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Introduction. Let M be an affine manifold of dimension %, that is,
a manifold which admits an atlas {(U,, ®.)} such that ¢,o@;* is an affine
transformation of R whenever U,NU; # @. Then the tangent bundle
T, over M naturally admits a complex structure. Indeed, let {z}, --., 27}
be the local coordinate system defined by the chart (U, #,) and put
2 =alop+1 —1dxt (i1 =1,---,m), where p denotes the natural pro-
jection of T, onto M. Then {2, ---, 2"} is a complex local coordinate
system on p~'(U,) and the atlas {(p~*(U,), {2, ---, za})} defines a complex
affine structure on 7,,. When M is a domain in R", the complex manifold
T, is a usual tube domain, that is, T, = M + 1V —1R". In the general
case, we obtain T, by pasting tube domains together by “real” affine
transformations. The complex manifold T, will be simply called a tube
over M.

When M is a domain in R", it is well-known (e.g., Bochner-Martin
[2]) that

(%) T, is a Stein manifold if and only if M is convex.

In this note, we ask whether the “if” part of (x) remains valid for a

general affine manifold M and give a partial affirmative answer to this
problem.

REMARK. An affine manifold M is called convex if every pair of
points of M can be joined by a geodesic with respect to the locally flat
linear connection on M corresponding to the affine structure on M. It
is known that an affine manifold M is convex if and only if the universal
covering of M is affinely equivalent to a convex domain in R".

Before stating our result, we fix notations and conventions which
are adopted throughout this note. We denote by R, the set of positive
real numbers. For a domain 2 in R", G(2) denote the group of all affine
transformations of R" leaving 2 invariant. G(2) acts on T, as a holo-
morphic transformation group by the rule

az = f(a)z + gla) for aecG(R), 2eT,=R2+1V —1R",
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where f(a) and g(a) denote, respectively, the linear and translation parts
of the affine transformation a. This action of a € G(2) on T, coincides
with the action of the differential of a on the tangent bundle 7,. A
domain 2 in R" is called homogeneous if G(Q) acts transitively on 2.
For an affine manifold M, the natural projection of T, onto M is denoted
by ».

The purpose of this note is to prove the following:

THEOREM. Let M be an affine manifold whose universal covering 1is
affinely equivalent to a convex domain £ in R". Suppose 2 contains
no complete straight lines. Then there exists a smooth strictly pluri-
subharmonic function o, defined on an open subset of the tube T, over
M whose complement Sy in T, is either an analytic hypersurface of Ty
or an empty set. If moreover M is compact, then , is an exhaustion
Sfunction.

In the above theorem, S, is given as the support of a divisor on
Ty. When M is locally homogeneous, that is, 2 is homogeneous, it can
be shown that S, is an empty set. Hence we obtain the following:

COROLLARY. Under the same assumption as in our theorem, suppose
Surther that 2 is homogeneous. Then T, contains no positive-dimensional
compact analytic subsets. If moreover M is compact, then T, is a Stein
manifold.

REMARK 1. Let Q be a convex domain in R" containing no complete
straight lines. In connection with the assumption of the theorem and
its corollary, it should be noted that, when £ admits a discrete subgroup
I' of G(2) acting properly discontinuously and freely on Q with I'\Q
compact, 2 is necessarily affinely equivalent to a convex cone (Vey [13]).
If moreover 2 is homogeneous, then it is self-dual with respect to a
suitable inner product on R" (Koszul [6]). We note also that the tube
over a self-dual homogeneous cone is a symmetric domain (Rothaus [7]).

REMARK 2. Let M be a Hessian manifold in the sense of Shima [9].
Then the tube T, over M naturally becomes a Kahler manifold (Shima
[10], Cheng-Yau [3]). Matsushima posed a question, which is closely
related to our problem: When is T, a Stein manifold? We formulate
this question as follows:

Let M be a complete Hessian manifold. Then is T, a Stein mani-
fold?

An affine manifold M is called hyperbolic if the universal covering of
M is affinely equivalent to a convex domain in R" containing no complete
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straight lines (cf. Koszul [5]). It can be shown that every hyperbolic
affine manifold admits a canonical Hessian metric. Therefore our corollary
shows that, for a compact Hessian manifold M, the answer to the above
problem is affirmative, when M is hyperbolic and locally homogeneous.
We note that every compact, or more generally quasi-compact, Hessian
manifold is convex (Shima [11]).

The author would like to thank Professor Shima for his encourage-
ment and stimulation.

1. Preliminaries. By a convex cone V in R", we mean a non-empty
open set in R™ satisfying the following conditions:

(@) If xre V and NeR,, then Mxe V.

(b) If 2,2’€V, then x + o' V.

(¢) V contains no complete straight lines.
The group G(V) then consists of all linear transformations of R" leaving
V invariant. Let <%, £) be an inner product on R" and let V* be the
dual cone of V with respect to this inner product, that is,

V* = {ue R <z, u> >0 foral ze¥ —{0)),

where V denotes the closure of V in R*. We define a function @, on
T, by

Dy(2) = SV* exp(—<z, w)du (z€Ty),

where du denotes the Lebesgue measure on R and <z, u) = <{x, u) +
V' =1y, u) for z =2 + 1V —1ye T, =V + 1V —1R"; the restriction of the
function @, to V, viewed as the zero-section of T,, is denoted by ¢y.
Note that @, is determined up to positive constant multiple depending
on the choice of the inner product <{#, £> on R*. The function @, coincides
with a constant multiple of the so-called Cauchy kernel associated with
the tube domain T, (cf. Stein-Weiss [12], Mumford et al. [1]) and ¢, is
called the characteristic function of the convex cone V (cf. Vinberg [14]).
Since the integral §V' exp(—<z, uy)du converges absolutely and uniformly
on any compact set in T, @, is holomorphic on T, and hence ¢, is real-
analytic on V. The functions @, and ¢, have the following properties:

(Cl) @y(az) = |deta|'@y(2) for all ze T, acG(V).

(C2) @,(x + 1V —1y) tends to 0 locally uniformly on z¢ V as ||y| =
Ky, ¥)* (ye R") tends to oo.

(C3) ¢y(ax) = |deta|™ ¢,(x) for all xe V, acG(V).

(C4) ¢y > 0 and log ¢, is a convex function on V, that is, the Hessian
(0* log ¢y(x)/0x'0x?) of log ¢, (x = (x', ---, 2")) is positive-definite at every
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point of V.

(C5) ¢y(x) tends to « as xe V approaches 4V =V —V.

(C1) is a consequence of the change of variable in the integral @,(az).
(C3) follows immediately from (Cl). (C2) follows from the Riemann-
Lebesgue theorem. The first assertion of (C4) is obvious by definition.
For the second assertion of (C4) and (C5), see Vinberg [14].

The following lemma is essentially due to Rothaus [7].

LEMMA. Let V be a convex cone in R". If V is homogeneous, then
the function @, never vanishes on Ty.

PrROOF. For seC with Res = 1, we define a function %, on V by
hy(2) = ¢y ()™ SW exp(— (&, u))gv«(w)' *du (xe V).

It follows from (C3) that the function h, is G(V)-invariant. Hence, as
V is assumed homogeneous, h, is a constant function on V, which we
denote by 4(s). Here 4(s) is a holomorphic function of s€C for Res>1
and called the Gamma function of V when V is self-dual. Once 4(s) is
defined, the rest of the proof follows from Rothaus [7, Theorem 2.3, p.
195].

2. Proof of Theorem and Corollary. Let 2 be a convex domain in
R" containing no complete straight lines. We define a convex cone V(Q)
in R = R*"XR by

(1) VR) ={x, ) eER"XR|x€2, Ne R} .
Then there exists a natural affine embedding ¢ of 2 into V(2) defined by
(2) R (x, 1) e V(Q).

Let o be the group homomorphism of A(n, R) into GL(n + 1, R) given
by

(3) A(n, R)sa— (f (g) qi“)

where A(n, R) denotes the group of all affine transformations of R".
Then we have p(G(R))CG(V(2)); the pair (o,¢) of the homomorphism
0: G(2) —» G(V(R)) and the map ¢: 2 —V(2) is equivariant, that is,

(4) toa = p(a)o¢ for every acG(Q).

In view of (1) and (2), this shows that the subgroup o(G(2)):-{\1,.,|N€ R.}
of G(V(Q)) acts transitively on V() if G(2) acts transitively on £, where
1,,, denotes the identity matrix of degree n + 1. Therefore, when 2 is

)eGL(n—I—l,R),
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homogeneous, V() is also homogeneous. We denote by d¢ the differential
of the map ¢: 2 —»V(2). Then, since ¢ is an affine map, d¢ gives a holo-
morphic embedding of T, into Ty,. Moreover, by differentiating both
sides of (4), we obtain

(5) dtoa = p(a)ode for every acG(Q).
We now define a function @, on T, by
D, = Dy ode;

the restriction of the function @, to £, viewed as the zero-section of T,,
is denoted by ¢,. When £ is a convex cone, the function @, defined
above coincides with the one defined in §1 up to positive constant multi-
ple. Indeed, we have V(Q) = 2x R, as a convex cone. On the other
hand, it can be shown that, for the product V =V, x V, of convex cones
V., and V;, we have 0,(2) = c®y (2,)y,(2,) for some ce R, where @, &, 0,
denote the functions defined in §1 and z = (2, 2,) € Ty = Ty, X T,. Hence
our assertion follows from the fact that the map de: Ty — Ty is given
by de(z) = (2,1) (ze Ty). It is clear from the definition that @, is holo-
morphic on T,, while ¢, is real-analytic on 2. (C1)~(C5) in §1 hold for @,
and ¢,. This follows from the corresponding properties of @y, and ¢y g,.
Here, in view of (5) and (8), deta is replaced by detf(a) in (C1) and (C3).
The lemma in §1 also remains valid for @,. Indeed, if 2 is homogeneous,
then, as previously remarked, V(Q) is also homogeneous. Hence, applying
the lemma in §1 to @, 4, we see that @, , never vanishes on T} ,, which
clearly implies that @, never vanishes on T,.

Let 2 be as above. We put S; = {z€ T, |®,(2) = 0}. Then, since the
function @, is not identically zero by, e.g., (C4), T, — S, is a non-empty
open subset of T,. By (Cl), we also see that the sets T, — S, and S,
are G(Q)-invariant. We define a function +, on T, — S, by

¥o(2) = log ¢o(p(2)) — log |@y(2)| for zeT,—S,.

Note that, for ze T, p(z) is the real part of z with respect to the
complex structure T, = 2 + V' —1R". Since

i‘, _____8 log ,(z) dzt \ dz7
=1 ox‘ox’

where z = (2%, - -+, 2"), p(z) = 2 = (', --+, 2") and Rez’ = ', and since the
matrix (0°log ¢,(x)/0x'0x?) is positive-definite at every point of 2 by (C4),
org is @ smooth strictly plurisubharmonic function on T, — S,. Moreover,
(C1) and (C3) imply that the function «, is G(R)-invariant, because
plaz) = ap(z) for all ze T,, acG(Q).

90y4(2) = 30108 $u(p(@) = +
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We now prove our theorem. Let I” be the covering transformation
group of the covering 2 — M. Then we have I'cG(2) by assumption.
It follows that I' acts properly discontinuously and freely on 7T, and
I'\T,=T, as a complex manifold. Therefore, in view of (C1), the function
@, can be regarded as a non-trivial holomorphic section of a flat line
bundle over T,. We denote by S, the support of the divisor determined
by @,; S, is either a closed analytic hypersurface of T, or an empty
set. Then T, — S, is a [-invariant open subset of T, and we have
Ty—Sy=I\(Ty—S,;). Since +r, is a G(2)- and hence I'-invariant function
on T, — S,, +, induces a function +, on T, — Sy, which is smooth and
strictly plurisubharmonic, because +r, is smooth and strictly plurisubhar-
monic. This proves the first assertion of the theorem. To prove the
second, let ce R and put £ = {ze Ty — Sy|v¥x(2) <¢}. Then, from (C2)
and the definition of +, and S,;, we see that, for any x € M, there exists
a neighborhood U, of x such that p~(U,)NE is relatively compact in
Ty — Sy. Since M is compact by assumption, there exist a finite number
of points w,, -+, 2, of M such that M = U}_,U,,, Thus E is relatively
compact in T\, —S,, because E= U, (p™(U,,)N E) and each set p™'(U,,)NE
is relatively compact in T, — S,. Hence +, is an exhaustion function,
which completes the proof of the theorem.

Next we prove the corollary. Since £ is homogeneous by assumption,
we see by the lemma that the function @, never vanishes on T, which
implies that, in the theorem, S, is an empty set and hence 4, is a
smooth strictly plurisubharmonic function defined on the whole of T,.
Therefore T, contains no positive-dimensional compact analytic subsets.
If M is compact, then, since 4, is an exhaustion function, T, is a Stein
manifold by a theorem of Grauert [4].

ExXAMPLE. Let 2 be the cone of positive real numbers and let M
be an affine manifold I'\Q with I' = \*|ke Z} (\ # 1€ R,). Then T, is
the right-half plane in the complex plane and T, is a half torus. The
function +r, defined in the proof of the theorem is given by

¥a(2) = log(1/Re z) — log|1/z] (2€Ty) .

This function induces a strictly subharmonic function +r, on the half
torus T'.

REMARK. From the proof of the theorem and the second half of the
corollary, we conclude the existence of invariant holomorphic functions
on a symmetric tube domain (e¢f. Remark 1 in the introduction): Let 2
be a self-dual homogeneous cone. Let I be a discrete subgroup of G(2)
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acting properly discontinuously and freely on 2. Suppose M: = I'\Q is
compact. Then there exists a non-constant I'-invariant holomorphic
function on T,.

In the above situation, combined with a result of Serre [8], our
corollary also shows

HXI, O(Tp)) =0,

where O(T,) denotes the ring of holomorphic functions on 7T, and is re-
garded as a I'-module by the rule a-f = f — foa™ (ael, feO(Ty)).
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