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1. Introduction. Throughout this paper, let k be a field, M a free
Z-module of finite rank » =1 and N the dual Hom(M, Z) with the ca-
nonical pairing {, >: MxN—Z. We extend this pairing R-linearly to
Mgx N where M= RQ®;M and Nx=R@;N. Let ¢ be a strongly
convex rational polyhedral cone in Nj, i.e., ¢ = {3\, a.n,| any non-
negative a,€ R} for some n,e N (1 =1 =s) with oNn(—0) ={0}. The
dual cone oV = {x € Mg|<{x, y> = 0 for all y e} is rational and spans M;
as an R-vector space. The group algebra k[M] of M over k, whose
spectrum Ty is ragarded as a k-split torus, contains the monoid algebra
kE[MNoY] of MNoV over k as a k-subalgebra. Then Spec k[MN¢V], which
is denoted by X,, is exactly a normal affine equivariant embedding of
the torus Ty. Moreover, every normal equivariant embedding of T, is
covered by such X,s (e.g., [4, Chap. I]). Consequently some properties
on toric singularities should be characterized in terms of convex rational
polyhedral cones.

Let us recall the well known hierarchy “regular” = “local complete
intersection” = “Gorenstein” = “Cohen-Macaulay” of conditions on X,. We
already know the following results:

(1.1) (Mumford et al. [4]) X, is nomsingular if and only if ¢ is
nonsingular.

(1.2) (Ishida [2]) If r =8 and X, is a local complete intersection,
then E[MNacV] is k-isomorphic to k[x, y, z, w, ul/klx, ¥, 2, w, u](xz — wu’,
yw — u®) for a triple (a, b, ¢) of non-negative integers.

(1.3) (Stanley [5]) k[MnNoV] is a Goremstein ring if and only if
Mnint(eV) = m, + MNaV for an element m, € M.

(1.4) (Hochster [1]) k[MNoV] is always a Cohen-Macaulay ring.

Moreover Stanley [6] partially and Watanabe [7] completely classified
MnNoV such that X, is a local complete intersection under the assumption
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that ¢ is simplicial. Especially in the case where r» = 2 and ¢ is singular,
X, has a unique singularity, which is a cyclic quotient singularity of A}
(cf. [4, Chap. I]), and hence if kK[MNo¢V] is a Gorenstein ring then it is
a hypersurface (cf. [2, Example 7.8]).

The purpose of this paper is to determine completely normal torus
embeddings which are local complete intersections. We now explain our
result in more detail. Let us identify N (resp. M) with Z~ (resp. the
dual module (Z7)V of Z”) by a fixed isomorphism (resp. its dual isomor-
phism). We consider a sequence g = (g,, -+, ¢.,) of length 1 < u < r with
nonzero ¢, = (¢, ***, gir) €(Z7)Y with respect to the basis dual to the
standard basis of Z" such that g,; =0 (¢ <j) and all elements of (g, P")
are non-negative. Here P/Y = {(1,0, ---,0)} S Z" and, for 1 <7 =<wu +1,
P/ inductively denotes the convex hull of the union of Pf™ and
{(xu Loy ** 5 Tiyy <gi—1v .’L‘>, 0, - 0) € (Z’-)R = NRI any v = (xu cee, ) (=
@y =+ @y, 0, +++,0) e PP} in Ng. Our main result is the following:

THEOREM 1.5. Suppose that (o ®Q 1x)(o) = {ax| any xePs‘d‘m""’ and
any mon-negative a € R} for an automorphism « of the abelian group N
and a sequence g of length dim Ro — 1. Then X, is a local complete
intersection. Conversely, suppose that X, is a local complete intersection.
Then there are an automorphism « of N and a sequence g of length
dim Ro — 1 such that the above equality holds.

Concerning the assertion of this theorem, Ishida [3] showed the first
half and conjectured that the latter half should hold for every o, in terms
of monoids, at the symposium on commutative algebra held at Karuizawa
in 1978 (cf. Remark 2.3). He also observed that his conjecture is true
when either ¢ is simplicial or » <3. The present paper was inspired
by this talk.

When ¢V is strongly convex, a version of our main theorem in Section
3 (cf. Theorem 3.1) gives a complete classification of algebras of invariant
polynomials under linear actions of algebraic tori which are global complete
intersections of given embedding dimensions. It seems to be useful in
studying invariants of certain representations of reductive algebraic groups
in characteristic zero.

We will collect together auxiliary notations and assertions in the next
section. Stanley’s criterion (1.3) for k[MNoY] to be a Gorenstein ring
will play a fundamental role in Section 3, when we deal with a combi-
natorial property on the first syzygies of k[MNaV].

The following notations are standard and shall be frequently used;
Z the ring of rational integers
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Q the field of rational numbers

R the field of real numbers

R, the set consisting of all non-negative real numbers

Z, the additive monoid consisting of all non-negative integers
y the set consisting of all positive integers

AN B the difference set {x|x€ A, x ¢ B}
card(X) the cardinality of a set X.

2. Preliminaries. Suppose that A is an epimorphic image of a re-
gular local ring R such that the embedding dimension of A coincides with
the dimension of R. Then the homological dimension of A is defined to
be that of A as an R-module and is equal to the difference between the
embedding dimension and the (Krull) dimension of A especially if A is a
Cohen-Macaulay ring. A local ring A is said to be a complete intersection
(CI, for short) if A =~ R/R(g,, -++, 9, for a regular local ring R and an
R-sequence (g, --+, g,). In this case, we can choose R in such a way
that ¢ equals the homological dimension of A. A noetherian ring B or
its affine scheme is defined to be a local complete intersection (LCI, for
short) if, for every prime ideal %5 of B, the localization B, of B at 3 is
a CI. Furthermore, we say that an affine k-algebra S is a global complete
intersection (GCI, for short) over k if S=k[T, ---, T, )/k[T, -, T.l
(F, -+, F;) for a polynomial ring k[T, ---, T,.] and some polynomials
F,1<i1<d, with d =m—dimS. For simplicity, we denote also by
@ XYV the composite A Y, B— R, R — R of the tensor product & Y ¥
of k-algebra maps @: A — R, ¥: B— R with the canonical multiplication
map R®,R— R. A graded version of Nakayama’s lemma implies the
following:

LEMMA 2.1. Let A be a moetherian Z,-graded k-algebra whose graded
part of degree 0 is k. Then A is a GCI over k if and only if its local
ring at the unique homogeneous maximal ideal is a CI.

The proof of [6, Lemma 5.2] suggests:

LEMMA 2.2. Let A be an affine k-domain and A’ a k-subalgebra of
A satisfying A= A'@ 7 as k-vector spaces for an ideal _# of A. Then:

(1) There are a polynomial ring B over k of finite type and a
k-epimorphism ¥: B— A such that ¥(B)=A', () =_7 and B=B'PY
as k-vector spaces for a polynomial subalgebra B’ over k of B and an
ideal I of B.

(2) If Ay is a CI for every prime ideal B of A containing 7 then
A’ is a LCI.
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Proor. The assertion (1) can be easily shown. Using this assertion
and notation, we will show (2). Let Q be a prime ideal of B’ containing
B'NKer¥. Then By,y = B, P_4.y as k-vector spaces and (B'NKer ¥),
is an epimorphic image of (Ker¥),,;. Let {b, ---,b;} be a minimal
system of generators of (B'NKer¥), as an ideal of Bi. Clearly this
set is extended to a minimal system of generators of (Ker ¥)y.,. Since

Ag)+r is a CI, (b, -+, b)) is a By,y-sequence. By the decomposition of
B,,, into subspaces stated above, we immediately see that (b, .-, b,) is
also a Bg-sequence, and hence Ay, is a CI. O

For a subset X of My or Ng, let X* be the set of all elements which
are orthogonal to X with respect to the R-linear pairing {, >, R, X the
set of all finite sums > ax; with a,€ R,, RX the subspace generated by
X and XV the dual cone of X if X is a convex polyhedral cone. When
oV is strongly convex (i.e., o¥N(—0oV) = {0}), ¢V is contained in >\/_, R,w;
for some R-basis {w, :--, w,} of Mg. Moreover, as ¢V is rational and
My = Q @z M is dense in Mg, every w, can be chosen from M,. By this
observation, we see that the following conditions are equivalent; (i) ¢V
is strongly convex; (ii) units (invertible elements) of MNoV are trivial;
and (ili) MNoV is a submonoid of a finitely generated free additive
monoid.

For an additive monoid .&¥, we shall define the notations and termi-
nologies as follows: Denote by k[$”] the k-vector space with the k-basis
{e(s)|s € ¥} which has the k-algebra structure defined by e(s)e(s’) = e(s + s'),
(8,8NeF*xF We regard ¥ 2s—e(s)ck[5”] as a homomorphism of
monoids and denote by e this map. & is said to be affine, if it is a
finitely generated submonoid of a torsion-free abelian group, whose sub-
group generated by & is denoted (&¥). & is said to be normal, if k[.5”]
is normal. Every MNoV is an affine normal submonoid of M, and con-
versely any affine normal monoid is expressed in the form “MngY” (e.g.,
[4, Chap. I]). An element x€.5” is said to be fundamental if whenever
=19y + 2zwithy,2in & then y =0 or z=0. We denote by FUND(<")
the set consisting of all fundamental elements in &, When & is affine
and without nontrivial units, FUND($”) is the unique minimal system
of generators of & as a monoid. For an arbitrary nonzero xze€ & and

neZ,, let S/S 2 be the affine submonoid

& + g‘;Zoet + Zo(x — gei)

of (&)@ Z" where {e, :--, ¢,} is the standard Z-basis of Z". Clearly
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dim k[ys w] = dim k[.%”] + n, and if & is without nontrivial units, so

is &”| . For the sake of simplicity, let ny and .&“* respectively denote
yg o and 57\ ({0} UFUND(5)).
1

REMARK 2.3. The monoid yix was initially defined by Ishida [3].
Suppose that &# is an affine normal monoid without nontrivial units. He
observed that if k[.5”] is a GCI, then so is k| & x:l for any nonzero x ¢ &4

The first half of the assertion of Theorem 1.5 follows immediately from
this. Moreover, he conjectured that if k[”] is a GCI, then & should

be inductively constructed, i.e., & should be isomorphic to < .. <<Zo§xl
Sx2>g .. )an as a monoid for some x, € Z,\ {0}, x,., € ( . -(Zogml)s .. ')Sxi\ {0}
(1<i<mn) and neZ, (cf. [3]).

LEMMA 2.4. Let x be a monzero element of an affine monoid <
without nontrivial units. For any ne Z,., we have:
(1) The following three conditions are equivalent; (i) x ¢ FUND(s”);

(ii) FUND(E/”S x) 2 FUND(%”); and (iii) k[S/S ac} 18 minimally generated
by card(FUND(%”)) + n + 1 elements as a k-algebra.
(2) &7 is mormal if and only if so is yg Z.

(3) k[] is a GCI if and only if so is k[yg x:]

(4) 78 x is isomorphic to (((5”8901)8002)8" )Sx,, as a monoid,
where 3, = @, 7, € FUND(yXxl)\FUND(y) and

S (G E | B N (G 8 ) O

1<i<n.

ProorF. (1) follows easily from the definition of 5/5 x.
(2): Suppose that & is normal. Let us express an element ye

<9§ x>— (SPYPZ" as Yy=u+ D1 Ne; With u € (&) and 7, € Z, 1<i<n,
and assume my €. S x for an meZ,. There exist ve & and ¢, €2,
(1 <i<mn+1) such that

my = v+ glfiet + §n+1<x - g‘: ei) .

Since &7 is normal, by the above identities we may assume u = 0, which
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implies that ¢&,,, =0 and 9, =¢ — £&u€4, 1 =<7 =n). Thus S/S x is
saturated in <5/ 2) and is normal (e.g., [4, Chap. I, Lemma 1]). The
converse can be sfmilarly shown.

(8): (We can generalize this assertion, but it is not necessary.)
Let ¥: A —k[$”] be an (< )-graded epimorphism from an {$)-graded
polynomial k-algebra A of dimension equal to card(FUND(%”)) and B an
(n + 1)-dimensional polynomial k-algebra k[X,, ---, X,,,]. We consider the
commutative diagram

0— Ker(l ® @) — .71 @ B 1= k[S/Sx} —0

I e |

0— K@ Qo) — AR.B = k[ysnx} —0

with exact rows, where a:Bﬁk[QS x| is a k-algebra map defined by
a(X,) =ele,) A =15 n) and al(X,,,) = e(x — Dr.e;). Clearly Ker(l1® «)
is generated by e®)®1 - 1R [[ X,. Let {g, ---, 9,4 be a minimal
system of (< )-homogeneous generators of Ker? and ye¥ '(ex)) a
monomial of a regular system of <{$)-homogeneous parameters of A.
Suppose

6®1=300.®D+a(y®1- 1011 X,

for some homogeneous elements a, (1 <7 < d) in A ), B and let us apply
1@ ¢ to both sides of this identity, where x is a k-endomorphism of B
sending all X,’s to zero. Then Ker ¥ contains (1 ® p¢)(a,) or one of prime
divisors of ¥ in A. But the latter case does not occur, because dim 4 =
card(FUND(5”)). Thus (1 ® )(a,) belongs to A(g,, ---, g4—1), Which con-
tradicts the choice of {g,, ---, g;}. From this observation, we deduce that
{9.®1, --+,90,¥1, yQ®1 — 1Q [ X,} is a minimal system of generators
of Ker (¥ @ «). Consequently we obtain the equivalence in (3), as de-
sired.

(4): We inductively see that FUND/((-- (ysx)s . )Sx)/ FUND(&)

consists of # + 1 elements and the sum of all elements of this set equals
2. The assertion follows immediately from this observation. O

For any n € M and an M-graded module L = @,y L, over a M-graded
k-algebra A, L(n) denotes the M-graded A-module whose underlying A-
module is L and the M-grading is given by L(n), = L,,;, 1€ M. When
A is a Cohen-Macaulay ring and possesses a dualizing complex .27 (4) in
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the category of M-graded A-modules, the unique non-vanishing M-graded
module H4(.2¢'(A)) is said to be an M-graded camonical module of A and
is denoted by 2,(A). Moreover if A is a Gorenstein ring and has a unique
M-homogeneous maximal ideal m with A/m =k, then 2,(A4) is isomorphic
to A(a) for some a € M.

The interior of ¢V, which is denoted by int(c"), equals {x € ¢V | {f, ) >0
for all nonzero feo}. We have MNint(eV) = MNovNZ:, if M is a sub-
group of Z" satisfying MNoV = MNZ} and MNo"NZ} + Q.

THEOREM 2.5 ([4, Chap. I, Theorems 9 and 14], [5]). 2,k[MNcV]) can
be identified with the ideal @D,cxninov, ke(®) of E[MNaV].

Let w(MNoV) be an element of M Nint(cV) which satisfies z = 0 when-
ever o(MNoY) =y + z with ye MNint(eV) and ze MNoV. By Stanley’s
theorem (1.3), k[MNoV] is a Gorenstein ring if and only if w(MnNoV) +
MneY = MnNint(eV).

Recall that a directed graph < consists of a finite non-empty set
VER(Z) and a set DED(Z) of ordered pairs of distinet elements of
VER(Z). The elements of VER(Z) and DED(Z) are respectively called
vertices and directed edges of 2. For e = (x,y) e DED(Z) with z,
y e VER(2), let us set i(¢) =« and f(¢) = y. An alternating sequence
(@gy €15 L1y €5y ***y €,y XT,) (M = 2) of vertices and directed edges (i.e., a di-
rected path) is said to be a directed circuit of length m in 2, if x;_, =
ite;), x; =) A=j=mn), x,=x and z, #x; forany 0 = ¢ < j = n with
(%, 7)#(0, m). We then express this sequence by the sequence (z,, x, « -+, €,_,)
of distinet vertices. <7 is said to be acyclic, unless it contains directed
circuits. The following elementary characterization of acyclicity of directed
graphes is probably well known.

LEMMA 2.6. Let & = (VER(Z), DED(2)) be a directed graph. Then
Z s acyclic ©f and only if there is a linear ordering = on VER(Z)
satisfying i(e) < f(e) for all e e DED(2).

PROOF. Suppose that & is acyclic. Then there is a vertex x in &
which is unequal to f(e) for every ec DED(Z). Let &2’ be a directed
subgraph of <& defined by VER(Z') = VER(2)\ {z}, DED(Z’) =
{ee DED(2)|i(e) # x}. Because &' is acyclic, we can inductively define
a linear ordering on VER(Z), as desired. The converse of this assertion
is trivial. O

3. The main theorem. The latter half of the assertion of Theorem
1.5 is a consequences of the following:

THEOREM 3.1. For a mon-negative integer h, k[MNo“] s a LCI
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whose local ring at the prime ideal, maximal in the set of proper M-
homogeneous ideals, is of homological dimension h if and only if MNoV
18 isomorphic to < . <( O"OS x1>s xz)s .. )S 2, D Z" as a monoid where
neZ, 0<i<h), »=r-—dimRo, zec(Z0 and x,.ﬂe((.--(z.;zos ,)
E n
ij) 1<j<h). '
ng n;

PrOOF OF THEOREM 1.5. Suppose that (a @ 1lx)(o) = R,P"” for an
automorphism a of N and a sequence g satisfying the conditions in
Theorem 1.5. Without loss of generality, we may assume that a is the
identity. Let {ef, ---, e} be the Z-basis of (Z")YV = M dual to the standard
basis of Z* = N. Set &, = Ze} + Di_, Ze} and

r

i i
g, = g‘{zoe; + jz;zzo(gj—x —ef) + Z Zef @2=1=1r",

J=i+1

where r” = dim Rg. Then we inductively have (R,5,)" = R,P}* for 1=
1 < r”. Because Z,. is normal (cf. (2) of Lemma 2.4) and generates M,
B, = MN(RE,)V) (e.g., [4, Chap. I]), and consequently &,. = MNo".
By this equality and (8) of Lemma 2.4, we see that k[MNoV] is a LCI.

Conversely, suppose that k[MNoV] is a LCI. Then, by (4) of Lemma
2.4 and Theorem 3.1, M has a Z-basis {¢f, ---, ¢} and contains nonzero
g, 1 <4< ") such that g,eI';, and MNo" =, + D—pry, Zef. Here
r" = dim Ro, I', = Z,e¥ and

Ii=T.,+ Zg! + Z(9,, — &) @=i1=7r").

Put 6, = (Ry("; + Dj=ini Ze¥))¥ 1 =1 = 7") and let {¢, ---, ¢,} be the Z-
basis of N dual to {e¥, - -, e¥}. Clearly d,. = (¢")¥ =0 and g, € .4, Re))*
NnMné;y =TI, (e.g., [4, Chap. I]). We may assume that {e, ---, ¢,} is the
standard basis of Z" = N. Theng= (g, *--, g,_,) satisfies the conditions
in Theorem 1.5 and the convex polytopes P/*’s are well defined. We can
inductively show R,P' =4, for 1 <41 <", which implies R, P/ =¢. []

The rest of this paper is devoted to the proof of Theorem 3.1. When
Mno¥ = <@Z* for an a€ Z, and an affine submonoid & k[MNoV] is
a LCI if and only if so is k[”] (e.g., Lemma 2.2). Thus the “if” part
follows immediately from (1) and (8) of Lemma 2.4 and it suffices to show
the “only if” part under the assumption that ¢V is strongly convex (see
the proof of the “only if” part of [4, Chap. I, Theorem 4]). Hereafter,
assume that ¢V is strongly convex and k[MN¢"] is a singular LCI (and
so a GCI). We need the following further notations and terminologies.

Put m = card(FUND(MNgV)). Let R be an m-dimensional polynomial
k-algebra k[T, ---, T,] and @ a k-algebra epimorphism from R to k[MN¢"]
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satisfying {@(T)), - - -, &(T,)} = {e(x)|x e FUND(MN¢oV)}. By [1, Proposition
1], there is a free abelian group Z" of rank n which contains M as a
subgroup such that MNZ} = MNo¥V and MNo"NZ? + @. We fix this
Z™ and regard k[MNoV] as a Z"-graded algebra in a natural way. Define
a unique Z"-gradation on R so that @ is a Z"-graded map of degree
0eZ" PutI=1{1,---,n}and J ={1, ---, m}. When « is an element of

the i-th homogeneous part of a Z"-graded object with ¢ =(¢,, ---, 4,) € Z",
we put deg(x) = 4, ||deg(®)| = >3-, |%,;| and supp(x) = {jeI|i; # 0}. For
a monomial y = aTi1...Tim» with § = (4,, -+, 7.) € Z" and a € k* = k\ {0},

log -(x) and supp.-(x) stand respectively for j and {1 € J|j,#0}. Conversely
T denotes the monomial 7T ... Tim in R, and .7~ denotes the multiplica-
tive monoid consisting of all 7%'s in R.

Recall that a monomial L in & is said to be square-free, if L is a
product of distinct 7’s. An element F' of R is said to be standard if
F =L, — L, with distinet L,e 9~ (1 =1,2) and L, square-free. In this
case we denote L, (resp. L,) by a; (resp. Br).

For a finite set & of standard Z"homogeneous elements in R, let
¥ be the directed graph defined by VER(¥.,) = & and DED(¥,) =
{(F, Fy) € #x Z|F, # F, and supp-(ar,) Nsupp-(Br,) # @}. Furthermore,
a sequence ((L,, L)), (L,, L;), «++, (L,, L)) in 9 xZ is defined to be a
P-path from xe 7 toye 7 if xeRL;, 22t L;e RIIi-. L; Q=<1 = w),
2 Jl{-,L;€ Ry I1%, L; and, for each 1 <4 <wu, L, — L; or L; — L, belongs
to 2.

Since k[MNo"] is a GCI (e.g., Lemma 2.1), Ker @ is minimally gen-
erated by d = m — r Z"-homogeneous elements. For any I'C I, we define
the following notations: Put % = {xeMnNoV|supple) S I}, I =
{7 eJ|supp(T,) < I'} and, for a set & of Z"-homogeneous elements of a
Z™-graded object, F#,,, = {F e Z#|supp(F)=I’}. Let SYZ,(I') be the set
consisting of all minimal systems of Z"-homogeneous and standard gen-
erators of k[T;|jeJ,]JNKer® as an ideal. (When this ideal coincides
with the zero ideal, we can regard SYZ,(I') as {®}.) Obviously &4 is an
affine normal submonoid of MNoV and {e(s)|s € FUND(4)} = {@(T,)|7 € J1}.
For K'e 0 (e(w()NT, a system < eSYZ,(I') is said to be (I’, K')-
tiled, if J, is a disjoint union of all supp.(a;)’s, F'e & and supp.(K’).
We will show the existence of a tiled system of relations of k[MN¢V]in
R, which will play an essential role in our proof of Theorem 3.1.

LEMMA 3.2. Let I' be a subset of I and & a minimal system of
Z"-homogeneous generators of Ker®. Then:

(1) PP minimally generates k[T;|jeJ ]NKer @ as an ideal.
(2) k[<] is a GCIL.
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(8) SYZ,(I') is non-empty.
(4) degle(w(F7)) = Xjes;, deg(T)) — Sireo,,, deg(F).

ProOF. Both (1) and (2) follow immediately from the proof of Lemma
2.2. When k[.%4] is a polynomial ring over k, (8) is trivial and (4) follows
from the well known isomorphism 2,.(k[S]) = k[ 1(—X;e,,, deg(T})) of
Zgraded k[.55]-modules. Thanks to these assertions, we need to show
(8) and (4) only in the case where I’ = I (recall that k[M NoV] is assumed
to be a singular LCI). Let F, (1 £1 < d) be all elements of 2.

(83): We may assume that each F', is expressed as F, = a; — G, wWith
a,;, B,€.7. Suppose SYZ,(I) = @. Then there is an index 4, with 1 <
i, = d such that neither a, nor B, are square-free. Hence a,, = xa’ and
B, = yB for some o', 8, x and y in 7 satisfying supp(F,) = supp(a’) =
supp(B’). Let z be an element of @7 (e(w(FHupp(r,))) N T+ Because k[ Huppir,y)
is a Gorenstein ring, by (1.8) we can choose monomials «’, ¥’ from 7 in
such a way that both a’' — 22’ and B — 2y’ belong to Ker @. Clearly

F,, = (o — 22')0 — (8" — 2y")y + 2(xa’ — y¥') .
Thus x2’ — yy’' € Ker @, and F, is in the ideal product of Ker® and the

Z"-homogeneous maximal ideal of R. This contradicts the minimality of
the system ..
(4): (This assertion was essentially obtained in [5].) Since (¥,:--, F},)
is a Z™homogeneous R-sequence,
kIMNoV](—degle(w(MnoV))) = Qzk[MNo“])
~ (Qn(RIR(F,, « -+, Fy )| FyQm(RIR(F,, -+, Fy_)))(deg(F,))

= @ (R)(F,y +++, F2AR)(3, deg(F))

= (RIR(F, -+, F)(3; deg(F) — 3 deg(T)))

as Z"-graded R-modules. Hence the identity in (4) follows directly from
these isomorphisms. 0

LemMMA 3.3. Let K be a monomial in O (e(w(MNoV))NT. If a
monomial x€. 7 1s not divisible by K in R and satisfies supp(x) = I,
then there is a F-path from x to K for any < eSYZ,(I).

ProOF. Let F, (1<1<d) be all elements of a fixed system & e SYZ,(I).
According to (1.3), there exists a monomial z’ satisfying x — K«' € Ker @.
Then x — Kx’' is expressed as

x"‘Kw'= 2 uijt’

(l,j)ee
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where & is a finite subset of {1, ---,d}xZ, and u,;;€ R, (i, J) €&, are
nonzero monomials of {T}, ---, T,,}. Let 6, (4, j) € &, denote {log-(u,;;az,),
log ~(u;;8r,)} and & be a graph (i.e., a finite one-dimensional simplicial
complex) of which the set of vertices is & and the set of edges is {{(4, 7),
(@', jH}| distinet (¢, 7), (@, 7)) in & with 6,;N0,.;, = @}. Put v, = log-(x).
Let (i, j;) be a vertex of ¥ satisfying 7,€6,, and ¥’ a maximal con-
nected subgraph of % containing (i, 7,) as a vertex.

Suppose log - (Kxz') ¢ ©,; for every vertex (¢, j) of &’. Then we have

x = >, uyF.eKerod,

(3,5) e VER(¥)

where VER(%') denotes the set of all vertices of ¥’. Hence a T, must
belong to Ker @, a contradiction.
From ¥’ we choose a path, which is represented as in Figure 1 in

C O e o000 ——O
(i, 1) (i, Jo) (n, Jn)
Ficure 1 ‘

an obvious way, of the shortest length in such a way that v, ®
log-(K2') € ®
Qiqfq and @iq+qu+1
element. Then 6,

4, and
Put v, = log-(Kx'). For each 1 < q < h, we see that
intersect exactly at one element and denote by 7, this
e = amn Y A =q=h) Put

Lq — TTq—].ng(’Miqjq) , L; — Trq_l—-logf(uiqjq)

for 1< q<h. Clearly L, — L, or L, — L, belongs to &#. Since we in-
ductively have log.(x [1¢-, L./(II?-, L.)) = 7,, the sequence ((L, L}), ---,
(L, Ly)) is a “P-path from x to K. 0

PROPOSITION 3.4. For any I' S I and Ke @ (e(w(S))N.T, there
exists a system P eSYZ,(I') which is (I', K)-tiled.

ProOOF. Let us prove this by induction on card(I’). When k[<4] is
a polynomial ring over k, by Lemma 3.2, we see that & (e(w())) =
Ilics,, Tiy SYZ,(I') = {@} and this empty system @ eSYZ,(I") is (I, K)-
tiled. Thus we may assume that I = I’ (recall that k[MNoV] is assumed
to be a singular LCI). For an arbitrary &2 eSYZ,(I), let A, (resp. V)
denote the fraction [[;.; T./'» (resp. K [Ires @z/I"s) in R where I', is
a product of distinet T,’s such that 7€ Uy.ssupps(ar) Usupp-(K). Let
& €SYZ,(I) be a system satisfying ||deg(A,)||=min{||deg(As)|||&# € SYZ,(I)}.
When ||deg(A)|| = 0, we have J = Uz, supp(ar) Usupp-(K) and, by (4)
of Lemma 3.2, easily infer that & is (I, K)-tiled. So let us assume that
||deg(Ag)|l > 0. Put I"” = supp(A.).

ipin®
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Suppose I = I. According to Lemma 3.3, there is a &-path ((L,, L;),
(Ly L3), +++, (L, L})) from A, to K. Since A, is divisible by L; in R, L;
is square-free and L; = B, for some Fe & Put &% = (&\{L, — L})U
{L; — L;}}. Obviously " eSYZ,(I), and

supp-(Azw) S (supp.-(A, Usupp~(L,))\supp-(Ly) S supp-(A.L,/L;) .

Hence A_L,/L; is divisible by Azw in R, which shows |deg(Asw)| =
|[deg(A-L,/Ly)| = ||deg(Ac)|l. By the choice of &, we must have Asw =
A:L,/L;. Obviously ((L,, L), - -+, (L, L})) is a & ™-path from A.w to K.
For ¢ <h, let us inductively put &“** = (& \{L;s,— Liy,}) U{Liy,— Lyti}.
Then we can similarly and inductively show that L,,, — Li,, € &",
@& eSYZ,(I) and A u+v = AgwL,,/L;,,. On the other hand, K is a
divisor of A, I\, L,/(IT:.L;) in R. But this contradicts the definition of
Agm, because Aom = Agw-vL, /Ly =+ = A TIk-, L,/(I1t-, L;). Thus I" is
a non-empty proper subset of I.

For any &7 eSYZ,(I) and jeJ, j esupp-(V) if and only if the square
of T; is a divisor of K [[;.»ar in R. Moreover, by the identity in (4)
of Lemma 3.2, we have deg(A,) = deg(V.,) and supp(Az) = supp(Vs).
Clearly A, is a divisor of [];c,,,, T; in R and
(*) INJIS U supps(ay) Usupp-(K) .

FeaN\&@nym

Assume & ,;» = @. By (1) of Lemma 3.2, @ induces a Z"-graded k-
isomorphism k[T;|j € J;] 3 k[.55]. Thus we have &(];cs,,, T;)=e(@(S;)),
which implies that [];.,, T; is a divisor of A, in R (cf. (1.3)), i.e.,
Ilies,, T;=A,. Consequently, JN\J;» = Upeo SUpp-(ar) Usupp-(K). Since
V. is a divisor of K [[zecar in R, supp(V.) does not coincide with I”,
a contradiction. Hence &,  # @, i.e., k[%5.] is not a polynomial ring
over k (cf. (1) of Lemma 3.2).

Let K’ be any monomial in & '(e(w($5))N.Z. By our induction
hypothesis, there exists a non-empty system 2, € SYZ,(I"") which is (I", K')-
tiled. Put &’ = A U(@\ ;). Clearly &' €SYZ,(I) (cf. (1) of Lemma
3.2) and supp.(A.:) is contained in

W\ (Fyg supp- (ax))) U ((J \JI")\(Fang’ ”suppf(ap) Usupp-(K))) .

nr

By (*) and the definition of &2, we see that the last set coincides with
supp~(K"). As O(A;) € 2:(k[S4-]) and A, is square-free, ||deg(Az) |l £
|ldeg(K")| < ||deg(A.)||. From the choice of &, we deduce that A,e @™
(e(w(F%)))NZ and A, = K’'. The last equality implies

**) supp-(K ')n(F \U supp.-(ay) Usupp(K)) = @ ,
eeNenrn
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which is independent of the choice of K'e @ ' (e(w(S)NT.

Let <%5eSYZ,(I") be a (I"”, Ap)-tiled system and set &£ =
FU(@P\ &) €SYZ,(I). By the above observations, A,» = A, and
Ve € 0 e(w(S5)) NT (recall that deg(A.) = deg(V,~)). Then, apply-
ing (**) to K' = V.., we have

supp-(Ve)N( U supp.(az) Usupp-~(K)) = @ .
Fea!'\Fy

Consequently, V.. can be expressed as a product of all 7',’s whose squares
are divisors of [[zcs,ar. Since supp. (ar), F e &, are disjoint, we must
have deg(A.) = deg(A,/) = deg(V,) = 0, a contradiction. O

We now fix a monomial Ke @ (e(w(MnNoV)NZ and a (I, K)-tiled
system & eSYZ,(I).

PROPOSITION 3.5. ¥, is acyclic.

ProOF. Assume that &, is not acyclic. Let (F,, ---, F,) (u > 1) be
a directed circuit of the shortest length # in .. Then we see that
1=7—1 (modw) for 1 <1, j=uif (F, F;)eDED(¥;). Letz,1=1<u,
(resp. x,) be a product of all T,’s with j €supp.(ar,) Nsupp-(Br,,,) (resp.
J esupp(ar,) Nsupp-(Br)) and put a; = az /e, 1 =1 = u), Bi= Br/T:i,
(1<1i=w) and B = Bp/fx,. Clearly

m:

u—1 u—2
F.Nla:=w1] ai + %,_.0u_.8. Il @i (mod RF,_))
i=1 i=1

i=1

I

1l
8
m:

u—3
a§ - xu—aB;qB;—u@; 11;11 a; (mOd R(Fu—” F“—l))

............

= o[l + (-1 18) @odR(E, -+, F.),

-
|
-

and hence the prime ideal R(F, ---, F,) contains %, a; + (—1)* [I~, Bi.
As deg(ITx, ai) = deg(TTi, B:) and >, F, # 0, we see that [[,a; # 1.
Moreover, [, a; and [[i,B; are relatively prime in R. Thus [[%, a;
is divisible by Qp, OF Br, in R for some 1<%, <u (recall that
i ai + ()11, Bie R(F,, -+, F,)). Since supp.(ay,)’s are disjoint
and supp.(a;) # supp-(ay,), the first case does not occur. Consequently,
we can choose an index ¢, with 1 <4, <u in such a way that supp.(ai)Nn
supp~(Br,) # @. As (Fy, F,) e DED(¥5), we must have i, = 4, — 1 (mod ),
which contradicts the definition of a;. O

ProOOF OF THEOREM 3.1. Let us complete the proof of the theorem
by induction on . Thanks to Lemma 2.6 and Proposition 8.5, we can
define a linear ordering < on &~ satisfying i(e)<f(e) for every e e DED(Z,).
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Let F; be the largest element of .&# with respect to this ordering =< and
put J,_, = J\supp-(ar,) and S, = {s€ MNo"|e(s) € Ok[T;lj € J,..]JN I}
respectively. From the commutative diagram

00— Ker(9,®1)— AR, B—> k[ ] &, B—0

D141
1 can.l 1®¢|Bl
0— RP — R - kIMNne'] —0

with exact rows, we immediately deduce
kIMNoV] = k[S.] Qi B/(k[~_.] ®: B1L Q ar, — 9(Br,) @ 1))
=i ] 0 ],

where A=Fk[T,|j €J,_,], B=FK[T,|j € supp-(ay,)] and u=card(supp-(ar,)—1.
Thus MNoV is isomorphic to %“S e (P(Br,) as a monoid. Hence the
assertion follows from (1.1), Lemma 2.4 and our induction hypothesis. []
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Note added in proof. By a slight modification in Lemma 3.3, we can
somewhat simplify the proof of Proposition 3.4.





