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Introduction. In the previous paper [3], we have shown that the
Galois group of a polynomial f(x) = 2" + ax® + b (with rational integers
a and b) over the rational number field @ is isomorphic to the symmetric
group S, of degree n under the following conditions:

(1) f(x) is irreducible over Q.

(2) a=agc", b=>bc" and (a.c(n — s)s, nb,) = 1 (relatively prime).

(8) |D(f)| is not a square, where

Dy(f) = n"b;™* + (=1)"7's"(n — 8)"age™

is a factor of the discriminant D(f) of f(x).

(4) pl|b, for some prime number p.

(5) There exists a prime number ¢ such that ¢|s and k < ¢ for any

positive integer k with kln and k < s/2.
In this paper, we shall first show that the same result holds without the
assumption (5) (Theorem 1). Further, we shall show that there exist
infinitely many polynomials z* + ax® + p satisfying the above conditions
(1), (2), (3) and (4) (Theorem 2).

By Hilbert’s irreducibility theorem [2], there exist infinitely many
Galois extensions with Galois group S, or A, for any n. Schur [4, p.
193-194] gave a criterion for the Galois group of a polynomial over @
to be isomorphic to S, or to A,. We here give another criterion for the
Galois group of a polynomial over @ to be isomorphic to S, or to A4,
(Theorem 3). As another consequence of our results, we can also con-
struct infinitely many polynomials with the Galois groups A,, 4, and A,
(Corollary 3, Corollary 4 to Theorem 3 and Proposition 2). Besides, we
give numerical examples of polynomials with Galois group A..

The author would like to thank the referee for his valuable advices.

Let Z be the ring of rational integers. Throughout this paper, we
shall denote by K, G and D(f) the splitting field, the Galois group and
the discriminant of a polynomial f(x) € Z[x], respectively.

THEOREM 1. Let f(x) = 2™ + ax® + b be a polynomial in Z[x]. Let
a=ac" and b=>be". Then the Galois group G is isomorphic to the
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symmetric group S, of degree n, if the following conditions are satisfied,
where Dy(f) = (—1)"*V2D(f)/bs~c** " = n"b;~* + (—1)""'s*(n — 8)"*azc™:

(1) flx) is irreducible over Q.

(2) ac(n — s)s and nb, are relatively prime, that is, (a.c(n — s)s,
nb,) = 1.

(8) |D(f)| ts mot a square.

(4) pl|b, for some prime number p, that is, b, is divisible by p and
18 not divisible by p .

The proof of Theorem 1 is divided into several steps.

PROPOSITION 1. Let f(x) be a monic polynomial of degree n in Z[x].
Let p be a prime number and P a prime ideal in K such that P|p.
Further, let f(x) = x*h(x) (mod p), where h(x) is a polynomial in Z[x]
and s 1s a positive integer. Then the inertia group of P is generated
by a cycle of order s, if the following conditions are satisfied:

(1) The constant term a, of f(x) s divisible by p and s not divis-
ible by p°.

(2) h(z) (modp) is a separable polynomial such that k(0) % 0 (mod p).

(8) pis.

PrOOF. Since f(x) = 2*k(x) (mod p) and %(0) # 0 (mod p), it follows
from Hensel’s lemma that f(z) = g(x)h(x) in the rational p-adic number
field Q,, where g(x) = «* (mod p) and A(x) = h(x) (mod p). Let K4 be the
B-completion of K. We obtain K, from @, by adjoining the roots of
f@). Let L be the splitting field of g(x) over Q,. Since pla,, g(x) is an
Eisenstein polynomial with respect to the prime p. Hence g(x) is irre-
ducible over @, and the order of the inertia group T of p in L/Q, is
divisible by s. So the Galois group Z of L/Q, is transitive as a permutation
group on the roots of g(x). Since the Galois group Z is the decomposi-
tion group of p in L/Q,, the ramification group V of p in L/Q, is a
normal subgroup of the decomposition group Z of p in L/Q,. The rami-
fication group V is a p-subgroup of the decomposition group Z. Since Z
is isomorphic to a subgroup of S,, V is isomorphic to a p-subgroup of S,.
Since pfts, any p-Sylow subgroup of S, is isomorphic to a p-Sylow subgroup
of S,_,. Hence V is isomorphic to a subgroup of S,_;,. Thus V is neces-
sarily trivial. Hence the inertia group 7 of p in L/Q, is cyclic. Moreover,
T is generated by a cycle of order s, since Z is transitive as a permutation
group on s letters, while T is cyclic of order divisible by s and is a normal
subgroup of Z. Let M be the splitting field of A(x) over Q,. Since &(x)
(mod p) is a separable polynomial, p is unramified in M/Q,. Hence T is
isomorphic to the inertia group of . This completes the proof. O
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REMARK. When s = p in this Proposition, the inertia group of P
contains a cycle of order s.

LEMMA 1. Let f(x) = 2" + ax® + b be an irreducible polynomial in
Z[x], where a = ac”, b = be" and (ac(n — s)s, nb) = 1. Let p be a prime
number and P a prime ideal in K such that Blp. If p||b, then the inertia
group of P is gemerated by a cycle of order s.

PrROOF. From the conditions, f(x) =2'(@"*+ a) (modp). Since
pra(n —s), we see that z"* + a (modp) is a separable polynomial.
Thus, all the conditions in Proposition 1 are satisfied. O

LEMMA 2. Let p be a prime number and P be a prime ideal in K
such that P|p. Further, let (a,c(n — s)s, nb,) = 1 and p|D(f). Then the
inertia group of P is either trivial or generated by a transposition (see
[3, Lemma 3]).

LEMMA 3. Let (cs, nb,) = 1. Then all the prime divisors of ¢ are
unramified in K.

PROOF. Since f(x) = x" + a,c™e® + bec®, we have f(x)/c" = (x/c)" +
ac'(xfe) + b, Put y=wx/c. Then we have f(x)/c® = y" + a,c’y® + b,
Since (n, s) = 1, the discriminant of a polynomial y* + a.c*y* + b, is equal
to (=1)""V2pe=Y(phrt + (—1)"7's*(n — )" "anc™). Since (¢, nb,) =1, all
the divisors of ¢ are unramified in K. |

LEMMA 4. Let (a,c(n — s)s, nb) =1 and s = 2. For any prime P
in K, the inertia group T of B is isomorphic to a subgroup of S,. In
case s =1, T s either trivial or generated by a transposition.

PrOOF. Let p be a prime number and P a prime ideal in K such
that B|p. If plb, then flx) = x*(x"* + a) (mod p). Since pt(n — s)a,
we see that 2" + a(mod p) is a separable polynomial. So the inertia
group T of P is isomorphic to a subgroup of S,. If plc-D,f), then the
inertia group T is either trivial or generated by a transposition by Lemmas
2 and 3. O

LEMMA 5. Let p be a prime number. Suppose a permutation group
G on the set 2 =1{1,2, --+, n} is generated by cycles of order p. If G
18 transitive on 2, then it 18 primitive on Q.

PROOF. Assume that G is imprimitive. Let 2 = {A, A,, +--, A,} be
a complete nontrivial block system of the imprimitive group G. Let ¢
be a cycle of order » among the generators in G. Without loss of
generality, we can assume that 6 = (1,2, -+, p)and 1 € A,. Since |A,] =2
AZ2i€m), A,NA;# Q@ (t# j) and p is a prime number, we have
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1,2, ---,peA,. Hence for any ¢+ (1 <1< m), we have ¢(A,) = A,. So
for any generator o of G, we have ¢(A;,) = A, for any 7 (1 £1 < m).
This contradicts our assumption that G is transitive on Q. O

LEMMA 6. Let G be a primitive permutation group on the set Q2 =
{1,2, -+, n}. If G contains a transposition, then it is the symmetric group
S.. If G contains a cycle of order 3, then it is either the alternating
group A, or the symmetric group S, (see Wielandt [6, Theorem 13.3]).

By Lemmas 5 and 6, we have:

LEMMA 7. Let G be a permutation group on the set 2 ={1,2, «--, n}.
If G is generated by transpositions and is transitive on 2, then it is the
symmetric group S,. If G is generated by cycles of order 3 and 1is
tramsitive on 2, then it is either A, or S,.

LEMMA 8. Let p be a prime number and G be a primitive permuta-
tion group on the set Q ={1,2, --+, n} with n = p + 3. If G contains a
cycle of order p, then it is either A, or S, (see Wielandt [6, Theorem 13.9]).

By Lemmas 5 and 8, we have:

LEMMA 9. Let p be a prime number and G be a permutation group
on the set 2 = {1, 2, ---, n} generated by cycles of order p with n = p + 3.
If G is transitive on 2, then it is either A, or S,. '

LEMMA 10. Let p be a prime number and G be a permutation group
on theset 2 =1{1,2,---, p}. If G is transitive on 2, then it is primitive
on Q2 (see Wielandt [6, Theorem 8.3]).

PROOF OF THEOREM 1. Since |D,(f)| is not a square, the Galois group
G contains a transposition by Lemma 2. Since p||b, for some prime
number p, G contains a cycle of order s by Lemma 1. Let H be a
subgroup of G generated by all transpositions. It is easy to see that H
is a normal subgroup of G. By H(a) we shall denote the set {z(a)|r € H},
where « is a root of f(x). Then |H(a)| = |H(B)| = k for any roots a and
B of f(x). Hence we have k|n. Since G contains a cycle of order s and
(m, 8) =1, we have s < k. Now assume that k < n. Since f(x) is ir-
reducible over @, G is transitive as a permutation group on the roots
of f(x). So there exists an element ¢ of G such that H(o(a)) # H(a).
By Minkowski’s theorem, there exists no unramified extension of the
field Q. Hence the Galois group G is generated by all inertia groups.
So we have ¢ =7,7,+++ 7, for some meZ, where 7, 1 <i<m) is a
generator of the inertia group of a prime in K. So there exists some
7, (1 £ ¢ £ m) such that H(r,(a)) +# H(a). By Lemma 4, the inertia group
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of any prime in K is isomorphic to a subgroup of S, for s = 2 (resp. S,
for s=1). Hence we have 2k <s for s =2, since |H(a)=~k and
(k, s) = 1. This contradicts the assumption that s <k for s=2. In
case s = 1, for the same reason we have 2k < s+ 1 =2. This is also
impossible. Therefore we have k =n. Hence H is transitive as a
permutation group on the roots of f(x). Hence H is isomorphic to S, by
Lemma 7. Therefore G is isomorphic to S,. O

REMARK. In case s =1 and 2, we do not require the conditions (3)
and (4). Further, K is an unramified extension of Q(1/D(f)) in the
narrow sense with A, as the Galois group (see [3, Corollary 2 to
Theorem 1 and Theorem 2]).

ExAMPLE. Let flz) = «* + 3x + 1. Then we have f(z) = (x + 1)(«* —
2+ a*—x+ 1) (mod3) and f(+1) %= 0. Hence it is clear that f(x) is
irreducible over Q. So the Galois group of f(x) over @ is isomorphic to S
by Theorem 1. Further, K/Q(1/D(f)) is unramified in the narrow sense,
where D(f) = 65333 = 79-827. On the other hand, the class number of
Q(1/65333) is equal to 1 (see [5]).

THEOREM 2. Let f(x) = 2" + ax® + p be a polynomial in Z[x]. If
(n, as) = 1, then there exist infinitely many primes p such that the
Galois group of f(x) over Q is isomorphic to S,.

Proor. Since f(x) = 2" + ax® + p and (n, as) = 1, the discriminant is
D(f) = (=1)*V2.p*7* - D(f), where D,(f) = n"p"™* + (—=1)""'s’(n — s)"*a".
For a moment let us denote D,f) by D,(p). Let p be any prime number
such that 1+ |a| < p, (p, a(n — 8)s) =1 and |Dy(p)] > 1. By Funakura’s
lemma (see [3, Lemma 9]), f(x) is irreducible over @. Since (n, as) =1,
we have (np, a(n — s)s) = 1. Since |D,(p)| > 1, there exists a prime
number ¢ such that q|D(p). If ¢||D(p), then all the conditions in
Theorem 1 are satisfied. Now assume that ¢*|D(p). Since q|D,(p) and
(np, a(n — s)s) = 1, we have (q, a(n — s)snp) =1 and (p, a(n — s)sq) = 1.
We replace p by p, = » + ka(n — s)sq, where k is a positive integer.
Since (p, a(n — s)sq) = 1, by Dirichlet’s theorem on prime numbers in
arithmetic progressions, the Dirichlet density of the primes p, satisfying
p, =P (moda(n — s)sq) is equal to 1/p(a(n — s)sq). Hence there exist
infinitely many primes p, such that p, = p + ka(n — s)sq and (k, q) = 1.
Since Dy(p,) = n"pi™* + (—1)"7's*(n — 8)"*a" and ¢*|Dy(p), we have Dy(p,) =
n"p"*k(n — s)’saq (mod q). Hence we have gq|D,(p,), since (g, a(n —
s)smp) = 1. So all the conditions in Theorem 1 are satisfied. This com-
pletes the proof. O
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THEOREM 3. Let f(x) be a monic polynomial of degree n in Z[x].
Let p;, (1 =1, 2) be prime numbers. Further, let f(x) = x"ig,(x) (mod p,)
(t =1, 2), where g,(x) (1 =1, 2) are polynomials in Z[x] and r, 1 =1, 2)
are positive integers. Then the Galois group G of f(x) over Q 1is either
isomorphic to the alternating group A, or to the symmetric group S,,
if the following conditions are satisfied:

(1) flx) is irreducible over Q.

(2) The constant term of f(x) is divisible by p, and is not divisible
by p; (1 =1, 2).

(8) g, x) (modp,) are separable polynomials such that g¢,(0) =0
(mod p,) (1 =1, 2). .

(4) pyr, and r, is a prime number.

(8) 1 +3=n<2r,.

PrROOF. By Proposition 1 and by the conditions (2), (3) and (4), it
follows that the Galois group G contains a cycle of order r, (1 =1, 2).
So we can show in the same way as in the proof of Theorem 1 that a
subgroup of G generated by all cycles of order r, is transitive, from the
conditions (1) and n < 2r,. Since n =7, + 3, G is either isomorphic to
A, or to S, by Lemma 9. This completes the proof. O

In case r, is a prime number, we do not require the condition p,/}7..
In case r,=2 and 3, we do not require the condition n =, + 3 by
Lemma 7. Further in case 7, = 2, the Galois group G is isomorphic to
S, by Lemma 7.

COROLLARY 1. Let fiz) = 2"+ a,_ 2" '+ -+ a2+ a, be a polynomial
wn Z[x]. Let p, q and r be mutually distinct prime numbers. Then
the Galois group G of f(x) over Q is isomorphic to S,, if the following
conditions are satisfied:

(1) pla, 0=i=n—2), p'ta, and pf(n — Da,_;.

(2) qla;, 0=i=n-—1,1+#2), ¢ta, and ¢f(n — 2)a,.

(8) rla, 0=1=n—1) and r*fa,.

ProOOF. By the condition (3), f(x) is an Eisenstein polynomial with
respect to the prime . Hence f(x) is irreducible over Q. By the con-
ditions (1) and (2), we have f(x)=2x"'x + a,_,) (modp) and flz) =
22(2"* + a,) (modgq). So it is easy to see that all the conditions in
Theorem 3 are satisfied. O

Putting », = 7, (a prime number) in Theorem 3, we have:

COROLLARY 2. Let f(z) be a monic polynomial of degree n in Z[x].
Let p be a prime number. Further, let f(x) = x7g(x) (mod p), where g(x)
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18 a polynomial in Z[x] and r is a positive integer. Then the Galois
group G of f(x) over Q is either isomorphic to A, or to S,, if the following
conditions are satisfied:

(1) flx) is irreducible over Q.

(2) The constant term of f(x) is divisible by p but mot by p°.

(3) 9(0) # 0 (mod p).

(4) 7r 18 a prime number.

(5) r+3Zn<2r, that is, n/2<r=n— 3.

In this corollary, from the conditions (4) and (5), we do not require
the condition that g(x) (mod p) is a separable polynomial. Further in
cases r = 2 and 3, we do not require the condition n = » + 8.

EXAMPLE 1. Put flz) =2°+ 2°-52° + 2-3-5% Since f(x) is an
Eisenstein polynomial with respect to the prime 2, f(z) is irreducible
over Q. Since f(x) = «*(a® + 1) (mod 3), we see that all the conditions in
Corollary 2 are satisfied. Since the discriminant is D(f) = 2%.3%.5%, the
Galois group of f(x) over @ is isomorphic to A,.

EXAMPLE 2. Put f(x) = «° — 3%* + 2-83-5. Since f(x) is an Eisenstein
polynomial with respect to the prime 3, f(x) is irreducible over @. Since
fla) = 2°(x* + 1) (mod 5), we see that all the conditions in Corollary 2 are
satisfied. Since the discriminant is D(f) = 2°.8% .58, the Galois group of
f(x) over Q is isomorphic to A,.

Using Corollary 2, we can construct infinitely many polynomials with
the Galois groups A, and A,.

COROLLARY 3. Let fix) =2*+ 42° + b be a polynomial in Z[x].
Then there exist infinitely many integers b such that the Galois group
of f(x) over Q is isomorphic to A,.

PrROOF. Let b = k* + 27 for any positive integer k such that k = +2
(mod 6). The diseriminant is D(f) = 2%%b — 27) = 28%%%*. Let » be a
prime number such that p|b. Since k= +2 (mod 6), we have p =5 and
ptk. So we have |¢| = 5 and (¢, 6k) = 1 for any integer ¢ such that c|b.
Now we show that f(x) is irreducible over Q. Since b = k* + 27 and
k= +2 (mod6), we have f(x) = (x — 1)(@® — 2* — x — 1) (mod 3). If f(x)
is reducible over @, then f(x) has a factor of degree 1. But obviously
f(z) has no factor of degree 1, since |c| = 5 for any integer ¢ such that
clb. So f(x) is irreducible over Q. Since plb, we have p =5 and flz) =
2*(x + 4) (mod p). If p||b, then we see that all the conditions in Corollary
2 are satisfied. If p’|b, then we replace b by b, = ki + 27, where k, =
k + 6p. Hence we have b, = 22 3kp (mod p*) and k, = +2 (mod 6). Since
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(p, 6k) = 1, we have p||b,. Therefore we see that all the conditions in
Corollary 2 are satisfied. O

COROLLARY 4. Let f(x) = x® + 3-5%%* + 2-3*-5'bc* be a polynomial
in Z[x]. Then there exist infinitely many integers b and c such that
the Galois group of f(x) over Q is isomorphic to A

PROOF. Since f(x) = a® + 3-5%%® + 2-3*-5'b¢*, the discriminant is
D(f) = 2¢- 8. 5"p%c%(5°b* + ¢*). Let 2z be a rational integer such that
(2, 5)=1. Let w be a square-free rational integer such that (w, 2-3:5z)=1.
Further, let b =2zw and ¢ =2 — 5%’ Then we have 5% + ¢ =
(2* + B*w?)?, since ¢ = (2* + 5°w?)? — 5%2zw)’. Hence we see that D(f) =
2¢. 3. 5¥h%c(2? + 5%w?)?, which means that the Galois group G of f(x)
over Q is isomorphic to a subgroup of A,, Now put y =(2-3-5-be)/x
and g(y) = 2¢-3-5b'¢f(x)/x°. Since (be, 5) = 1, g(y) is irreducible over @
by Eisenstein’s criterion with respect to the prime 5. So f(x) is irreduec-
ible over @. Hence G is transitive as a permutation group on the roots
of f(x). Moreover, the degree of f(x) is the prime 5. Therefore G is
primitive by Lemma 10. Besides, it is clear that (w, c¢) = 1. Hence we
see that all the conditions in Corollary 2 are satisfied, since b = 2zw,
(w,2:-3-52) =1 and w is a square-free integer. ]

Further, we construct infinitely many polynomials with the Galois
group A, as follows.

PROPOSITION 2. Let f(x) = a" — 5 T%c*x® + 2:5°- 7% bc® be a polynomial
wn Z[x]. Then there exist infinitely many integers b and c such that
the Galois group of f(x) over Q is isomorphic to A,.

PROOF. Since f(x) = a" — 5. 7%c*x® + 2:5°-7°- bc?, the discriminant is
D(f) = 2°-5% . 7% . b*c®(c* — 7°b*). Let z be a rational integer such that
(z, 7)=1. Let w be a square-free rational integer such that (w, 2-5-7z) =1.
Further, let b =2z2w and ¢ =2"+ Tw*. Then we have ¢ — 7% =
(2> — Tw??, since ¢* = (2 — T"w®)* + 7°(2zw)*. Hence we see that D(f) =
2°.5% 7% . pic®(2* — T*w?)?, which means that the Galois group G of f(x)
over Q is isomorphic to a subgroup of 4,. Now put ¥ = (2-5-7bc)/x and
g(y) = 28-5-Tb% - f(x)/x". Then g(y) is irreducible over @ by Eisenstein’s
criterion with respect to the prime 7. So f(x) is irreducible over Q.
Hence G is transitive as a permutation group on the roots of f(x). More-
over, the degree of f(x) is the prime 7. Therefore G is primitive by
Lemma 10. Besides, it is clear that (w,¢) = 1. So we see that all the
conditions in Proposition 1 are satisfied, since b = 22w, (w, 2:5-72) =1
and w is a square-free integer. Hence G contains a cycle of order 5.
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So G is triply transitive (see Wielandt [6, Theorem 13.8]). Then G is
either isomorphic to A, or to S, (see Burnside [1, p. 216]). Therefore G
is isomorphic to A,. O

Now we list some of the pairs (b, ¢) satisfying the conditions in
Proposition 2.

(6, 151264), (12, 151267), (24, 151279), (30, 151288), (48, 151327),
(60, 151363), (66, 151384), (78, 151432), (96, 151519), (102, 151552),
(114, 151624), (120, 151663), (132, 151747), (138, 151792), (150, 151888),
(156, 151939), (174, 152104), (186, 152224), (192, 152287), (204, 152419),
(222, 152632), (228, 152707), (240, 152863), (246, 152944), (258, 153112),
(264, 153199), (276, 153379), (282, 153472), (300, 153763), (312, 153967),
(318, 154072), (330, 154288).

REFERENCES

[1] W. BurNsIDE, Theory of Groups of Finite Order, Cambridge Univ. Press, 1911.

[2] D. HiLBERT, Ueber die irreduzibilitit ganzen rationalen Funktionen mit ganzzahligen
Koeffizienten, J. Reine Angew. Math. 110 (1892), 104-129.

[8] H. Osapa, The Galois groups of the polynomials z™+ ax'+ b, J. Number Theory 25
(1987), 230-238.

[4] I. ScHUR, Gesammelte Abhandlungen, Bd III, Springer-Verlag, Berlin, Heidelberg, New
York, 1973.

[5] H. Wapa, A Table of Ideal Class Numbers of Real Quadratic Fields (in Japanese),
Lecture Note in Math. 10 (1981), Sophia Univ., Tokyo.

[6] H. WIELANDT, Finite Permutation Groups, Academic Press, 1964.

DEPARTMENT OF MATHEMATICS
RikkY0 UNIVERSITY
IkEBUKURO, TokYO 171
JAPAN








