, Proposition 3.1, 7]) shows that for any
0 ^ r < n/2 there exists a constant Mr such that

(2.9) \g(t, x, y)(y)-2rdy ^ Mr(l + \t\y* , tsΣ(δ) , xeRn .

With s' = s - 2σ, we have by (2.9)

/ Γ

' ^ ^supj<aj> '»fii(ίf x,

x(sup
; . q.e.d.

As for the asymptotic expansion of R0(z) as z—>0 with zeΣ(δ), 0 <
δ < π, we have the following lemmas.

LEMMA 2.3. (i) For a multi-index a and σ with \a\/2 ̂  σ < (n +
\a\)/2 and \a\ ^ 2 , one has

(2.10) DaR0(z) = ΣzϊDaG5 + 0{za~ι) as z -> 0
i=o
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with zeΣ(δ) in B(WΓ

P>
8, Wτ

p>'f), where τ' - τ ^ 2 - | α | when 1 < p <
and τf — τ < 2 — | a \ when p = 1 or oof and

2σ — \a\ — n/p < s < n/p' , s' = s — 2σ + \a\ , 1 < p < oo

2σ — I a I — w/p < s < n/p' , s' = s — 2<j + | α | , p = 1 or oo

(2.11) σ>\a\/2 or | α | < 2 ;

—nip < s < n/p' , s' < s , p = 1 or oo , σ = |α|/2 = 1

β/P — S 7 P ' = 0 or 2d — IαI — n , s' < s — 2σ + \a\ , p = 1 or o

ifere αncί m tί feαί follows pf is the conjugate of p: l/pf = 1 — 1/p. Fur-
thermore, Gj (0 ^ j ^ n/2 — 1) is an integral operator with kernel
dj\x — y\z~n+2j, where the constant dά is given by (2.5) or (2.6.3).

(ii) For σ ^ (n + |α|)/2, one has

[ σ ] l Γ σ / 2 ]

(2.12) Z)αie0(2) = Σ z'DΌ, + Σ 2"/2-1+ί(log zYMDaF} +

as 2;->0 in 5(Wp>β, WJ''8'), where τ, τ\ p are the same as in (i),

(2.13) s > 2σ - \a\ - n/p , s' < -2a1 + | α | + n/p' ,

ε(n) = 1 for n even and ε(n) — 0 for n odd, zn/2\z=1 = 1 and logz\z=ι = 0.
Here Fά is an integral operator with kernel Cj\x — y\2j, where the con-
stant c3- is given by (2.6.2) for n even, and is equal to dn/2_1+j given by
(2.4) or (2.5) for n odd; G5 (j > n/2 — 1) for n odd is an integral operator
with kernel ds\x — y\2~n+2j, where the constant d5 is given by (2.4) or (2.5);
and Gj (j ^ n/2 — 1) for n even is an integral operator with kernel

where eό and fβ are the constants given by (2.6).
(iii) Let σ ^ (n + \a|)/2, σf = [σ] for σ$Z and σ' = σ — 1 for σeZ,

ε(n, σ) = 1 for n even and σeZ, and ε(n, σ) = 0 otherwise. Then one has

σ'-l O-7i/2]

(2.14) DaR0(z) = Σ z'DΌj + Σ ^n/2~1+i(log zy{n)DaFj + O(zσ~\\og z)^o))
3=0 i=0

as z->0 in B(W;>8, Wτ

p''
8'), where τf - τ < 2 - \a\, p = 1 or oo,

s = 2σ — \a\ — n and s' < —2σ + \a\ for p = 1 ,
\ίmt -1.0)

s > 2σ — | α | and s' = — 2σ + | a | + n /or p = oo .
PROOF. The formulas for Gy and Fs follow from (2.3)^(2.6).
We first show (i) for σ > [σ] ^ 1. With the notation (2.7) we have

(2.16) R0(z) = (
Jo
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for Re z > 0. Writing k = [σ], we have

(2.17) R0(z) = Σ V G , + \~E(t)fk(zt)dt ,
i=o Jo

G, = [Έ(t)(-tydt/j\, Mzt) = β- -Σ,(-zty/j\.
JO 3=0

For z = z |e 2 ί * with \φ\ < δ/2 < π/2 and 0 < \z\ < 1, we obtain t h a t

G l f 1/1*1 foo \

+ + \ )φy'-*D<Έ(te-i*)fk{\z\tei*)dt
o Ji Ji/lf|/

s /, + /2 + 73 .

By (2.8) and Taylor's remainder estimate,
IIJill*,,;...-, ^ (Mi-^-^'- '^dzli)^* ̂  Λf'|2|» .

Jo
Similarly,

SVI«I fi

Mr"(i21tydt <ιM\zi-11 t*-β<Zί ^ M ' | 2 1 - 1 .
1 JUl

On the other hand,

IlialU:.,.'. ^ (" Mt-(l + Σ,(\z\tyi
Ji/UI \ i=o

Hence

[°E(t)fk(zt)dt = 0{z°~ι) as z -> 0 with 2 e
Jo

in i?(W£>β, Wp/>β/). The same argument as above shows that

φy-'IPG, 6 B(p; 8,*), j = 0, , k - 1 ,

except for the case that j — 0, τ' — τ + \a\ = 2, and 1 < p < 00.

In order to complete the proof of (i) for σ with σ > [σ] ^ 1 it is
sufficient for us to show that

(2.18) φ}τ'-vDaGi e B(p; s, s')

for j = 0, τr - τ + \a\ = 2,1 < p < 00, and 2 — | α | — n/p < s < w/p' But
let us show (2.18) for every τ\ τ, a, p, s, s' satisfying the conditions in (i)
with σ = j + 1, which is necessary for us to prove (i) for σ = [σ]. The
proof is somewhat long.
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Choose a C~-function φ such that φ(ξ) = 1 in a neighborhood of zero,
and set

P = (1 - φiDiKDy-'DΌ,, Q = φ{D)φγ'^DaGj.

Then P is a classical pseudo-differential operator of order τ' — τ + \a\ —
2 — 2j, and Q is a convolution operator with kernel which is a C°°-function
majorized by a constant multiple of (x - y>*i+2-<»+ι«ι>. Since <#>β'P<α>-β

is also a classical pseudo-differential operator of order τ'.— τ + | α | — 2 —
2j (^0 if 1 < p < oo, and < 0 if p = 1 or °o), the Lp-boundedness theorem
for pseudo-differential operators (cf. [6]) yields PeB(p; s, s'). Thus we
have only to show that there is a constant M such that

(2.18') <x - L8, ^ M\\f\\L; , feL',.

where a = 2j + 2 — | a \.

First we show (2.18') for p, s, s' with 1 < p ^ 2, a — w/p < s < w/p',
and s' = s - a. With J2,. = {7/ 6 Rn; 23' ^ <j/> < 2>'+1}, j = 0,1, , we have
by Holder's inequality that

(x)-n/λ (x - y)a-nf(y)dy *

- < ^ > " n ( ^ . < ^ - 2 / > ( α - n ) p X # > ( n / p - α ) p ' c ^ m

Noting that p ^ pf we have by Holder's inequality that

7 = ί <^>-nfί <ίc - y}{a~n)pf(yyn/p-a)pfdyp/pfdx
JΩk \J Ωj

- ( L ^ ~ n d x i ~ P / P \ \ G L <x>"n^ "" y>{a~n)pf<yyn/p~a)pfdχdy)p/pf.
Split the domain of the above double integral into two parts: {\x — y\ ^

11/1/2} and {\x - y\> 12/1/2}, use the fact that if \x-'y\^ |»|/2, then
<aj>"n ^ <ί//2>-n, and if |a; - y\ > \y\/2, then <a; -»>«—>»' < (y/2){a-n)p\
and reduce the double integral to single integrals. Then we obtain that
I is estimated by a constant Mp independent of j and k. Hence

1/J> /f \l/2>

^ M ^ J < > / ( ) | d jG <>

where s = a — n/p. Similarly, we get the above estimate for s = n\pf.
Thus the interpolation theorem ([7, Proposition 3.1]) yields (2.18') for
1 < P ^ 2. This together with duality argument shows (2.18') for 2 ^
p < 00. Second we treat the case that p = 1, a > 0, a — n < s < 0, and
s' = s — a. Since (x — y)a~n <: \x — y\a~n, Sobolev's inequality yields the
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estimate

It <χ - y>a~nf(v)dy ^ M\\ f \\Lι, / e L , .

This implies that

I (x)~a\\(x - y)a-nf(y)dy dx ̂  ikf'||/||Ll,

where Mf is a constant independent of k. On the other hand,

L< (x - y)a-nf(y)dy dx

g ί <χ)-*dx\ <yβy-n\f{y)\dy
jΩk JRn

(\ <»>-"ί

Thus the interpolation theorem shows (2.18') for p = 1 and α > 0, from
which (2.18') for p = oo and α > 0 is derived. Third we treat the case
that p = 1, a = 0, — w < s < 0 and s' < s. For any ε > 0, we have by
Holder's inequality that

n~εdx <sup I (x)~ε(x — y)~ndx <; I (xyn~ε

y JR" JRn

This implies (2.18') for p = 1, a = 0, s = 0, and s' < 0. On the other
hand, similar calculations yield (2.18') for p = 1, a = 0, and s = — w > s'.
This implies (2.18') for every s with - n < s < 0 when p = 1 and α = 0
from which (2.18') for p = oo and a = 0 follows. The estimate (2.18') for
the other cases can be shown similarly. This completes the proof of
(2.18'), and so the proof of (i) for σ > [σ] ̂  1.

Now let us show (i) for 0 ̂  σ ^ 1. Choose a CjVfunction ^ such that
f (0) = 1 and Aαf (0) = 0 for 1 ̂  | α | ̂  2w + 1, where ψ is the Fourier
transform of ψ. Clearly, (1 - f(D))(Dyf-τDaRQ(z) e B(p; s, s'). Elementary
calculatians show that the operator ψ(D)(Dy'~τDaRQ(z) is a convolution
operator with kernel which is a C°°-function majorized by a constant
multiple of

exp(-ε|z|1/2<> - y))(x - yy-n~^ ,

where ε is a positive constant smaller than ((1 + cos <?)/2)1/2. Thus the
same argument as in the proof of (2.18') shows that

ψ(D)(Dy'-τDaR0(z) = O{z°~ι) as s->-0 with z
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in B(p; s, s') This completes the proof of (i) for 0 ̂  σ ̂  1.
It remains to show (i) for σ with 2 ̂  σ — [σ] < in + \a\)/2. Note

that

y-Tiξi2-20^ +

for all C~-function /. Thus the same argument as in the proof of (2.18)
shows that the above operator belongs to B(p; s, s') for p, s, s' satisfying
(2.11). This together with (2.18) shows (i) for a = [σ] ^ 2. The proof
of (i) is complete.

We now proceed to the proof of (ii). Put

Ek+1(t) = E(t) - Σ t~n^H3 , k = 0,1, ,
3=0

where H3 is the integral operator with kernel \x — y\2S/[(4:π)n/2(—4)^"!].
Then an argument similar to that in the proof of (2.8) shows that for
σ with (n + \a\)/2 + k <; σ < in + |α|)/2 + k + 1 and s, s' satisfying (2.13)
there exist positive constants s and M such that for all t e Σ(d)

where a = max((τ' — τ + |α|)/2, n/2 + k). Let n be odd and n/2 + k
σ ^ (n + l)/2 + &. Then we have, in view of (2.17),

(π-3)/2 foo

Ra(z) - Σ «'G, = E(t)f{n_im(zt)dt
3=0 Jo

fc foo fc-lfooFf (f\ί^^fYn-S)/2+3

_ y t~(n/2)-3f .(zt)dtH+y\\ "
3=0 JO ί π ~ I 3 3 3=0 JO (|

This together with (2.19) shows (ii) for odd n and σ with n/2 + k tί o <
(n + l)/2 + k. In treating the case (n + l)/2 + fe ̂  σ < tι/2 + /c + 1, we
have only to decompose /{n_1)/ί+*(zί) into (-^)(n"3)/2+fc/((^ - 3)/2 + fc)! +
/(n-D/2+*+i(«t) This completes the proof of (ii) for n odd. Let n be even
and n/2 + k ̂  σ < n/2 + k + 1. With E0(t) = E(t), we have

n/2-2

Λα(«) - Σ
3=0
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j=o Uo

+ \~Ek+1(t)fn/i+k(zt)dt .
JO

This together with (2.19) shows (ii) for n even.
The assertion (iii) can be shown similarly. q.e.d.

For Banach spaces Xo and Xx imbedded in a Banach space X, Xo + X1

denotes a Banach space defined by

(2.20) XQ + X, = {xeX;x = xo + x19 x0 e Xo, x, e Xx) ,

where \\ \\3 stands for the the norm of Xό. In the sequel we shall use
the spaces B(L{, Loo) + B(L19 L~8) for s ^ 0.

LEMMA 2.4. (i) For a multi-index a and σ with \a\/2 < σ < (n +
α|)/2 and | α | ^ 2 , one has

(2.21) D*R0(z) -Σz5DaG5 = 0{zo~1) as z -> 0

i=o

in B(LP, Lq), where I tί P ^ Q ίί °° and

(2.22) n(l/p - 1/β) = 2σ - \a\ .

(ii) Lei σ > {n + |α|)/2, or <7 = (n + | α | ) / 2 ί Z. Lei e(w, σ) = 1 /or
n even and σeZ, and e(n9 σ) = 0 otherwise, and σf — [σ] for σίZ and
σ' = σ — 1 for σ e Z. Then one has

σ'-l [σ-π/2]

(2.23) D-iZofc) - Σ β'D'Gi - Σ zπ/2-1+ί(log z) MD"F, = O(z'-\\og z)'"1-")
i=o i=o

as 2;->0 m B(L\, Loo) + B(Llf L~8), where s = 2σ — n — \a\.
(iii) Lei X = {/ e Lx; F o / = 0}. Then R0(z) \x has a formula similar

to (2.23) in B(LinX, Loo) + B(X, L" ( β-1 ) +). Here x+ = max(a, 0).
(iv) For an integer σ = (n + |α|)/2, (2.23) holds in B(Wl>°, Wll*0),

τ' < τ.

PROOF, (i) follows from (2.17) and the inequality

(2.24) | |DΈ(t)\\B { L p,L q ) ^M\t\~", teΣ(δ) ,

for p and q satisfying (2.22). (ii) and (iii) follow from the decomposition
of E(t) used in the proof of Lemma 2.3 (ii) and the inequality (x — y) ^
(x} + <J/> (iv) is shown by the inequality
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f)/\ 1) , teΣ(δ) . q.e.d.

We put

(2.25) R0(z) = R0(z) - Go for n ^ 3 ,

R0(z) = R0(z) - zn/2-\log z)ε{n)F0 - Go for n ^ 2 .

LEMMA 2.5. Lei a be a multi-index with \a\ ^ 2 and σ > 1. ΓΛen
£Λe following statements hold.

( i ) For σ < (n + |«|)/2, one Aαs

(2.26) £>αi20(z) = C £ V j 3 β G y + 0{z°-1) as 2; -> 0
5 = 1

in B(W;>8Wp'8'), where τ' — τ ^ 4 — \a\ when 1 < p < 00 and τ' — τ <
4 — | a | wfeen p = 1 or 00f s' = s — 2σ + | a | , anci s is a constant satisfying
(2.11).

(ii) Let m — \ for n ^ 2 and m = 0 /or n ^ 3, and <7 ̂  (n + | a |)/2.
ΓΛen one

(2.27) DaR0(z) = Σ »iDβG/ + Σ sn/2-1+i(log zY{n)D«Fά + o^- 1)

a s 2; —>0 in B(WT

P'% Wl''*r), where τ' — r ^ 4 — \a\ when 1 < p < 00 a n d

τ' — r < 4 — \a\ when p = 1 or °o, and s, s' satisfy (2.13).
(iii) Lemma 2.3(iii) holds with obvious modifications.

PROOF. Let φ be a C°°-function on Rn such that 0(£) = 1 for \φ\ ̂  2
and 0(£) = 0 for |^ | ^ 1. Then φ(D)RQ(z) is a pseudo-differential operator
with symbol — zφ(ξ)[\ξ \\z + If I2)]"1, from which the lemma is derived.

q.e.d.

3. Resolvent expansion. In this section we give some results on
the resolvent R(z) — (z — A)~\ Throughout this section the operator

A = Σ ajk{x)dβk + Σ &i(&)3y

satisfies the assumption (A). Main results of this section are Theorems
3.10 and 3.12 below concerning asymptotic expansions of R(z) as z—>0.

We write Σ(δ, N) = {zeC; |arg(z - N)\ < δ} and Σ(δ) = Σ(δ, 0). We
start with following lemma.

LEMMA 3.1. For any positive constant δ, θ\ S with δ < π and θf < θ
there exist N ^ 0 and an operator-valued function R{z) on Σ(δ, N) with
the following properties:

( i ) R(z) is a holomorphic function on Σ(δ, N) to B(WT

P>
8, W;+m>°) for

any | τ | < θ', \ s \ ̂  S, 0 ^ m ^ 2 when 1 < p < 00 and 0 ^ m < 2
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p = l or oo, which satisfies

(3.1) (z-A)R(z)f=f, feWϊ ,

(3.2) B(z)(z -A)g = g, ge W;+2>° .

(ii) For any 1 < p < oo ί/tere exists a constant M such that

(3.3) || (D)mR(z) \\B{Wr,Λ) ̂  M\z\~1+m/2 , z e 2(«, ΛΓ) ,

for all 0 ̂  m ^ 2, | τ | < β\ and | s | ̂  S.
(iii) For any ε > 0 there exists a constant Λf such that

(3.4) || <2)>-Λ(s)IU<ir;. > ^ M\z\-ί+^+^ , p = 1 or - , 0 6 J ( δ , iV) ,

for all 0 ̂ m ^2 - e, | τ | < 0', ami | s | ̂  S.

PROOF. Consider the operator A" = Σj>kaγk(x, D)dβk, where ajk(x, D)
is the regularizer of ajk(x) (see [6]). Then A" is an elliptic pseudo-dif-
ferential operator whose symbol is estimated from below by c0 \ ξ |2. Thus
we obtain by the standard calculus for pseudo-differential operators that
there exist N~ and R~(z) satisfying the properties in the lemma with
A, R(z), and N replaced by A", RΓ(z)9 and N~, respectively. Since the
order of the operator A — AT is less than 2, we can choose N so large
that for all τ and s with \τ\ < θf and \s\ ^ S, the norm of (A - A~)RΓ{z)
in B(Wϊ8) is less than 1 if z eΣ(δ, N). Hence R(z) is given by

R(z) = Σ K~(z)[(A - A~)R~(z)Y
5=0

for zeΣ(δ,N). q.e.d.

By virtue of this lemma the evolution operator etA for A is represented

by

(3.5) etA = - L - ί R{z)eudz ,
2π% jrN

where ΎN = {N + reiφ; —oo < r < o } + {iV— re~ίίJ; 0 ̂  r < oo} for some
0 < 0 < π/2 and N^O. Theorem 1.1 will be shown by deformation of
the contour in (3.5).

We write AQ = Δ, V = A - Ao, and R0(z) = (z - Ao)-\

LEMMA 3.2. R(z) is a meromorphic function on Σ(π) to B(W%'°, W™'8)
for any s e R\ 0 ̂  m ^ 2 tί Λen 1 < p < oo and 0 ̂  m < 2 when p = 1
or oo.

PROOF. Lemma 3.1 shows that for any s and τ with 0 < \τ\ < θ
there exists N > 0 such that
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(3.6) (1 + VR(N))(1 - VR0(N))f = (1 - VRO(N))(1 + VR{N))f = f

for all / e W . Since RQ(z) = R0(N) - (z - N)R0(z)R0(N),

(3.7) 1 - VRlz) = (1 - Γ(*))(l - Fi?0(iV)) ,

T(z) = (z - N)VR0(z)R0(N)(l + VR(N)) .

By the assumption (A) and Lemma 2.1, T(z) is a C(Lj)-valued holomorphic
function on Σ(π). Since (1 - 2W))- 1 exists, this shows that (1 - T(z))~ι

is a meromorphic function on 2r(τr) to B(L8

P). Hence

(3.8) R(z) = R0(z)(l + VR(N))(1 - T(z))~ι

is a meromorphic function on Σ(π) to I?(T7p'8, If™'8), q.e.d.

LEMMA 3.3. Every z with Re z ^ 0 ami z ^ 0 is not a pole of
R{z).

PROOF. We have only to show that if u in L% satisfies u = T(z)u,
then u = 0. By the imbedding theorem, u e W^8 for any τx and px with
τλ<θ and 1/p! > 1/p — (2 — T^/n. Similarly, u e Wτ

p\
y8 for any τ2 and p2

with τ2< θ and l/p2 > ljpι — (2 + rx — τ2)/n, and so on. Thus, u e TΓΓ'8

for any 0 < θ' < θ. Then we have by (A. Ill) that u e W!L'>8+P. Next,
u e T7Γ>θ+2p, and so on. Hence we obtain that u e W£'v for any v > 0.
Putting v = RQ(z)(l + VR(N))u, we have that veC2(Rn), v(x) = o(l) as
|OJ| —> oo, and Av = zv. Setting w(t9 x) = exp(λ£ + iμt)v{x) with z — X +
ij«, we have that

ajkdjdk + Σ δySyJw , w(09 x) = v(x) .

Since λ ^ 0, the maximum principle implies that λ = 0 if v Φ 0. (For
the maximum principle, see, for example, [3].) Since z Φ 0, we have that
μ Φ 0 and w(2π/μ, x) = w(0, x). On the other hand, since v(x) goes to
zero as \x\ —> oo, Rew(0, α?) attains the maximum or minimum at some
point x°. Thus the strong maximum principle for parabolic equations
yields that Rew(t, x) = 0. Similarly, Im w(t, x) = 0. Hence v(x) = 0,
which implies that u = 0. q.e.d.

LEMMA 3.4. 1 - Γ(s) = 1 - Γ(0) + o(l) as z -> 0 wίtλ z e 2(«) in
/or ani/ 1 ^ p ^ oo and 1 — n/p < s < n/p' + p, where

Γ(0) = NVGORQ(N)(1 + VR(N)) .

PROOF. Since DaFQ = 0 for | a | ^ 1, the lemma follows from Lemma
2.3.

LEMMA 3.5. (1 - ΓίO))-1 exists in B(L8

P), where
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(3.9) 1 — n/p < s < n/p' + p when 1 < p ^ °o ,

1 — n ^ s < p when p = 1 .

PROOF. Since T(0) is a compact operator by Lemmas 2.3 and 2.4,
we have only to show that 1 — T(0) is injective. Let u e L% satisfy

(3.10) u = NVGORO(N)(1 + VR(N))u .

The same argument as in the proof of Lemma 3.3 shows that u e Wt''r

for any 0 < θ' < θ and r < n + p.
We first treat the case n ^ 2. Putting v = G0(l + VR(N))u, we have

that veC\Rn) and Av = 0 on i2\ Furthermore, as |g | —> oo

(3.11) v(α?) = O(| α I2"71) for τ ι ^ 3 ,

(3.12) v(a?) = λ log I a? I + μ + o(l) for n = 2 ,

where λ and μ are constants. Thus the maximum principle for elliptic
equations shows that v = 0 when n ^ 3, which implies that u = 0. This
completes the proof for w ^ 3. Next we consider the case n = 2. Since
the coefficients of the operator A are real-valued, we may assume that
v is real-valued and \, μeR1. The maximum principle shows that for any
ε > 0 there exists r0 > 0 such that for all r ^ r0

λlog r + μ — ε < v(x) < λlog r + μ + ε , \x\ < r .

This implies that V(OJ) = μ, from which we have that u = (1 — Vi20(i\0)A0μ =
0.

Finally we treat the case n = 1. Putting v = 2(1 + VR(N))u and
w = (d/dx)Gov, we obtain that v e WΓ>r for any θf < θ and r < n + p, and

(3.13)

(3.14) w\x) - b(x)w(x) = 0 .

Here we have used the notation: A = a(x){(d/dx)2 — b(x)(d/dx)}. By (3.13),

1 f°°
lim w(x) = ± λ , λ = —— 1 v(y)dy .
α-*±oo 2 J-°°

On the other hand, (3.14) yields w(x) = —λexp I b(y)dy . Thus

λ = -λexpI j J(y)dy I .

This implies that λ = 0, for &(#) is real-valued. Hence w = 0, from which
we have that w = (1 - VR0(N))w'/2 = 0. q.e.d.
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We write K = (1 + VR(N))(1 - T(0))-\ Obviously,

where τ = 0 when l < p < ° o > r < 0 when p = 1 or °°, 1 — n/p < s <
njp' + p when 1 < p Ŝ °°, and 1 — n ^ s < p when p = 1. With
defined by (2.25) we obtain the following lemma by Lemma 2.5.

LEMMA 3.6. For any z in Σ(δ) with \z\ sufficiently small

(3.15) (l-V&o(z)K)-1 = £(V&o(z)K)' in B(L;) ,

where 1 ^ p ^ °° and 1 — n/p < s < n/p' + /0.

By virtue of this lemma R(z) near z = 0 is given by

(3.16) i2(z) = Σ Ro(z)K( VR0(z)KY
i

in B(L8

P, W'p'
8), where l ^ p ^ c > o , l - n / p < s < n\pf + p,τ <^2 f or 1 <

p < oo f and τ < 2 for p = 1 or oo. In order to g e t t h e asymptotic
expansion of R{z) as z —> 0 we need more precise information on (1 —
VR0(z)K)-\

When w = 1, K is given by

(3.17.1) ia(α) = ̂ - δ ( α θ { # e x p [ J ^ ^ ,

(3.17.2) H = f [ J ] ^ 4 / I [ J ° ° ]
Here we have used the notation: A = a(x){(d/dxf — b(x)(d/dx)}. Since
the formula can be shown by elementary computations, we omit the
details. Using (3.17) we get:

LEMMA 3.7. When n — 1, KeB(L8

p) for any p and s satisfying (3.9).

LEMMA 3.8. Let n = l. For 0 < σ < ρ/2 and r < p one has

~ [2σ]

(3.18) (1 - VRQ(z)K)-1 - 1 = Σ * i / 2C; + 0{z°) as z -> 0

in B{L\% LI) + B(L19 Lrr2σ) (cf. (2.19) and (2.20)). For 1 < p ^ oo, (3.18)
ΛoίeZs in B(L8

P, Lr

p) + J5(LP, L;~8), s > 2σ + 1/p', wi£λ O(^σ) replaced by
o(zσ).

PROOF. We have

(3.19) VR0(z) = 1 - α(a?) + [s(α(α;) - 1) - a(x)b(x)(d/dx)]R0(z) .

Thus, Fβ o (^) = «(α(a?) - ΐ)R0(z) - a(x)b(x)(d/dx)(R0(z) - Go). Choosing τ so
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that 0 < τ ^ min(<7, 1/2), one has, in B(L\% L{) + B(L19 LΓ2σ),

(VR0(z)K) Σ (VRQ(z)Ky = o(z°) a s z - + 0 .

On the other hand, inductive argument shows that for any j ^ 1

(3.20) (VR0(z)Ky = Σ zfe/2Cifc = 0 ( 0 as 2 -> 0

in B(Lf, LΓ)+β(L1, Lί" 2 '). This proves (3.18). The estimate for 1 < p ^ 00
is derived similarly. q.e.d.

LEMMA 3.9. Let n be odd and 0 < δ < π. Then the following state-
ments hold.

( i ) For 0<σ<(p + n- l)/2, one has

(3.21) (1 - VR0(z)K)~ι - 1 = Σ z'72^. + o{z°) as z->0

with z e Σ(β) in B(L8

py Lr

p), where C3 = 0 for j odd and j/2 < n/2 — 1 α^d

(3.22) 1 ^ p ^ oo, s > 2σ + 1 - w/p , r < | 0 - 2<7 + min(s, w/p') .

Furthermore, when p = 1, s = 2σ + 1 — n, and r < p — 2σ + min(s, 0),
(3.21) fcoids wife o(zσ) replaced by O(zσ).

(ii) For 0 < σ < w/2, o^β Λαs

(3.23) (1 - VRQ{z)K)-γ - Σ zi/%Ct = O(z°) as z^O

with z e Σ(δ) in B(Llf Lr

q), where Co = 1, n(l — 1/q) = 2 and r < p.
(iii) For n/2 ^ σ < (^ + n - l)/2, otiβ feαs (3.23) in B(L{, LQ +

B(Llf LroΓs), where s = 2σ — n and r < p.

PROOF, (i) follows from (3.15) and Lemma 2.3 along the line given
in the proof of Lemma 3.8. (ii) is derived by (2.21) for \a\ = 2 and a
similar estimate for DaR0(z), \a\ = 1, in B(Llf L\+ε), 0 < ε < 1. (iii) is shown
similarly. q.e.d.

THEOREM 3.10. Let n be odd. Let 0 < 3 < π and a be a multi-index
with \a\ ̂  1. Then the following statements hold.

( i ) For (1 + |α|)/2 < σ < (p + n + |α|)/2, one has
[2σ]-2

(3.24) DaR(z) = Σ zj/2DaBj/2 + o{zσ~ι) as z-+0
ii

2 eJ?(δ) in B(L*P, Lj), where

(3.25) Bn / 2 - 1 = F o # , £ i / 2 = 0 for j odd and j/2 < n/2 - 1 ,

(3.26) 1 <: p <; oo , s > 2(7 - I a \ - w/p , r < min (s, n/p') — 2σ + \a\ .
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Furthermore, (3.24) holds with o{z°~ι) replaced by 0(za^) in the following
cases:

( 1 ) (1 + |α|)/2 < σ < (n + |α|)/2, r = s - 2σ + \a\, and s satisfy-
ing: 2σ — \a\ — n ^> s < 0 when p = 1, 2σ — \a\ < 8 £ n when p = <*>,
2σ — \a\ — n/p < s < n\pf when 1 < p < °°.

( 2 ) (Λ + |α|)/2 ^ <7 < (^ + w + |α|)/2, p = 1, s = 2σ - \a\ - n, r <
-2σ + | α | .

(3) (n+ \a\)/2^σ< (p + n + |α|)/2, p= «>, s>2σ- \a\, r = -

(ii) Lef (n + \a\)/2 < σ < (p + n + |α|)/2, or α = 0 α^d σ = n/2.
Let 8 = 2σ — n — \a\. Then one has, in B(L\, Loo) + 5(Li, L~8)

[2(7l-2

(3.27) Z>αi2(̂ ) - Σ zj/2DaBj/2 = 0{zσ-χ) as z -> 0 , ^6 £(δ) .

(iii) For a = (w + l)/2 and | a | = 1, (3.27) holds in B(L19 WZ'°), where
τ < 0 for n ^ 3 ami τ ^ 0 /or w = 1.

PROOF. The theorem except for n = 1 and σ = (1 + |α|)/2 follows
from (3.16), Lemmas 3.8, 3.9, 2.3, and 2.4 (ii & iv). Let us show (ii) for
n = 1 and σ = (1 + |α|)/2. By the resolvent equation,

(3.28) R(z) = R0(z) +

(3.19) yields

(3.29) VR0(z) = 0(1) as 2 -> 0 in JB(LX, LI)

for any r with 0 < r < ô. By Lemmas 3.8 and 2.4(ii),

DaRQ(z)(l - VRoiz))-1 = 0(^ ( | α '- 1 ) / 2) as 2 -> 0 in B(UU L-) .

This together with (3.28) and (3.29) implies (ii) for n = 1 and σ = (1 +
\a\)/2. A similar argument shows the last half of (i). q.e.d.

We now proceed to investigate the case n is even.

LEMMA 3.11. Let n be even. Then the following statements hold.
( i ) For 0<σ<(p + n- l)/2, one has

„ [σ] [2i/π]

(3.30) ( 1 - VRoφK)-1 - 1 = Σ Σ z* log kzCjk + o{z°) as z -> 0
3=1 fc=0

in JB(LJ, Lj), where p, s, r are the same as in (3.22). Furthermore,
(3.30) holds with o(zσ) replaced by 0{z°) for p = 1, s = 2σ + 1 — w,
r < <o - 2σ + min(s, 0), σ - n/2 Φ 0, 1, , 0 < σ < (p + n - l)/2; qpraZ /or

^ σ [2i/π]

(3.31) (1 - VR^K)-1 - 1 = Σ Σ & log* «Cy» + O(« log z)
j l k U + l ) +
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as z -> 0 in B(Llσ+1-n, L[), r < p — 2σ. Here and everywhere else x+ =
max(#, 0).

(ii) For 0 < σ ^ n/29 one has

(3.32) (1 - V&Q(z)K)-1 - Σ z'Cfi = 0{z°) as z -> 0 in B(LL9 Lr

q) ,

where Coo = 1, n(l — 1/g) = 2σ, and r < p.
(iii) Lei nf2£σ<(p + n- l)/2, μ(σ) = 0 /or σ ί Z and JM(CJ) = 1 for

σeZ, \(x) = 1 for x ^ 0 αraϊ λ(a?) = 0 /or x < 0, s = 2σ — n, and r < p.
Then one has, in B{L{, Z£) + J5(Llf I/-*),

(3.33) (1 - Vfio^)^- 1 - Σ [ Σ ] ^ logfc zCjk =
, =0 fc=2(i-α)

a s 2 —> 0.

PROOF. Except for (ii) and (iii) for σ = n/2 the lemma can be shown
in the same way as Lemma 3.9. In order to prove (ii) and (iii) for σ = n/2
we have only to note that Lemma 2.4 (ii) implies that for | α | = 2

(3.34) ID«R0(Z) -"Σ^GylΛoCΛOίl + VR(N)) = O(zn/2\ogz)
L 3=0 J

as z—>0 in B(Llf Loo). q.e.d.

Lemma 3.11 yields the following theorem.

THEOREM 3.12. Let n be even. Let 0 < δ < π and a be a multi-
index with \a\ 5̂  1. Then the following statements hold.

( i ) For (1 + |α|)/2 < σ < (p + n + |α|)/2, one has
]-l [(2ί+2)/π]

Σ Σ(3.35) DaR(z)=Σ
i=o fc=o

as 2; —> 0 with z e Σ(δ) in B(L*P, Lr

p) with p, s, r satisfying (1) or (2) with
σ$Z or (3) wiίfe σίZ in Theorem 3.10(i); and for an integer σ and
p, s, r satisfying (2) or (3)

[ ( j + ) / ]

(3.36) D"R{z) = Σ Σ z3' log* zD"Bik + O^"-1 log 2)
j=0 k=(j-σ+2) +

as z-*0 in B(L8

pt Lr

p).
(ii) For any ε > 0 one has, in B(L19 Wzε'°),

(3.37) R{z) -Sz>'Bj0 = O(zn/2-1\ogz) as z->0
3=0

with zeΣ(δ).
(iii) Lef (Λ + |a|)/2 ^ σ < (p + n + |a |)/2, σ ^ n/2f μ(σ) = 1 /or

a e Z and μ(<τ) = 0 /or σiZ. Then one has
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[ σ ] l [(2i+2)/n]

(3.38) DaR(z) - Σ Σ *y logfc zD«Bjk = O{z°-\\og
j=0 k=U-σ+2]+

as z -> 0 with z e Σ(δ) in B(L[, Loo) + B(Llf L~8) , s = 2σ - n - | α | .

REMARK 3.13. Let us introduce the assumption

(A. ΠΓ): (x)p(ajk(x)-δjk), (xy+%(x), and (x)p+2c(x) are bounded functions
on Rn which are uniformly Holder continuous with exponent θ.

If we strengthen the assumption (A. Ill) to'(A. ΠΓ), then Lemmas
3.2-3.9, 3.11, Theorems 3.10 and 3.12 hold also with L*p in the lemmas
and theorems replaced by Wϊ8 for any | τ | < θ.

REMARK 3.14. If an exact formula for K = (1 — VG0)~ι is obtained,
then the coefficients B5 in Theorem 3.10 and Bjk in Theorem 3.12 are
determined exactly by (3.16).

For n = 1, K is given by (3.17). For A — a(x)Δ, we have that K =
a{x)~\

4. The fundamental solution. In this section we prove Theorem 1.1
and investigate some properties of the fundamental solution U(tf x, y):

dtW, x, y) = {Σj>kaάk{x)dβk + ΣfoWdύUQ, x, y) ,

[7(0, x, y) = δ(x - y) .

THEOREM 4.1. (i) U(tf x, y) is a Holder continuous function on
(0, oo) x R2n which is infinitely differentiable in t and twice differentiate
in x. For any k ^ 0, \a\ ̂  2, and t > 0, dk

td
a

xU(t, x, y) is uniformly Holder
continuous in (x, y) e R2n.

(ii) For any t > 0, seR\ and m < 2 + θ, there exists a constant
M such that

(4.1) \\U(t, ,y\\wT*°ίίM(yy , yeRn.

(iii) U(t,x,y)>0.

(iv) (U(t, x, y)dy = 1 for all (ί, x) e (0, oo) x Rn .

( v) 1 ί7(ί, α?, ?/)ώ^ is bounded on (0, oo) x Rn .

PROOF. Choose iV so large that Lemma 3.1 holds for N replaced by
N - 1. Since (N - A)R{z) = (N - z)R{z) + 1, we have by Lemma 3.1 that
for t > 0

(4.2) U(t, χ9y) = JLr[ etz(N - z)2nR(z){N - A)-2nδ(x - y)dz ,
2OT irN

(4.3) yN = {N + reiφ; - oo < r < 0} + {iV - rβ~iίJ; 0 ^ r < oo} ,
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where φ is a number with 0 < φ < π/2. This implies (i).
Since for any ε > 0 and βeR1 there exists a constant M' such that

\\»(--v)\\wV.*£M'(Vy, yeRn,

Lemma 3.1 and (4.2) show (ii).
By the maximum principle for parabolic equations, U(t, x9 y) ̂  0 for

(ί, x, y)e(0, oo) x R2n. We have that for and 0 < τ < t

U(t, xr y) = j W - τ, x, z) U(τ, z, y)dz .

Since there exist τ 6(0,0 and an open ball B such that inf {U{τ, z, y);
z e B) ^ c > 0,

U(t, x, y) ̂  c\ U(t — τ, x, z)dz .
JB

The strong maximum principle shows that the right hand side of this
inequality is positive, which proves (iii).

(iv) is clear, since 1 is the solution of the equation: (dt — A)u(t, x) =
0 and u(0, x) = 1.

It is known (see [3, Theorem 4.5, p. 141]) that for some positive
constants m and M

(4.4) U(t, xt y) ̂  Mt~n/2 exv[-m\x-y \2/t] , 0 < t ^ 1 , (x, y) e R2n .

Thus (v) follows, if we show that

(4.5) \ \ e t A \ \ m L l ) ^ M , ί > l f

since for every fixed t > 0 the function I U(tf x, y)dx is a positive Holder

continuous function of y. We first show (4.5) for n ^ 2. By the resolvent
equation,

(4.6) R(z) = R0(z) + R0(z)VRQ(z)K(l - VRQ(z)K)~' .

Lemmas 3.9 and 3.11 show that for a sufficiently small positive number ε

(1 - VRoφK)-1 -1 = O(zε) as z -> 0 in B(Lλ) .

By Lemma 2.4(i), VR0(z) -VG0 = O(zε) as z->0 in B(Lλ). Thus

R(z) - R0(z)(l + VG0K) = O(z~1+ε) as z -* 0 in

Since VG0KeB(L19 Wϊε), this implies (4.5) for w ̂  2. Next let us show
(4.5) for n = 1. Lemma 3.8 implies that for a sufficiently small positive
number ε

(1 - VRoiz))-1 - K = O(zε) as z-*0 in B{L\% L,) .
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This together with (3.19) and (3.29) yields

(4.7) R(z) - R0(z)[l + K(l - a(x))] + S(z) = 0(z'1+*)

as z -> 0 in B(LJ, where S(z) = R0(z)Ka(x)b(x)(d/dx)R0(z). We have that
i?0(2) and (d/dx)R0(z) are integral operators with kernel

(4z)- 1 / 2exp[-z 1 / 2 |α - y\]

and

respectively, where H(w) = 1 for w ^ 0 and H(w) = 0 for w < 0. Calcu-
lating the kernel of the opertor

S(z)etzdz/2πi

by using (3.17) and the formula

(4z)-1/2exv[-z1/2X]etzdz/2πi =

for any λ ^ 0 and t > 0, we get

( y / | | , t>o.
r 0 N

This together with (4.7) implies (4.5) for n = 1. The proof of (v) is now
complete. q.e.d.

To prove Theorem 1.1 we need the following well-known lemma.

LEMMA 4.2. (i) For σ > 0 and t>0,

(4.8) - ί - ί euza-χdz = 7Γ-1 sin G
2πΐ Jr0

where Γ(σ) is the gamma function.
(ii) For t > 0 ami nonnegative integers j and k,

Δπi Jr0 m=o \mj\dσ

PROOF OF THEOREM 1.1. Lemmas 3.1, 3.3, Theorems 3.10, 3.12 and
4.1 yield

(4.10) U(t, x, y) = ^ L - ( e{t~τ)z(N - z)\N - A)~ιR(z) U{τ, x, y)dz
2π% ira2πi

for t > 1, 0 < r < 1, i ^ 0, and JSΓ > 1.
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Let n be odd and w/2 ̂  r < (p + »)/2. Then Theorem 3.10, (4.1),
(4.8), and (4.10) show that

[r-πl2]

(4.11) U(t, x,y)= Σ π-1(-l)("-1)/2+*Γ(%/2 + k)(t - τ)-^~k

fc=o

X [-B»/2_1+*ί7(τ, a>, 2/)] + Wr(t, x , y) ,
(4.12) I Wr(t, x,y)\£ Mrt-'((x}

This yields (1.4) ~ (1.6). Since βn/2_1+fc are clearly of finite rank, Uj(x, y)
is a function of the form Σιfι(x)gι(y). We have from (4.11) that

U0(x, y) = π-1(-iy-1)/Ψ(nβ)Bn/ί_1U(τ, x, y) .

By (3.25), 5B/2_1 = FoίΓ with K = (1 - FGo)-1. Since F o = e^-X , 1> and
etA° = (4πί)-n/2< , 1> + o(t-n/2), we have that

4 / 2 _ i = ( 4 j r )_n / 2 #

Hence U0(x, y) = U0(y) with

(4.13) U0(y) = (4π)-'!/2JίΓC7(r, x,

for any 0 < τ < 1. This together with (3.17) yields (1.12). Next let us
show (1.10). Since K = 1 + VG0K, we have by (4.13) that

(4.14) (4τr)M/2 U0(y) = J C/(r, x, ») (te + j VG0KU(τ, x, y)dx .

We claim that

(4.15) IJ Ufa x, y)dx -

With [a'*(y)]i>lt = [aih(y)]j\ and α(») = dettα' 4^)],,., put

(4.16) H{t, x, y) = a{yY'\Aπt)~^ exp [ - ta'^yXx, - y,){xk - yk)/U] ,

(4.17) J(t, x, y) = (dt - Ax)H(t, x, y) .

Then elementary calculations show that

(4.18) H(t, x, y)-*8(x-y) as t -> 0 ,

(4.19) \H(t, x, y)dx = 1 ,

(4.20) \\J(t,x,y)\dx^Mtm-1, 0 < ί < l , yeR".

By (4.17) and (4.18), we have that
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U(τ, x, y) = H(τ, x,y) — \ I U(τ - t, x, z)J(t, z, y)dtdz .

This together with (4.19), (4.20), and (4.4) show the claim (4.15). Given
ε > 0, we can choose τ > 0 so that

(4.21) \^U(τ,xfy)dx- < ε , y e Rn .

Since VG0K e B( WT'8, Lx) for some m > 0 and s with max(l-w, -p)<8<0,
(4.1) shows that for any y with | y | sufficiently large

^VG0KU(τ,x,y)dx ^ M(y)° < ε .

This together with (4.21) and (4.14) shows (1.10). We have that for any
φ 6 C0°°(i2

n)

\uo(y)Aφ(y)dy = limtn/11Z7(t, x, y)Aφ{y)dy = \imtn/2dte
tΛφ(x) = 0 .

This proves (1.9). Since U(t, x,y) = \ U(t - τ, x, z) U(τ, z, y)dz f or t > τ >

0, we have that

(4.22) U0(y) = j Ulz) U(τ, z, y)dz .

By (1.10), t h e r e exists N > 0 such t h a t U0(z) > (iπ)~n for all z wi th \z\>

N. Thus (4.22) shows t h a t

UQ(y) > (4ττ)-4 U(τ, x, y)dz > 0 ,
J\z\>N

which proves (1.11). I t remains to show the uniqueness: if uniformly
Holder continuous functions U0(y) and U'0(y) satisfy (1.9) and (1.10), then
UQ(y) - U'M. Put w(y) = U0(y) - U[(y). Then, A*w{y) = 0 on Rn and
w(y) = o(l) as | y \ -> oo, We have

(4.23) Δ(w(y) - GQV*w(y)) = 0 on Rn .

Choose 0 < <5 < ^ and φN(ξ) in C°°(i2n) such that φN(ξ) = 1 for |f | ^ JV + 1
and φN(ξ) = 0 for \ς \ ̂  N. With αifc(y) = αifc(y) - djk we have that

G0V*w(y) = Σ^(^)G09Λ<^>-δ[<^>-δ(S i f c(^)^(2/))]

+ Σ (1 - Φ»Φ))Gfiflh{aihto)w(y)) + Σ GJMVMV))

Given ε > 0, we can choose iV so large that the Loo-norm of the first
term of the right hand side of the above equality is smaller than ε,
for
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φN(D)Godjdk(D}-δ = o(l) as N-*oo i n

Since the second and third terms belong to Z£ for some 0 < r <
min (p, n — 1), we get

\G0V*w(y)\<2ε for | » | > 1 .

Hence w(y) — G0V*w(y) = o(l) as | y | -> oo, which together with (4.23)
implies that w = G0V*w. Since 1 — VG0 is a bijection on L{

2

n+p)/2 and LooC
L2-

(π+^)/2, this shows that w = 0. That is, U0(y) = J7ί(y). This completes
the proof of Theorem 1.1 for odd n.

Let n be even and n/2 <: r < (p + w)/2. Then Theorem 3.12, (4.1),
(4.9), and (4.10) show that

[r-n/2] [2i/n]

(4.24) tf(ί, *, ») = Σ Σ (ί - τ)-*-*(-log(t - τ))»
y=o fc=o

x * Σ cjklBn/2_1+jlU(τ, x, y) + Wr(t, x, y) ,

where Wr(t, α?, y) is a function satisfying (4.12). Since U^{xy y) =U0(y)
with U0(y) defined by (4.13) holds also for n even, (1.9)^(1.11) have been
shown already. I t remains to prove (1.8). We have by (3.16) that the
operator Bn/2_1+j is a sum of operators of the form

FμK
lf[VFμiKflVGu.K, μ ^ 0 , μ t > l , v i ^ l 9 m > 0 ,

ΐ=i i=i J

(n/2 - 1)1 + μ + μx + + μ^ + vx+ + vm = n/2 - 1 + j ,

and operators of the form

- 1)1 + μ1 + + JM, + v + vx + + vm = w/2 - 1 + j ,

and operators which we obtain by changing the order of products in the
above ones with fixing FμK and G,K. Note that the maximum of the above
indices μ, v, μίf , vlf , vm is j — (I — l)n/2, which is less than or equal
to j — nk/2 if l^k + 1. This together with (4.24) implies (1.8). q.e.d.

REMARK 4.3. By Remark 3.13, if we strengthen the assumption
(A. Ill) to (A. ΠΓ), we can calculate the asymptotic expansion of U(tf x, y)
by the formula more direct than (4.10):

(4.25) U(t, x, y) = - 2 L ( euR(z)δ(x - y)dz .
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Hence the formulas (4.11) and (4.24) hold with t — τ and U(τ, x, y) replaced
by t and δ(x — y), respectively.

REMARK 4.4. By (4.11), (4.24), and Remark 3.14, the functions Us(x, y)
and Ujk(x, y) are determined exactly if an exact formula for K is given.

EXAMPLE 4.5. (i) for n = 1, U0(y) is given by (1.12). (ii) Let A =
a(x). Then we see from the characterization (1.9) ~ (1.11) of U0(y) that
U0(y) = (4τr)-w/2α(2/)-1. (iii) For A = ^,kdάaύk{x)dkf U0(y) = (4ττ)-»/2.

The following theorem can be shown in the same way as Theorem 1.1.

THEOREM 4.6. Let a be a multi-index with \a\ = 1, and 1/2 ^ σ <
(|O + l)/2. Then the following asymtotic formulas as t —> °o hold.

( i ) For n odd,

(4.26) DiU(t, x, y) = Σ t-n/2->'D«xU3<x, y) + Dϊϋ.Q, x, y) ,

(4.27) I Ώ% Ufa y) I ̂  M,«x> +

(4.28) I d\D«x 0.{t, x,y)\ύ Malt-^-'-\{x) +

(ii) For n even,

[o] [23/n] ^

(4.29) X»S17(*, x, ») = Σ Σ ί-"/2-> log*tZ>:^(a?, 2/) + D".U.(t, x, y) ,
j=l fc=0

where Da

x Uσ(t, x, y) satisfies (4.28) and

(4.30) \D%Ujk(x, y)\ ^ Mά{(x) + {y})^^ .

THEOREM 4.7. There exists a constant M such that for any multi-

index a with I a \ ̂  1 and 1 ^ p ^ q ^ °°

(4.31) \\DaetA\\mLptLq) ^ Mt-a/p-1/q)n/2-^/2 , ί > 0 .

PROOF. We first treat the case a = 0. The inequality (4.31) for p =
q = oo follows from Theorem 4.1(iv), and that for p = q = 1 follows from
(v). Thus the interpolation theorem shows (4.31) for 1 ^ p = q ^<χ>. The
estimate for p = 1 and q — oo follows from (4.4) and Theorem 1.1 for
σ = 0. Hence the interpolation theorem shows (4.31) for a = 0 and 1 ^
2> ̂  q Ŝ °°. In the same way as in the proof of Theorem 4.1(v) we
obtain that

(4.32) jIΏ%U{t, x, y)\dx^ Mt~1/2 , \\D«U(t, x, y)\dy ^ Mt~1/2

for \a\ = 1, where M is a constant independent of (ί, x, y) in (0, oo)χR2n

(in proving the second inequality of (4.32), we use B (LJ) instead of
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J). Thus (4.31) for | α | = l is derived in the same way as above, q.e.d.

THEOREM 4.8. Let n be odd. Then the following statements hold.
( i ) Let a be a multi-index with | α | <£ 1 and \a\/2 ̂  σ < (p + |α|)/2.

Then, for all t>l and fell?

D«xe
tAf(x) - Σ t-^ADlUfa, y)f{y)dy

io J
(4.33)

^ Mσt-^-σ j«α> + (y)y°-la]\f(y)\dy .

( i i ) Let 0 ^ a < (|0 + l)/2. 77κm, /or allt>l and f e L\a satisfying

(4.34)

(4.33) for a = 0 feoϊds wiίΛ «ί»> + <2/»2σ replaced by (x){2σ'1)+ +

PROOF, (i) follows from Theorems 1.1 and 4.6. If / satisfies (4.34),
then it follows from (4.13) that

Using (4.10) and (3.16) we thus get (ii) for σ ^ 1/2. Since (ii) holds for
σ = 0 by (i), the interpolation method shows (ii) for 0 ^ σ ^ 1/2. q.e.d.

The same argument as above yields:

THEOREM 4.9. Results similar to Theorem 4.8 hold also for n even.

5. The case that c(x) ̂  0 and c(x) ̂  0. Let A = Σi,* a>jk(%)djdk +
Σ i bά(x)dά + c(x) be an operator satisfying the assumption (A) and the
condition

c(x) ^ 0 and c(x) =£ 0 .

Let U(t, x, y) be the fundamental solution for A.

THEOREM 5.1. U(t9 x, y) has the properties (i), (ii), (iii), (v) in Theorem

4.1 and (iv'): \u(t, x, y)dy ^ 1 on (0, oo)X jβ\

PROOF, (i)^(iii) is shown in the same way as Theorem 4.1 (i)~(iii).
The comparison theorem together with (iv) and (v) in Theorem 4.1 yields
(iv') and (v). q.e.d.

THEOREM 5.2. The inequality (4.31) for a = 0 holds for any l<Lp<*
q ^ oo.

PROOF. The comparison theorem and Theorem 4.7 show the theo-
rem, q.e.d.
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THEOREM 5.3. For any 0 ^ σ < p/2 there hold the following formulas
for all t > 1 and (x, y) e R2n:

( i ) For odd n^3, (1.4) ~ (1.6) hold. Furthermore, U3 (x, y) is a
finite sum of functions of the form f{x)g(y). In particular,

(5.1) U0(x, y) - X{x)XM

with X(x) and X+(y) satisfying and determined uniquely by (X) and (X*),
respectively:

(X) X{x) is a C2-function such that

0 < X(x) < 1 , AX(x) = 0 on Rn ,

X(x) = 1 + 0{\x\2'n) as \x\ -> oo .

(Z*) Z*(i/) is α uniformly Holder continuous function such that

XM > 0, A*X*(y) = 0 on Λ f

Z (») = (4τr)-w / 2 + o(l) a s | » | - > o o .

( i i ) For even n Ξ> 4,

[<τ] [2i/(π-2)]

(5.2) C/«,x,2/) = Σ Σ t

(5.3) I Ujk(x, y) I ^

(5.4) Id\ϋβ(t, x,y)\£ Mσlt~^-σ-\(x) + (y)Yσ , Z ̂  0 .

Furthermore, Ujk(x, y) is a finite sum of functions of the form f(x)g(y).
In particular, U00(x, y) = X(x)X*(y) with X(x) and X*(y) having the same
properties as in (i).

PROOF. The proof is similar to that of Theorem 1.1. The results
analogous to Theorems 3.10 and 3.12 hold, and the coefficient of
zn/2-\\og z)ε{n) is equal to

from which (5.1) is derived. Here and in what follows

V = Σ (aik(x) - <5ifc)3A + Σ bj(x)dj + c(x) . q.e.d.

THEOREM 5.4. Let n = 2 and 0 ^ σ < ρ/2. Then one has

(5.5) U(t, x,y) = Σ> Σ t-*-'Φm(t) Um(x, y) + Uσ(t, x, y) ,
j=Q (k,l)el{j,σ)

)} for j<σ,

I(j, σ) = {(&, I); 0 ^ k ^ j , 0 ^ l^ j + 1, k - l^ 2} /or i = σ ,

for all t> 1 α»d (*, y)eE*n. Here ϋβ(t, x, y) is a function satisfying
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(5.4), Ujkι(x, y) is a finite sum of functions of the form f(x)g(y) and
satisfies the estimate

(5.6) I UJhl(x, y) I ^ Mά{{x) + <„»*-«<*-'-!>+ log 2(x) log 2<»> ,

and
g i β " f Im [(log t - log z - d + τri) ι(-log ί + log z + τrϊ)*]eZz

(5.8) d = 27 + (4τr - τr 1 / 2

where 7 is Euler's constant and X is a C2-function on R2 satisfying and
determined uniquely by

(5.9) Z ( a O > O Ϊ AX(x) = 0 on R2 ,

(5.10) χ(a>) •= ττ-1/2(log I a? 1/2 + 7) - (Aπ)~1/2d + o(l) as | « | -> 00 .

(5.11) ?7001(^, ?/) = Zί^Z^y) ,

where X+(y) is a uniformly Holder continuous function on R2 satisfying
and determined uniquely by

(5.12) %*(*/) > 0 . A*X*(y) = 0 on R2 ,

(5.13) XM = π-1/2(log 12/1/2 + 7) - (4ττ)-1/2d* + o(l) as | » | -> 00 ,

(5.14) d* = 27 + (4τr - π"1/2j jc(α?) log l ί - ^ 7 * Z * ( y ) d ί w i » )

REMARK. If d = 0, ΦiJbfc(ί) = 0 for any j and k, and Φy*i(ί) =
as t —> oo.

The proof of this theorem and the following one will be given after
the proof of Theorem 5.6.

THEOREM 5.5. Let n = 1. Then the following statements hold.
( i ) For any s with 0 ^ s ^ 1 and s < (p + l)/2 and a nonnegative

integer I there exists a constant M such that for all t > 1 and (x, y) 6 R2n

(5.15) IdlU(t, x,y)\£ Mt-1/2-°-ιm8(x, y) ,

where m9(x, y) = min«#> 2 8 , (y)28) for 0 ^ s <; 1/2 and m8(x, y) = ((x) +
(y)) 1 - 1 min «a?>, <y» for 1/2 ^ s ^ 1.

(ii) For any σ with 0 <: σ < (p - l)/2, t > 1, αwd (α?, y)eR2n,

(5.16) ff(ί,-αf y) = 2 t~z/2^Ua{xy y) + ff,(t, », 2/) ,
i=o
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(5.17) I Ufa y) I ̂  Mό{(x)
(5.18) Id\Όa{t, x,y)\£ Molt-*'*-°-\(x} + (y}Y°+ίmin««>, <y» , i £ 0 ,

where Ms and Mal are constants independent of t, x, y. Furthermore,
Uj{x, y) is a finite sum of functions of the form f{x)g(y). In particular

(5.19) Ufa y) = (iπ)-1/2(X(x)XM + ψ{x)fM) > 0 ,

where X{x) is a C -function on R1 satisfying and determind uniquely by

(5.20) AX(x) = 0 on R1 ,

(5.21) X(x) = 2-"\ I x I + d) + (»/2| x |) jy 7Z(y)dy + o(l) as |

(5.22) d = -(2 - 2-1'2 j j V. I a; - y \ VyX(y)dxdy^c(y)dyy ,

X*{y) is a uniformly Holder continuous function satisfying and deter-
mined uniquely by

(5.23) A*X,(y) = 0 on R1,

(5.24) X,(y) = 2-^(|y\ + dj + (y/2\y|)jxVZ,(«)<te + o(l) as |y |

(5.25) d, = - ( 2 - 2-1

ψ(x) is a C2-functίon on R1 satisfying and determined uniquely by (5.20)
and

(5.26) ψ(x)=2-1/2x + (x/2\x\)\yVψ(y)dy+Mx*(y)Vydy+o(l) as | a | - > ° ° ,

/r̂ (i/) is a uniformly Holder continuous function on R1 satisfying
and determined uniquely by (5.23) and

(5.27) ψ*(y)=2-1/2yΛ-(y/2\y\)^xV*ψ^x)dx+Mx(x)V*xdx+o(l) as \y\->oo .

THEOREM 5.6. Let a be a multi-index with \a\ — 1. Then (x)d"Uj(xf y)
and (x}dχϋσ(tf x, y) for odd n^2> satisfy the same estimates as Uό(x, y)
and Uσ(t, xy y).

The same statement holds also for even n ^ 4, n = 2, and n = 1.

PROOF. With Ax = Y,5,kauk(x)dadk + Σ i &i(a?)3y and Ĵ O?) = (2 - A^"1,
we have that

(5.28) R(z) = i^z) + R&M

This together with Theorems 5.3—5.5, 3.10, and 3.12 implies the theorem.
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q.e.d.

The rest of this section is devoted to the proof of Theorems 5.4
and 5.5.

DEFINITION 5.7. A C2-function u on Rn is said to be a generalized
eigenfunction for A when uφO, Au(x) = 0 on Rn,

(5.29.1) u{x) = O(| x I2"") as |&| -> °° , for n ^ 3 ,

(5.29.2) u(x) = X + o(ΐ) a s | a | - > o o , for n = 2,

(5.29.3) w(a?) = λ + μx/\x\ + o(l) as |a |-><*>, for n = l ,

where λ and μ are some constants, and Dau e L% for any 1 ^ | α | ^ 2 and

fn - 2 - n/p + | α | (n ^ 3)
(5.30) 1 < p < oo , 8 <

l -Λ/p+|α |+min( l ,/9) (Λ ^ 2) .
The importance of generalized eigenf unctions is seen from the following

theorem, which is shown in the same way as Theorem 7.2 in [8].

THEOREM 5.8. There are no generalized eigenfunctίons for A if and
only if

R(z) = 0(1) as z -> 0 with z e Σ(β) in B(L;, W;>r) ,

where 0<δ<π,τ = 2 when 1 < p < oo and τ < 2 when p = 1 or oo, and

2 — n/p < s < n\pf and r < s — 2 w/iew n ^ 3 ,

s > 2/p' ami r < —2/p when n = 2 ,

s > 2 — 1/p and r < —1/p when n = 1 .

LEMMA 5.9. Γfcere are no generalized eigenfunctίons for A.

PROOF. The maximum principle implies that if u(x) —>0 as \x\ -» oo,
then tt = 0, which shows the lemma for n ^ 3.

Let n = 2 and u(x) be a C2-function on R2 satisfying (5.29.2) and
Au(x) = 0 on R2. We may assume that λ ^ 0. Since u(x) does not attain
the positive maximum or negative minimum, we have that 0 :S u(x) ^ λ.
With the same notation as in the proof of Theorem 5.6,

u(x) = R&XdxMx)) + zR&Mx) = log zF0K(c(x)u(x)) + 0(1)

as z -» 0 with z e Σ(δ). By (4.13), (U0(y)c(y)u(y)dy = 0. This implies that

u(y) = 0 on {y; c(») ^ 0}, since U0(y) > 0, c(y) ^ 0, and u(y) ^ 0. Thus,

AjU(x) = 0 on R2. Hence, u(x) = λ, from which we obtain by (5.1) that

u = 0.
Let n = 1 and %(cc) be a C2-f unction on Λ1. If u(x) ^ 0 or u(x) ^ 0
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on R\ the above argument shows that u = 0. Thus we may assume that
u{— oo) = χ — μ<o<χ + μ = u(c°). Let x0 = sup {y; u(x) ^ 0 for any
x ^ y} By the uniqueness theorem, u(x0) = 0 and u'(x0) > 0. We may
assume that u" — bu' + cu = 0 on R1. We have that for x > xQ

u'{x) = u'(x0) - I exp (\ b(s)ds)c(y)u(y)dy ,

u'(y)dy .

x0

Since c{y) ^ 0, we obtain that for any x ^ x0

u\x) ^ u'(x0) > 0 , u(x) ^ u'(xo)(x — Xo) .

This implies that u(°°) = oo, which is a contradictions. q.e.d.

We now proceed to the proof of Theorem 5.4. Recalling (3.7), put

(5.31) T0(z) = NV(\og zF0 + GO)RQ(N)(1 + VR(N)) .

Then Lemma 2.3 yields:

LEMMA 5.10. 1 - T(z) = 1 - T0(z) + o(l) as z->0 wiίλ ^6^(5) in
B(L'p), where 1 <* p <L oo and 2/p' <s < 2/p' + p.

We get by Lemma 5.9 the following lemma in the same way as
Theorem 7.2 in [8].

LEMMA 5.11. For any z in Σ(δ) with \z\ sufficiently small

(5.32) (1 - To(z))-1 = Σ log~kzCk in B{L%) ,

where 1 ^ p ^ oo and 2/p' < s < 2/p' + p.

With S(z) = -\ogzVF0 + 1 - FG0, we have that

(5.33) S(s)"1 = (1 + VR(N))(1 - Γo^))"1 in B(L;, Wy) ,

where 1 ^ p ^ oo, 2/p' < s < 2/p' + /O, τ ^ 0 when 1 < p < oo, and τ < 0
wfeen p = 1 or oo. More precisely, we obtain:

LEMMA 5.12. Lei cί 6e ί/ie constant given by (5.8) and J = — < ,
%*>%, where X and X* are ίfce functions determined by (5.9), (5.10), and
(5.12), (5.13), respectively. Then, for any z in Σ(β) with \z\ sufficiently
small

(5.34) S(z)-1 = K - (log z + d)"1 F J ,

where K is an operator satisfying the equality F0K = 0 and the following
equalities in B(L8

P), 1 <^ p <^ oo and 2/p' < s < 2/p' + p:



DIFFUSION EQUATIONS 183

(5.35) VF0VJ + (1 - VG0)K = VJVF0 + K(l -VGO) = 1,

(5.36) KVF0 = VJ(1 - VG0)K = K{\ - VG0) VJ = 0.

PROOF. By (5.32) and (5.33), Siz)-1 = Σ"=o log-'zS,-. Since S(z) =
(1 - T0(z))(l - VR0(N)), S(z)S(z)-1 = S(z)-1S(z) = 1 in B(L'P). Thus

(5.37) VFvSo = S0VF<> = 0,

(5.38) - VF& + (1 - VG0)S0 = -S.VF, + S0(l - VG0) = 1 ,

(5.39) - VFJS, + (1 - FGJS;., = -SjVF, + S ^ l - FG0) = 0 for i ^ 2 .

Calculating

S,[- VF& + (1 - F Q S ^ J + So[- VG0Si+1 + (1 - FOSJ ' ,

we obtain that S, + Sx(l - VG0)Sj_1 = 0 for j ^ 2, which yields

(5.40) S(z) = So + Σ log-^t-^d - FGo)]^1^ .
i=l

Similarly, Sx(l - FG0)S0 = S0(l - FGo)^ = 0. Putting

(5.41) J = -F0S2-G0S19

we have by (5.39) that S, = - VJ. Thus (5.35) and (5.36) have already
been shown with So = K and S1= — VJ. The equality F0K = 0 follows
from the equality 0 = VFQK = c(x)F0K. It remains to prove (5.34) and
the properties of J. By (5.35), (5.36), and F0K = 0,

(5.42) F0VJVFQ = F0 and VJ = VJVF0VJ,

which implies that r a n k V J = 1. Thus we can write

It follows from (5.41), J* = -S*F* - S*G*, and S1 = - VJ that % e W2

p>
r,

VI e L;^, and %* 6 L; for and 1 < p < oo, r < 2/p', and s < -2/p. Since
iτo = _(47 Γ)-1<., 1>, we obtain by (5.42) that

Consequently we can choose X and Z* so that

(5.43) j FZ(a;)da; = \c(y)X*(y)dy = -(4ττ)1 / 2.

Since St = — VJ, we have, for some constant d',

(5.44) -S, = Sχ(l - FGo)^ = d'S,.

This together with (5.41) and (5.43) implies that

(5.45) X(x) - G0VX(x) = -
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Since GJ(x) = -(2τr)"1ί(7 + log \x - y\/2)f(y)dy, (5.43) and (5.45) imply

that d' = d. This together with (5.40) shows (5.34). Furthermore, (5.43)

and (5.45) yield (5.10). The equality (5.45) also shows that AX(x) = 0 on

R2, which implies that % is a C2-function. Since AX(x) = 0 and X(x) —> oo

as \x\ —• oo, the maximum principle shows that X{x) ^ 0. We have that

X(x) = I U(t, x, y)X(y)dy for any t > 0, which implies that X(x) > 0 because

U(t, x, y) > 0. This completes the proof of (5.9) and (5.10). The pro-

perties of X*(y) can be shown similarly. q.e.d.

PROOF OF THEOREM 5.4. With R0(z) defined by (2.25) we have by
(5.32) and (5.33) that

(5.46) R(z) = R^Siz)-1 Σ (VR0(z)S(z)-y
3=0

provided \z\ sufficiently small. This together with (5.34), (5.41), and (5.44)
yields

(5.47) R(z) = G0K-FQVJ+ (log z + d)-\ •,%*>% + O(zε) as ^ ^ 0

for some ε > 0. Thus the same argument as in the proof of Theorem
1.1 shows Theorem 5.4. The uniqueness of X follows from Lemma 5.9

q.e.d.

For n = 1, we have the following lemma.

LEMMA 5.13. Assume that p > 1. Let d be the constant given by
(5.22) and J — <•,%*>%, where X and X* are the functions determined
by (5.20), (5.21), and (5.23), (5.24), respectively. Then the following state-
ments hold.

( i ) Put S(z) = -z~1/2VF0 + 1 - VG0. Then for any z in Σ(δ) with
\z\ sufficiently small

(5.48) S(z)"1 = K - z1/2(l + df*)-ιVJ

in B(LΪ), 1 ^ s < p, where K satisfies (5.35), (5.36), and F0K = 0. Fur-
thermore, K belongs to B(L[) for any r with 1 5* r < p + 1.

(ii) Put S'(z) = -z~1/2F0V +1-GOV. Then for any z in Σ(δ) with
\z\ sufficiently small

(5.49) S'(z)-1 - K' - z1/2(l + dzV2YιJV

in B{Whs), —p<s^ — 1 , where R' is an operator satisfying

(5.50) F0VJV + (1 - G,V)K' = JVFQV + K\l - G0V) = 1 ,
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(5.51) K'F0 = 0, FQVK' = JV(1 - GQV)K' = #'(1 - G 0 F)JF = 0 .

Furthermore, K' belongs to B(Wl'r) for any r with — p — 1 < r ^ — 1.

PROOF. The first half of (i) is shown in the same way as Lemma
5.12; instead of (5.43) we choose X and %* so that

(5.52) ^VX(x)dx = \c(y)X*(y)dy = -21 / 2 ,

for Fo = 2-χ , 1>. Since # = 1 + VG0K - VF0VJ and FoίΓ = 0, we obtain
that KeB(Ll) for any r wΐ£Λ 1 ^ r < p + 1.

(ii) can be shown similarly (cf. [8, Theorem 7.2]). q.e.d.

PROOF OF THEOREM 5.5. We first assume that p > 1. By Lemma
5.13(i), the formula (5.46) holds for \z\ sufficiently small. Making use of
F0K = 0, we obtain by Lemma 2.4 that

[2σ]-2

(5.53) R(z) = Σ zi/2Bjn + Oiz"1)
3=0

in B(L\, Lz2o+2) + B(Lf-\ L»), where 1 ^ σ < p/2 + 1. On the other hand,
we can construct .R(z) also by the formula

(5.54) R(z) = Σ (S'izyΉoiz) VyS'izy'Rάz) .
3=0

This together with Lemma 5.13(ii) shows that (5.53) holds also in
B(LU L-29+1) + B{L\°-\ L-1). Hence we get (5.15) for s ^ 1/2, (5.16) and
(5.18). Furthermore, elementary calculations show that

Uj(x, y) = A(x) + ft(x, y) = g,(y) + g2(x, y) ,

!/.(*, V)\, |Λ(», 2/)I ^ M((x) + < »̂2ί<x><2/> .

Since fx(x) = ^(0) + sra(x, 0) - /2(*, 0), this yields (5.17). It follows from
Theorem 1.1 and the comparison theorem that U(t, x, y) S Mt~1/2, which
yields (5.15) for 0 ^ s ^ 1/2. It remains to prove (5.19)~(5.27). In the
same way as in n = 2 we have that J = —dF0VJ + G0VJ. By (5.46),

(5.55) R(z) = G0K - F0VJ + zmB1/2 + o(z1/2) as z ^ 0 ,

(5.56) 51/2 = - J + (1 + Go-KF - F β T V F ) * ^ .

Since F0K = 0 and (1 + G0KV - F0VJV)F0 = 0, we obtain that

(1 + G0KV - F0VJV)F1Kh(x) = -2"1(1 + G0KV - F0VJV)x\yKh(y)dy .

Putting

(5.57) f (as) = 2"1/2(1 + GoίΓF - F0FJΎ)a: ,
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(5.58) fM =

we thus obtain (5.19) ~ (5.27). This completes the proof of Theorem 5.5
for p > 1.

Let 0 < p <: 1. Choose a C~-f unction co(x) such that co(x) ^ 0 and
cQ(x) ^ 0, and put

A, = (d/eta)2 - co(z) , R&) = (z - Λ)" 1 , V,=V + co(x) .

In the following we shall consider At as an unperturbed operator. We
have already shown (see (5.53)) that

Rfc) = C + O(z') as 2 -> 0 in B(L[+2δ, L~2δ) , 0 ^ <5 < 1/2 .

By Lemma 5.9, there exists the inverse (1 - V.C)-1 of 1 - VXC in B(LD,
l ^ s < ρ + 1. With lζ = (1 - FiC)-1 and ^(β) = ^(z) - C, we obtain
that

(5.59) R(z) = R^K, Σ (VA{z)Kd* ,
i=o

provided \z\ is sufficiently small. Thus

(5.60) Λ(z) = Bo + O^"1) as z->0 in B{L\, Lz2σ+2) + B(Llσ-\ L ) ,

where 1 ^ σ < p/2 + 1. Similarly, (5.60) holds also in B(Llf L"2<7+1) +
B(L\°-\ L-1). Hence we get (5.15) for s with 1/2 ^ s < (p + l)/2. On the
other hand, the comparison theorem shows (5.15) for s = 0. This together
with (5.15) for s = 1/2 yields (5.15) for 0 ^ s ^ 1/2. q.e.d.

6. The case that c(#) > 0 on a non-empty open set. In this section
we deal with the operator A = Σ i ) f c aά^{x)dάdk + Σy δi(a?)3i + c(#) satisfying
the assumption (A) and the condition:

(6.1) c(#) > 0 on a non-empty open set .

U{t9 x, y) stands for the fundamental solution for A.
Generalized eigenfunctions for A are also defined by Definition 5.7,

and Theorem 5.8 holds also.

REMARK 6.1. If there are no generalized eigenfunctions for A, then
results similar to Theorems 5.3—5.5 hold. For example, U(t9 x, y) for odd
n ^ 3 has the asymptotic formula

(6.2) U(t, x,y) = Σ e^Ψφm(x)irm(y) + Σ t-^-'U&x, y) + 0{t~^-σ)
j,k,l i=0

as ί-> oo, where the first summation on the right hand side of (6.2) is a
finite sum and Reλy ^ 0 and λ, Φ 0.
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In order to treat the case where there are generalized eigenfunctions
for A, we further assume:

(A. IV) The inequality (1.2) holds with p > 2 for n ^ 2, p > 1 for
n = 3, and p > 0 for n ^ 4.

(A. V) A* = A.
From here on, we assume that A satisfies (A. I) ~ (A. V) and (6.1),

and that there are generalized eigenf unctions for A.
Let us denote by A2 the self-ad joint realization of A in L2(Rn).

LEMMA 6.2. (i) A2 has at most finite positive eigenvalues with
finite multiplicity, (ii) Every eigenfunction associated with a positive
eigenvalue of A2 is a C2-function which decays exponentially as
| & | - > o o .

PROOF. It is well known that each positive eigenvalue has finite
multiplicity. Finiteness of positive eigenvalues is seen from the proof
of Theorems 6.5—6.9 below. Let λ > 0, ueW2f and Au = Xu. Since
Lemma 3.1 holds also for A, we obtain by the imbedding theorem that
u e Wp for any 2 ^ p ^ °o. Choose a C°°-function φ on Rn such that
φ{x) = 1 for \x\ ^ N + 1 and φ(x) = 0 for \x\ £ N. We have that

(1 - RQ(X)φV)u = JB0(λ)(l -φ)Vu.

Fix p and a so that 2 ^ p < °o and 0 < α < λ1/2, and choose iV so large
that

\\e*<*>R0(X)φVe-«<*>\\ < 1/2 ,

where || || is the norm in B(Wp). Thus

(6.3) u = (1 - ΛoftVV^ΛoίλXl. - 0) Vie .

Since (1 — φ) Vu(x) has compact support, ea<x>DaRQ(x)(l — φ)Vue Lp for | α | ^
2. Hence eα<a%(#) e W% for any p < °° and a < λ1/2, which yields the
exponential decay of u{x) as \x\ —• oo. q.e.d.

LEMMA 6.3. (i) The zero eigenvalue of A2 has at most finite mul-
tiplicity, (ii) Every eigenfunction for the zero eigenvalue is a C2-function
which decays like x\~k as \x\ —> °°, where k — 2 — n for n^bfk = S for
n = 4, k = 2 /or w = 3, 2, ami & is an# positive number for n = 1.

PROOF, (i) is clear, (ii) follows from the equality: (1 — G0F)u = 0
for any eigenfunction u (cf. [8, Lemma 3.2]). q.e.d.

We call a generalized eigenfunction not in L2 a resonance state.

LEMMA 6.4. (i) // n ^ 5, there are no resonance states, (ii) For
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n = 4, 3,1, the dimension of the linear hull of resonance states is at most
one; and for n = 2, the dimension is at most three, (iii) A resonance
state ψ is a C2-function having the following asymptotic formula as
I x I —> °o: When n = 3, 4,

(6.4) ψ(x) = X\x\2~n + o(\x\2'n) for some X Φ 0

when n — 2,

(6.5.1) ψ(x) = X + o(l) for some X Φ 0

or /or some μ, v with μ or v Φ 0

(6.5.2) f{x) = (μx, + va2) I x |"2 + o( |x I"1)

wfeew n = 1,

(6.6) ψ<a5) = J" + WB/I&I + o(l) /or some (μ, v) Φ (0, 0) .

(iv) Every resonance state ψ is orthogonal to all eigenfunctions X associated

with positive eigenvalues of A2: (ψ, X) = \ψχdx = 0.

PROOF, (i) is clear, (iv) follows from Lemma 6.2(ii). Let n = 3, 4,
and I be a resonance state. Then we obtain that (1 — G0V)ψ = 0 and
I Vψ(x)dx Φ 0, which implies (ii) and (iii) for n — 3, 4. For n = 2, we
have that (1 - G0V)ψ = constant, [vψ(x)dx = 0, \xάVψ(x)dx Φ 0 for j =
1 or 2, which shows (ii) and (iii) for n = 2. The formula (6.6) is shown
similarly. It remains to prove (ii) for n = 1. To this end we have only
to show that there is an unbounded solution of Au = 0. We may assume
that Au — u" — buf — cu, from which we obtain the integral equation

u(x) — u(N) + u(N)\ B(y)dy + 1 ( 1 B(t)dt)B(y)~1c(y)u(y)dy ,
JN JN\Jy /

B(y) = exp I b(z)dz .

Choose N so large that Γ \\XB(t)dtB(y)-1c(y)y dy < a?/4 for all x ^ N.
Solving the integral equation with u(N) and u'(N) sufficiently large, we
get a solution u on (N, oo) which grows to infinity. Extending this solution
to the left we get an unbounded solution u of Au{x) = 0 on R\ q.e.d.

REMARK. We see from the proof that when n = 1 the dimension of
the linear hull of generalized eigenfunction is at most 1.

Let Xj (j = 1, « ,Λf) be the repeated positive eigenvalues of Az.
Let Xό and 0* (& = 1, , N) be real-valued eigenfunctions for the
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eigenvalues λy and 0, respectively, such that {Xjf φk}jtk forms an ortho-
normal basis of the liner hull of all eigenspaces for the nonnegative
eigenvalues of A2. Put

(6.7) E(t, x, y) = U(t, x, y) - Σ ΦMΦM - Σ e^X^X^y) .
3=1 j=l

Here and in what follows the convention is: ΣjΦjWΦjiy) = 0 if such
functions φs do not exist. We note that N ^ 1 when n = 1 by the remark
after Lemma 6.3.

THEOREM 6.5. For any —l<σ< p/2 — 1 there hold the following
formulas for all t > 1 and (x, y) eR2n.

( i ) For odd n^5,

(6.8) E(t, x, y) = Σ t-**-'Us{x, y) + Uσ(t, x, y) ,
i=-2

(6.9) I d l ϋ . ( f i , x , y ) \ £ M o l t - n / 2 - ° - ι m ( σ ; x , y ) , I ^ 0 ,

(6.10) I Uά{x9 y)I ^ i l ί ^ ί j ; a?, y) , j ^ 0 ,

where m(σ; x, y) = ((x) + (y))2σ + <#>2-n<2/>2<τ+2 + <^>2<7+2<^>2"n, and

(6.11) I U^x, y) I ^ M.1«»>1-" +

(6.12)
— 4)

Furthermore, U3-(x, y) is a finite sum of functions of the form f(x)g(y)
with </, Zy> = (g, Xj) = 0 for j = 1, , M, and U^y, x) = Uά(x, y).

(ii) For even n ^6,

[α] K(j) „

(6.13) E(t, x, y) = Σ Σ ί-π/w log^ί ϋ"ί4(α, 2/) + Ua{t, x, y) ,
j=-2 fc=0

where K(j) = [(i + 2)/(Λ/2 - 2)], Uσ(t, x, y) satisfies (6.9), Ujk(x, y) for j^O
and U_lk(x, y) satisfy the same estimates as (6.10) and (6.11), respectively,
and U_2Q(x, y) is equal to the right hand side of (6.12). Furthermore>
Ujk(x, y) = Ujk(y, x) is a finite sum of function of the form f(x)g(y) with
(f χ.y = (gf χ.y = o for j = 1, , M. In particular, when n = 6

(6.14) U_n(x, y) = 4-7τr-6. Σ cάckc\φ5{x)φk{y) , c, =
j,k,l — l

PROOF. We only give a sketch of the proof of (i). Let | b e a C°°-
function on R1 such that ψ(t) = 1 for t ^ 1 and ψ(t) = 0 for t ^ 0, and set
gN(x) = ψ(\χ\- N) for N> 1. Choose a Cϊ(Rn)-ίunction co(x) such that
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co(x) ^ 0 and co(x) =£ 0, and put

(6.15) AN = Σ aih{x)dβh + Σ bfa)ds - co(x) + gN{x)c(x) .

We can choose N so large that there are no generalized eigenfunctions
for AN. Then we have that for any 1 < σ < n/2 + p/2 - 1

M b N Y ^ w + OW as z - > 0 ,

Ci/2 = 0 for j odd and j/2 < n/2 - 1 .

Put VN = [co(a) + (1 - gN(x))c(x)] , RN(z) = R(z) - Co - «Clf and S(β) =
1 — VNC0 — zVNCx. Then along the line given in the proof of Theorems
4.1 and 4.2 in [8] we construct R(z) in the form

as operators between weighted L2-spaces, and get the asymptotic formula
as z -> 0: For 1 < σ < n/2 + /t>/2 - 1,

[2σ]-2

(6.16) Λ() Σ

where B_2 = P = Σf=i < , ̂ > ^ , B i /2 = 0 for j odd and 1 ̂  j < n/2 - 3,
and J5π/2_3 = PVF0VP, which one derives by taking the limit as N-+ °°
of the coefficient of zn/2~~3 in the expansion of R{z) calculated for AN =
Δ + 9N(&)VgN(x) instead of (6.15). (For more precise information on J5i/2,
see [8, Theorems 4.1—4.3].)

By using the equality

(6.17) R(z) = RN(z) + RN{z) VNRN(z) + RN(z) VNR(z) VNRN{z) ,

we easily see that (6.16) for n/2 — 1 < σ < n/2 + p/2 — 1 holds also as
operators from a weighted L rspace to a weighted Loo-space, which implies
(6.8) - (6.12). The equality U^y, z) = Ufa, y) is shown by A* = A. It
follows from the expression of Bj/2 for j odd that Ufa, y) is a finite sum
of functions of the from f(x)g(y). Computing etΛXk by (6.8) and Lemma
6.2(ii), we have

'/aj, y)Xk(y)dy + 0$-**-) as t -> oo .

Thus j ϋ i ( s , 2/)Zfc(2/)d2/ = 0. Hence </, %,> = < Λ Xk) = 0 . q.e.d.

REMARK. There are differences between the notations in this paper
and [8]. If we denote A, V, and R(z) in [8] by As, Vs, and Rs(z),
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respectively, then the correspondence is: A - — ASf V = — Vs and R(z) =
#*(-*).

REMARK. In deriving (6.14) we use the formula (4.31) in [8, Theorem
4.3(i)]. But the formula is incorrect for the space dimension n = 6.
When n = 6, the term

- z log* z(PVF0VP)*

must be added before o(zn/2~2) in (4.31) in order for the formula to be
correct.

When n = 3, 4, the following asymptotic formulas hold for t > 1
and (x, y) e R2n. The formulas can be shown in the same way as Theo-
rem 6.5.

THEOREM 6.6. Let n = 3. For any 0 < σ < {p — l)/2 one has

(6.18) JS7(ί, α,y) = 2 t^'Ufa y) + ffα(ί, α, y) ,
i i

(6.19) 13{^.(tf *, 2/) I g M . , ί - W — W ( σ ; α, y) , Z ̂  0 ,

(6.20) 117,(05, y) I ̂  M.m'O ; x ( ϊ ) , j ^ O ,

where m'(σ; x, y) = «a;> + <2/»2' + (x)-\yY°+1 + <x>*'+1<»>-1,

(6.21) ϋLΛs, 2/) = Σ Σ

where ψ(x) is a resonance state determined by

ψ(x) = (4ττ)-1/21 x \~ι + o( |x I"1) as | as | -> oo ,

-y ^φ^dyjdx = 0 , i = 1, , N .
(6.22)

Furthermore, U}(x, y) is a finite sum of function of the form f(x)g(y)
with </, Xj) = (g, Xj) = 0 for j = 1, " ,M, and U^y, x) = Uά(x, y).

THEOREM 6.7. Let n = 4 and —l<σ<p/2 — l. Then one has

(6.23) E(t, x, y)=Ψ(t)ψ(x)f(y)+Σ> Σ t~^Ψm{t) Um(x, y) + O.(t, x, y) ,
i=-l (k,l)el(j,σ)

IUf σ) = {(fc, I); k, I ύ j + 3, -j - 2 ̂  & + Z}\{(0, 0)} /or j < σ ,

/(J, ^) = {(*, I); k,l^j + 3 , - j - 2 ^ k + l^-2} for j = σ,

where Uσ(t, x, y) satisfies (6.9) with n = 4, ψ(x) is a resonance state deter-

mined by
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ψ(x) - π~ιIx|~2 + o(Ix |~2) as |x\ -» •>= ,
\

- y\-%(y)dy)dx = 0 , j = 1, , N .
(6.24)

and

(6.25) ψ{t) = ^ ^ ,
z[(log z - log t + df + ττ2]

(6.26) d = 27 - 1 + (δπ2)-11 ( Vψ(x) Vψ(y) log | x -

where Ί is Euler's constant, and

(6 27) 2** (ί) = — ("(—2)3+1e~*Im(l°gz — log^ — πi)"(\ogz — logt+d — πi)ι]dz
m Jo π[(log z - log ί)2 + τr2P[(log z - log t + df + JΓ2]1

(6.28) I Um{x, y)\ ^ My{«aj>

+ <x>-2<2/>2m+2log<ί/> + <2/>-W*+2log<a;>} ,

m - j + min (fc + I + 1, 0) .

Furthermore, Um{x, y) is a finite sum of functions of the form f{x)g{y)
with </, %y> = <flr, χy> = 0 for j = 1, , M and Ujkl(x, y) = Um(y, x).

THEOREM 6.8. Let n = 1. For any 1 < σ < ρ/2 one has

(6.29) E(t, x,y) = X r 1 " - ' IΓ/x, ») + ί^.(ί, *, y) ,
3=0

(6.30) I d\U.{t, x , y ) \ £ Molt-^

(6-31) \U}{x, y)\ <ί

Furthermore, Uά(x, y) is a finite sum of functions of the form f(x)g(y)
with </, Zy> = (g, %,-> = </, 0fc> = <gr, ̂ Λ> for j = 1, , M, k = 1, , N,
and Uj(x, y) = Uά(y, x). In particular, U0(x, y) = ψ(x)ψ(y) for a resonance
state ψ(x) when there is a resonace state, and otherwise U0(xf y) =Ξ 0.

PROOF. The theorem except for the last assertion can be shown
in the same way as Theorem 6.5. Let P be the orthogonal projection

onto the zero eigenspace, and put Qf(x) — 7Γ1/2\ Ϊ7o(ίc, y)f{y)dy. Then

R(z) = z-ψ + z~1/2Q + BQ + o(l) as z -> 0 .

By the resolvent equation (1 — R0(z) V)R(z) = R0(z),

(1 - G0V)Q = F0VB0 + F,VP + FQ , F0VP = F0VQ - (1 - G0V)P = 0 .

This implies that U0(x, y) = ^k9k(%)9k(y) for some generalized eigenfunctions
gk(x) or zero (cf (4.20) and (4.42) in [8]). Now assume that there is a
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generalized eigenf unction g(x). Then the remark after Lemma 6.4 shows
that U0(x, y) = Xg(x)g(y) for some constant λ. First, assuming that g g
L2, we show that λ Φ 0. Suppose that λ = 0. Then R(z) = 0(1) as 2->
0, for there are no eigenf unctions for zero. Thus the same argument as
in the proof of Lemma 5.13 shows that there are operators J and K' such
that JVF0V +K'(1-GOV) = 1 and K'FQ = 0. Since F0Vg = 0 and
(1 — G0V)g — Foh for some function h, we get g = 0. This is a contra-
diction. Hence we obtain that U0(x, y) = f{x)f(y) with ψ(x) = X1J2g(x) & 0.
Next assume that geL2. Then we have by Lemma 6.3(ii) that

0 = e

tΛg = flf + λt"1/21| flf ||2fif + o(ί"1/2) as ί -> oo .

This implies that λ = 0. Thus UQ(x, y) = 0. This completes the proof of
the last assertion. q.e.d.

THEOREM 6.9. Let n = 2. Lei 0 < σ < /o/2 — 1 and σ' be the largest
integer smaller than σ. Then one has

N{-1) N(-l) 0 N{0)

(6.32) E(t, x, y) = Σ Σ Φ-i*(t)flf«(»)Λι(l/) + Σ Σ ί"1 log'** fffcI(a?) ffw(y)
ik=l 1 = 1 fc=-m Z = l

+ \ ' x x ' t~^~3(Ti ( f \ TT (Ύ ti\

3 = 0 k=l 1=1

+ Σ Σ ΣV 1 -^ log-*ί Ujk(x, y) + ϋ.(t, x, y) .

Here N(j) is an integer depending on j , m is an integer with 0 £Ξ m ^ 6,

(6.33) Φfi(t) = Σ β « * log-'t + O(log-"ί) as ί -> oo , y > fc ,

where the cijk are numerical constants and the asymptotic expansion (6.33)
is termwise differentiate, the functions gkι(x) are zero or generalized
eigenfunctions such that

(6.34) I g u ( x ) I ^ M ^ x ) - 1 , k Φ O ,

(6.35) lff..(*)I^Af_i,

and

(6.36) I Ujk(x, y) \ Π M^x) + (y})^1 log 2(x) log 2(y) , k £ - 1 ,

(6.37) I Ey*, 2/) I ̂  Λfy««> + <y»« ,

(6.38) I Ujk(x, y) | ^ M,{«x> + <2/»2ί log 2<x> log 2<2/>

+ < » > - W + 1 log 2<y> + <yy-\xyi+1 log 2<a;>} , A; ̂  2 ,

(6.39) |5{i7,(t, x, 2/) I ̂  Af.,*-1—'{«*> + <»>Γ
1 + <!/>"W + 1 } , i ^ 0 .
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Furthermore, Ujk(x, y) is a finite sum of functions of the form f(x)g(y)
with </, Zy> = (g, χy> = 0, j = 1, , M, and Ujk(y, x) = Ujk(x, y).

PROOF. The expansions (6.32) and (6.33) can be shown in the same
way as Theorem 6.5 (cf. [8, Theorem 4.1]). We give here only the
outline of the proof of (6.34) ~ (6.38). For σ > 0 with σ&Z, we obtain
that

(6.40) R(z) = Σ Σ «' log"** Bό k + O(zσ) as z -> 0 ,
j=-i k=-U+l)m-i

where B_lt_t = 0 and B_ί0 = P=Σf=i< > Φi)Φ, By the resolvent equation
(1 - R0(z)V)R(z) = R(z)(l'-VR0(z)) = R0(z), we have that

(6.41) ( 1 - G 0 V ) B _ u k = F 0 V B _ u k + ι , k ^ O ,

(6.41') ^ . ^ ( 1 - VG0) = B _ u k + 1 V F 0 , k ^ O ,

and for j ^ 0

Σ(6.42) (1 - GoF)^,, = TtFiVB^^ + Σ G , ^ . , , . + δ,+ 1F, + δ.G,,
1=0 1=1

(6.420 Ey,fc(l - VG0) = ΣiBj_lfk+1VFι + Σ ^ . ^ G , + δk+1F3 + δ,Gy ,

where δι = 1 for i = 0 and δz = 0 for I Φ 0. We first show by induction
that for any k ^ 0

(6.43) (1 - GoTOB-i,* = 0 , F0VB_lfk = 0 .

Since £_ l i 0 = P, (6.43) holds for k = 0. Suppose that (6.43) holds for k.
By (6.41), F 0 75_ l t f c + 1 = 0. This together with (6.41') implies that
F0VB_uk+2VF0 = 0. Since A* = A, there are real-valued functions {ψt}ι
such that B_lfk+2 = Σί<#> ψι)ψι Thus

0 = F0VB_ l f 4 + f VF0 - - Σ

This implies that F0Vψι = 0 for any I. Hence F0VB_ltk+2 = 0, which
implies that (1 - G0V)B_uk+1 = 0. This completes the proof of (6.43).
Similarly,

(6.44) a-G0V)BQ,k = 0 and F0VBoΛ = 0 , k ^ - 2 ,

(6.45) .(1 - G0V)B0^ = FQVBOtO + FλVP + Fo and .Fo^o.-i = 0 .

It follows from (6.43) ~ (6.45) that gkl{x) are zero or generalized eigen-
functions satisfying (6.34) and (6.35). We have by (6.42) and (6.42') that
for j ^ 0 and k ^ 1

(6.46) Bjtk= Σ {FiVBs^hMVFι + FtVB^^VGt

+ GiVBj_i_ι,k+1VFι + GiVBj_i.hkVGι) .
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This implies (6.38). Similar argument shows (6.36) and (6.37). q.e.d.
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