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Abstract. In 1965, Joseph L. Doob proved that if / is a superharmonic
function on a half-space and if A(p) and F(p) denote respectively the
angular and fine cluster sets of / at a boundary point p, then one of the
following cases holds at almost every boundary point p.

( i ) - oo 6 F(p) Π A(p) and F(p) £ A(p).
(ii) / does not have an angular limit at p but has a finite fine limit

and an equal normal limit there.
(iii) / has a finite angular limit and an equal fine limit at p.
He then asked whether in (i) the set F(p) can be a proper subinterval

of A{p) on a P set of positive measure.
In this note, we study this problem in the two dimensional case. We

construct a Nevanlinna's function for which (i) holds for a countably dense
set of boundary points. Our result is sharp in the sense that the P set
cannot be improved to be of positive measure. It is not clear whether the
construction is possible for any P set of measure zero.

1. Introduction. Let H be the right half-plane and let f(z) be a
function defined in H. We say that the function / has an angular
cluster value v at a boundary point p, if there is a Stolz angle Δ(p) (i.e.,
an angle lying in H with one vertex at p) and a sequence {pn} of points
in Δ(p) such that

lim pn — p and lim f(pn) = v .
n-*oo n-*oo

We shall now follow Brelot [2, p. 327] to introduce the notion of thin
set in the sense of Cartan and Brelot. A set E will be said to be ordi-
narily thin at a point p, if either p is not a limit point of E or there
exists a superharmonic function S{z) such that

S(p) < l i m S ( z ) , w h e r e z e E — p .
z-*p

The first case is trivial and therefore only the second case will be con-
sidered in the sequel.

In contrast to the ordinary thinness, we shall now introduce the
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minimal thinness in the sense of Ferrand and Nairn, see [16], [17]. Clearly,
the Martin boundary of H is simply the set dHU{°°} = dH. If pedH,
we denote by Kp(z) a minimal harmonic function on H with pole at p.
Following Brelot [3, p. 36], we define the reduced function of Kp relative
to a set EaH by

Rίp(z) = inf{/ e S+: f(z) ^ Kp(z) on E) ,

where S+ is the set of all non-negative superharmonic functions on H.
We say that E is minimally thin at p if it satisfies

Kp(z)^Rίp(z) for zeH.

Notice that both of the above two functions are conformally invariant
hence so is the minimal thinness. Thus, in the sequel, we shall work
in the unit disk instead of a half plane. Also notice that if a set is
ordinarily thin at a boundary point of H, then it is minimally thin there
due to a theorem of Jackson [13, Theorem 4]. From this, we can see
what we really need in the sequel is ordinary thinness.

With the notion of thinness, we can now follow Doob [8, p, 113] to
define the fine cluster value. For this, we let D(\z\ < 1) and C(\z\ = 1)
be the unit disk and circle, respectively. We say that a function f(z)
has a fine cluster value v at a point psC, if there is a set EaD which
is not minimally thin at p and

lim f(z) = v , where z e E .

In this case, the point p is called a fine limit point of the set E.
It remains to introduce the notion of Nevanlinna's class N. A function

f e N, if it can be represented as

f(z) = g(z)/h(z) ,

where g and h are bounded holomorphic on D. We denote by N+ the
subclass of N containing those functions holomorphic on D.

With the help of the above definitions, we are now able to state our
main result as follows.

THEOREM 1. Let {pn} be a countably dense subset of C. Then there
is a function f e N+ such that at each point pn the fine cluster set F(pn) =
°o while the angular cluster set A(pn) is the whole extended plane.

In view of Doob's problem [8, p. 123], we may ask whether there
exists a superharmonic function satisfying condition (i). Theorem 1
answers this question in the affirmative due to the fact that the function —
\f(z) I is superharmonic and satisfies (i).
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Notice that Theorem 1 is sharp in the sense that it cannot hold on
a subset of C of positive Lebesgue measure. In fact, any function fe
N+ must have angular limits almost everywhere on C, see [5, Theorem
2.18]. More generally, we have the following easy consequence of Doob's
theorem [7, Theorem 7.3].

THEOREM 2. Let f be a superharmonic function in D and let S be
the subset of C such that the fine cluster set F(p) = v for each peS.
If the Lebesgue measure \S\ > 0, then f = v identically.

It seems to us that the following result should be true: There is no
holomorphic function f on D such that

oo e F(p) n A(p) and F{p) £ A(p)

holds on a subset of C of positive measure. In other words, the answer
to the aforementioned problem of Doob should be negative.

On the other hand, there does exist a meromorphic function on D
such that F(p)£A(p) holds at every point p on C, and in fact F(p) is a
singleton while A(p) is the extended plane, see [12].

2. Wiener criterion. According to a theorem of Brelot [2, p. 327],
we know that the notion of thinness is equivalent to that of irregularity.
It follows from the Wiener criterion [18] that a set E is thin at a point
p e E if and only if

(1) t
n=l

where W(En) is the Wiener capacity of the set

En = EΠ{z:e-{n+1) ^ \z - p\ < e~n) .

We shall now introduce the metric property of W(E). To see this,
we first observe that the relation between the Wiener capacity W{E)
and the logarithmic capacity L(E) of a set E is the following, see [2,
P. 321],

(2) W(E) =

Moreover, if E is a disk of diameter \E\, then we have

( Q \ T ( Ίp\ . I JP I /O

O ) JLJ\JJJ ) — Hi \\ £Λ

The function W has the following subadditive property

( 4 ) 1
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3. A set thin on C. In order to prove Theorem 1, we shall first
construct a sequence {zn} of points in D and a sequence {Dn} of disks in
D with centers at zn such that the union E = U Dn is thin at every point
on C For this, we let {pn = eiθn} be a countably dense subset of C and
let α, = 1 - e~\ j = 1, 2, We define

( 5 )

where w = Jfc(fc + l)/2, t + 1 = (k + ΐ)(k + 2)/2 and fc denotes the fc-th row
in the above triangle array.

Notice that | zn \ < \ zn+1 \ for n = 1,2, , and for convenience {zn}
will be called a monotone sequence.

LEMMA 1. Let {zn} be a monotone sequence defined by (5) and let Dn

be the disk with center at zn and radius e~nh, where b > 3 is fixed and
n = 1, 2, . Then the union E = U Dn is ordinarily thin at every point
on C and therefore it is minimally thin there.

PROOF. Let p be a point on C and let En be the set defined by (1).
Then by (4) and (5) we have

(6) W(Ek)^w(ϋDn)^ΣiW(Dn) for k = 1, 2, . .
\n=k / n=k

Combining (2), (3), (6) and the hypothesis, we obtain

W(Ek) ^ Σ n~b ^ fc-(&-υ for k = 1, 2, ,

and therefore (1) becomes

This proves the lemma.

The above lemma intuitively says that the configuration of an ordi-
narily thin set is "small" as viewed from its limit point on C. The same
geometric meaning is not true for minimally thin set and in fact, there
can be a "large" set when it tends to a boundary point tangentially.
More precisely, we shall state and prove the following corollary of Brelot
and Doob's theorem [4, Theorem 2].

LEMMA 2. Let H be the right half plane and let T(a) be the sub-
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domain of H bounded by the imaginary axis and the curve defined by
the equation

x = y1+a

 9 for some a > 0 .

Then the union of T(a) and its conjugate T(a) is minimally thin at the
origin.

PROOF. The result follows immediately from the aforementioned
theorem of Brelot and Doob, due to the fact that

[Judy < oo , where ε > 0 .
Jo t

Notice that what we really need is a thin set in a disk instead of a half
plane. For this, we shall now estimate the growth of a minimal har-
monic function whose pole is located at a boundary point, say, p = 1.

LEMMA 3. Let T(a) be the domain defined in Lemma 2, where 0 <
a <1,and let T*(a) be the image of T(a) under the mapping w = (l — z)/
(1 + 2). Then the growth of the following minimal harmonic function

h{w) = (1 — |w|2)/|l — w\2 , for w eD ,

tends to infinity with the following order

h(w) = O((l — |w|2)~ (1~α)/(1+α)) ,

where w —> 1 and w e D — Γ*(α).

PROOF. In view of Lemma 2, we may represent the curve on the
boundary of T(a) by

z = x + iy , where x = y1+a , a > 0 .

Then by a simple computation, we have

1 _ \w\* = ^ - ' [ ( l + y1+a)(y1+a + y2+2a + y2) - y2] ,

and 11 - w |2 = 4d-W + β + V2+2a + V2)2 + V2} ,

where d = [(1 + y1+a)2 + y2]2.

Since 0 < a < 1 and d —> 1 as y —> 0, we obtain
1 _ I*,, |2\2/(l+α)

1 — w
This concludes the result.

4. Blaschke product. As before, let {pn = e*'n} be a countably dense
subset of C and let {zn} be the monotone sequence defined by (5). Then
the series
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This defines the following Blaschke product, see [5, p. 28]

( 7 ) fiI£^
n-l Zn 1 — ZnZ

In order to estimate the above Blaschke product, we shall need the
following well-known inequalities of Harnack.

LEMMA 4. IfO^a<,b^c<*d<l and z,weD, then

/ O N

( 9 )

c — — a
1 — be 1 — bd 1 — ad

z - w
1 — \zw\

z — w \z\ + Iwl
1 + wz1 — zw

With the help of Lemma 4 and a technique of Bagemihl and Seidel [1],
we are now able to prove the following:

LEMMA 5. Under the hypothesis of Lemma 1, if B(z, zn) is the
Blaschke product defined by (7), then for each w$E and \zm\^\w\^
|z m + 1 | we have

I B(w, zn) I ̂  e-
2{m+1)b, where 6 > 3 .

PROOF. According to (5), we can see that

(10) \zn\ = α n = l - β - , n = l , 2 , . .

For convenience, we shall separate the Blaschke product B(z, zn) into the
following five subproducts:

(11; -E>\Z, Zn) = Ji^Zjr m{Z)r m+1(Z)l? m+2\Z)£>2\Z) >

where Fn(z) = (z — zn)/(l — znz), n = m, m + 1, m + 2,

B&) =JiFn(z) and B2(z) = Π Fn(z) .

Since \w\ > |«m_i| ^ |«n|, for n = 1,2, , m — 1, it followsjfrom!(8)
that for n £Ξ m — 1,

\W\ —

1 -
•=!].<; - zn

1 - \wzn\

This together with (9) and (10) yields

(12) IB^w)I έ Π l l ^ 1 " 1 2 " 1 ^ ( l ^ l - l ^ - i l ) " " 1 ^ 4-<-i) .
—i 1 - \wzn\ \ 1 - I«.«._!!/
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Next, we define disks by

= {z:\z-z

313

Then for w $ D(zm) we have

(13) \Fu(w)\ = \
1 - \wzm\

Similarly, for w $ D(zm+ι) we have

(14) | F T O + 1 ( ^ ) | ^ e

Turning to the fourth product, we get

(15) I F m + 2 ( w ) I ^
l-\wzm+2\

Finally, we observe that for n > m + 2,

1^(^)1 ^ 1 - e-ί»—

It follows that

(16) \B2(w)\ ^ e x p f - 2 Σ β - > )
\ n=l /

>

>

Combining (11), (12), (13), (14), (15), and (16), we obtain for

zm\ ^ \w\ ^ \zm+1\

\B(w, zn)\ > 4—e- [ 2 + w 5 +

This completes the proof.

e ~ 2 { m + 1 ) b

5. Proof of Theorem 1. The method here is somewhat like that of
[10 (Th. 10)] or [11]. Let {pn = eίθn} be a countably dense subset of C,
{zn} the monotone sequence associated with {pn}, {Dn} the sequence of
disks with center at zn and radius e~nh, b > 3, and B(z, zn) the Blaschke
product whose zeros are precisely the sequence {zn}. We then define the
function

(17)

where

f(z) = B(z, zn)S(z, Vn) ,

S(z, pn) = exp[Σ (P»

Since the inverse S"1 is an inner function, the function / is a bounded
characteristic of Nevanlinna, see [5, p. 40]. For convenience, we denote

Sn(z) = exp [(pn + z)/((pn - z)n2)] , n = 1, 2, .

Then clearly we have
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(18) I Sn(z) I > 1 for each z e D and n = 1, 2, .

We shall now prove that the function / defined by (17) has the fine

limit °o at every point pk, k = 1, 2, . For this, we let

g(z) = B(z, zn)S(z, pk) , where k is fixed .

Then by (17) and (18) we find that

1/(2)1 ^ \g(z)\ , for each zeD.

It follows that if g has the fine limit °o at pkf then so does /.

Moreover, by a rotation, we may, without loss of generality, assume
that pk is located at 1. This gives

(19) 19(z) I = I B(z, zn) I exp [(1 - | z |2)/(| 1 - z \2¥)} .

Now, let Γ*(α) be the domain defined by Lemma 3. Then by Lemma
2 and the conformal invariance of minimal thinness, we know that the
set Γ*(α) is minimally thin at the point 1. Moreover, from Lemma 1
we also know that the set E — \JDn is also minimally thin at 1, hence
so does the union E\jT*(a). Thus it is sufficient to prove that

(20) lim I g(z) | = °o , where z e D - E\J T*(a) .
z->l

According to Lemma 3, there is a positive constant c such that

(21) I " I*Γ ^ c(l - |ίB|)-u-«vα+«> f 0 < α < 1 .
|is|

Since the point « satisfies

I£m | ^ |«| ^ |Zm+il for some m ,

where

\zn\ = l-e~n , n = 1,2, . . .

i t follows from (21) t h a t

(22) e x p [ ( l ~ \z\2)/(\l - z\2k2)] ^ exp[ck- 2ew ( 1-α ) / ( 1 + α )]

w h e r e zeD - E[j T*(a) a n d \zm\ ^ \z\ ^ |^ m + 1 | .

On the other hand, by virtue of Lemma 5, we have

(23) IB(z, zn) I ̂  exp [-2(m + l)δ] , b > 3 ,

where z satisfies the same restriction of (22). Since m —> oo as z —> 1,
the conclusion (20) follows from (19), (22), and (23). This establishes that
the function / has fine limit oo at every point pn.

Finally, we shall prove that the angular cluster set A(pn) of / at
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the point pn is the extended plane. Suppose on the contrary that there
is a value v $ A(pn). Then there is a neighborhood N(v) of v and a Stolz
angle Δ(pn) with one vertex at pn such that range of / over Δ(pn) is
disjoint from N(v). Let z = z(w) be a conformal mapping from Dw onto
Δ(pn). Then the composite function f{z(w)) = JP(^) is normal in £)„ in
the sense of Lehto and Virtanen [15, p. 53]. Since / has fine limit oo at
every pnJ we can see that there is a Jordan arc J ending at pn along which
the function f(z) tends to infinity. This implies that the function F(w)
tends to infinity along the image arc W(J), ending at the point W(pn), where
w = w(z) is the inverse function of z = z(w). It follows from [1, Theorem
2] that the function F(w) as well as the function f(z) has angular limit
oo. This, however, contradicts the fact that the radius Opn contains
infinitely many zeros of / due to (5). This completes the proof.

In view of (21), we obtain immediately the following:

COROLLARY 1. Let fn be a function on D defined by

Then fn has fine limit oo at 1.

Notice that the inverse f"1 has fine limit 0 at 1. This yields a result
of Doob [7, p. 531] when n = 1. Clearly, the function fn tends to 0 along
each circular path to 1. Of course, the union of all those paths is
minimally thin at 1.

Following Collingwood and Piranian [6], we shall call a point p e C a
Julia point of /, if the range f{Δ(p)) covers the whole extended plane
except at most two points, where Δ(p) is an arbitrary Stolz angle in D
with one vertex at p. Then by the same argument as in Theorem 1 and
the method in [10, Theorem 10], we obtain the following:

COROLLARY 2. Let {pn} be a countably dense subset of C. Then there
is a function f e N+ such that F(pn) = oo and each pn is a Julia point
off.

6. Angular and relatively angular limits. As before, let H be the
right half-plane, p a point on the boundary dH of H, Δ{p) a Stolz angle
in H with one vertex at p, and / a function defined in H. If f{z) tends
to a value v as 2-^p and zeΔ(p), then we say that / has angular limit
v relative to Δ{p). If f(z) tends to the same value v as z->p, zeΔ for
each Stolz angle Δ, then v will be called the angular limit of / at p.
It was proved by Brelot and Doob [4, p. 410] that for almost every point
p 6 dH, where / has a relatively angular limit vf the function / has the
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angular limit v. We shall now apply this theorem to prove the following
distributive property of sequences of points in D.

THEOREM 3. Let Z = {zn = rne
ίθn} be a sequence of points in D for

which the set {eίθn} is dense on C. Let P be the subset of C such that for
each peP, there is a wide Stolz angle A(p) c D containing infinitely many
points of Z, and Q the subset of C such that for each qeQ, there is a
narrow Stolz angle δ(q)aD containing no points of Z. Then the Lebesgue
measure \Pf]Q\ = 0.

PROOF. According to the aforementioned theorem of Brelot and Doob,
it is sufficient to construct a function / such that at each point pePΠ
Q the function / has a relatively angular limit but no angular limit at
p. For this, we first divide D into the following disjoint rings

D = \jRn,Rn = {z: l - 2 - ^ | 2 | < l - 2"71"1} .
71=0

Then we write

Zn = ZnRn = [zj , k = 1, 2, , k{n) .

Inductively, we can choose a sequence {an} of sufficiently small numbers
such that an+1 < an/2 and each disk Dnk of radius an with center at a
point znk e Zn is contained in D and disjoint from each other. We then
define the following meromorphic function

oo kin) π

«=o fc=i (z — Znk)2n+k

We now let

T = U Dnk , where DnkcD for each n and k.
n,k

Clearly, for z e Tc, the complement of Γ, we have

dj\z- znk\£l .

This implies that the series defined by (24) converges for all z e Tc, and
therefore the function / is continuous relative to the set Tc.

For each point pePnQ, there is a narrow Stolz angle δ(p)aD con-
taining no points of Z. Moreover, from the condition an+1 < aJ2, it is
easy to see that there is a subangle δ*(p)cδ(p) such that <5*(p)cTc. This
in turn implies that the function / has an angular limit relative to the
angle δ*(p). Since peP, the function / has no angular limit at p. This
concludes that the measure of PΓ\Q is zero due to the aforementioned
theorem of Brelot and Doob.
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Notice that by choosing an to be sufficiently small the set T will be
thin at every point on C and therefore the function / defined by (24)
will have fine limit at every point on C, see [12].

Also notice that the above Theorem 3 is sharp as will be seen from
the following two examples, where the sets P and Q are defined in
Theorem 3.

EXAMPLE 1. If {zn} is a sequence of points in D satisfying Σ G —
l«»l) < °°t then the measures \P\ = 0 and \Q\=2π, so that | P n Q | = 0 .

To see this, we need only apply the Blaschke product B(z9 zn) defined
by (7). Clearly this product has angular limits at every point of a subset
Q*cC whose measure |Q*| = 2π. If peQ*ΠP, then the product B must
have angular limit 0 at p. It follows from a uniqueness theorem [5,
Theorem 2.5] that the measure | Q * n P | = 0. Since the set

Q* - Q*nPcQ , we must have \Q\ = 2π .

EXAMPLE 2. If {zn} is a rearrangement of the following sequence

znk - (1 - 2-n)eίWn , k = 0, 1, , 2n - 1 ,

then the measures \P\ — 2π and \Q\ = 0 so that \PΠQ\ = 0. Moreover,
we have

[j{eί2πk/2n}c:Q .

To see this, let peC and let Δ(p) be a Stolz angle symmetric at p
whose subtended angle is of 20. If tan Θ > 2π, then it is easy to see that
Δ(p) contains a point znk1 for each n = N, N + 1, , where N is suf-
ficiently large and k depends on n and p. This yields \P\=2π and |Q |=0.

To prove the second assertion, we may just consider the point at 1.
Let s be the segment between 1 and znl and let θn be the angle between
s and the segment [0, 1]. Then by a simple computation we find that
tan θn->2π as n —• oo. This concludes the result.

From the above two examples, we can see that for any two positive
numbers a and β with a + β = 2π, there is a sequence {zn} of points in
D such that \P\ = a and |Q| = β.

7. Angular and fine cluster values. In this section, we shall study
a topological property between angular and fine cluster values at a
boundary point.

THEOREM 4. Let A{p) and F(p) be the angular and fine cluster
values of a function f at peC. Then F(p) is closed in A(p).
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PROOF. First, we shall prove a necessary and sufficient condition
for a value veF(p). For this, we consider the lemniscatic domain of /
related to v defined by

E(f, v, e) = {z:zeD and \f(z) - v\ < ε} .

We shall show that a value v e F(p) if and only if for each ε > 0 the
set E(f, v, ε) is not minimally thin at p.

Suppose now the set E(f, v, ε) is minimally thin at p for some ε0 > 0.
Then clearly E(f, v, ε) is also minimally thin at p for any ε < ε0. This
implies that any subset EcΌ satisfying

lim f(z) = v , where z e E ,
Z-r P

must be minimally thin at p, so that v$F(p).
Conversely, if the set E(f, v, ε) is not minimally thin at p for each

ε > 0, then by the Wiener criterion, see Brelot and Doob [4, p. 399], we
have

(25) Σ Vn(e)e~2n = ~ , τn(ε) = R&*\b) ,

where a and b are fixed, Ga is the Green function with pole at α, R is
the reduced function and

EM = E(f, v, ε)n{z: e'^ £ \z - p\ < e~n} .

Let {εn} be a sequence of positive numbers tending to zero. Then by
(25), inductively we can choose a sequence of disjoint compact subsets
Enk(εn)> k = 1, 2, , k(n) tending to p and satisfying

k(n)

Σ Ύnk(en)e~2n ^ 1 , where lc(ri) depends on n .

Let E = Un,fe Enk. Then clearly E satisfies (25) and f(z) tends to v as z -> p,
where zeE. This yields that veF(p).

We are now able to prove our theorem. Wet let veA(p) — F(p).
Then by what we have proved the lemniscatic domain E(f, v, ε) is min-
imally thin at p for some ε. Observe that for any point w with \w — v\ <
ε/2 and any z with \f{z) — w\ < ε/2, we have

\f(z) - v \ < ε .

This implies that

E(f,w,e/2)c:E(f,v,6)

and therefore the set E(f, w, ε/2) is also minimally thin at p. We thus
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conclude that the set F(p) is closed in A(p).

Notice that for an arbitrary function / the associated fine cluster
set F(p) needs not be open in A(p). In fact, if / is the function defined
by Theorem 1, then the function 1// e N for which the sets F(pn) = {0}
and A(pn) is the whole extended plane, where {pn} is a countably dense
subset of C. However, for some functions we do have the openness of
F(p) in A(p).

THEOREM 5. If f is a normal function in D, then the fine cluster
set F(p) is both closed and open in A(p) for each peC.

PROOF. The first assertion has been proved by Theorem 4. To prove
the second, we consider a point v in F(p). If v§ A(p), we are done. On
the other hand, if veA(p), then by a theorem of Doob [7, Theorem 4.1]
we can see that every value in A(p) is also a value in F(p). Thus the
set A(p) is a neighborhood of v in A(p) so that F{p) is open in A{p).

Notice that by use of another theorem of Doob [7, Theorem 4.3],
we obtain immediately the following result which is neither a corollary
of Theorem 5 nor implying Theorem 5.

THEOREM 6. If f is a normal function in D then F{p) = A(p) for
almost every point peC.

8. Problems. First, in Theorem 1, we have only proved our result
for a countably dense subset of boundary points. In contrast to the
results of Lohwater and Piranian [14, Theorem 1], we may ask whether
Theorem 1 is still true if the countable set is replaced by a set of
measure zero of type Fσ and of first category.

Second, in Theorem 3 we may ask a necessary and sufficient condition
of the sets P and Q for which Theorem 3 holds, where the measure
IPnQi - o .

Third, in Theorem 5, if / is normal in D, is it true that the set
F(p) is both closed and open in the cluster set C(p) of / at pi

Finally, if / is holomorphic in D, is it true that the set F{p) is
open in A(p) for almost every point on C? Of course, this is false if
/ is meromorphic in D, see [12]. If this would be the case, then our
conjecture made in the "Introduction" would be true. In the following,
we shall explain the reason why we expect this to be true.

Notice that the lemniscatic domain can be either connected or discon-
nected in an arbitrary small neighborhood of p. The first case corresponds
to an asymptotic value v e F{p) proved the asymptotic path is not minimally
thin at p. On the other hand, if / is holomorphic in D such that /
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has no asymptotic values at p, then the set F{p) should be open in
A(p). More precisely, we shall sketch the proof of the following known
result by a theorem of Erdos and Hwang [9].

THEOREM 7. // E(pn, 0, εn) is the lemniscatic domain of a polynomial

PΛz) = Σ Wk > an Φ 0 ,
k=0

then the logarithmic capacity Cap E(pn, 0, εn) = | α n | e .

PROOF. Let qn(z)=pn(z)/an and let E(qn9 0, εn) be the lemniscatic domain
of qn. If the theorem were false, then there would be a polynomial rn(z)
of degree n with one as the coefficient of zn such that the corresponding
lemniscatic domain E(rn9 0, εn)aE(qn, 0, εn). This however contradicts our
aforementioned theorem.

Now, if a function / is holomorphic in D, then it can be expanded as
n

f{z) = lim pn(z) , where pn(z) = Σ akz
k .

n-*oo τι=0

According to Theorem 7, we have

Cap#(pn, v, ε) = Cap#(pn, w, ε) = \an\ε1/n .

This shows that the logarithmic capacity is invariant from the value v to
w. From this, it should be true that if / is holomorphic in D for which
v 6 F(p) and v is not an asymptotic value of / at p, then the nonthinness
of a set E(f, v, ε) should be transited to a set E(f, w, ε) for any w in
a sufficiently small neighborhood oί v. In other words, if v 6 F(p) and v
is not an asymptotic value, then v should be an interior point of F(p).
If this would be the case, then by the "Ambiguous Theorem" of Bagemihl,
see [5, Theorem 4.12], we can see that the conjecture we made before
would not be ambiguous.
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