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THE GALOIS GROUPS OF THE POLYNOMIALS xn + ax8 + b, II

HlROYUKI OSADA

(Received August 19, 1986)

Introduction. In the previous paper [3], we have shown that the
Galois group of a polynomial fix) = xn + ax8 + b (with rational integers
a and b) over the rational number field Q is isomorphic to the symmetric
group Sn of degree n under the following conditions:

(1) f(x) is irreducible over Q.
(2) a = aQcn, b = 60c

n and (aoc(n — s)s, nb0) = 1 (relatively prime).
(3) |A(/)I is not a square, where

D0(f) = wn&j- + (-l)n~V(w - s)71"^^71'

is a factor of the discriminant D(f) of f(x).
(4 ) p[|&0 for some prime number p.
(5) There exists a prime number q such that g|s and k < q for any

positive integer k with k\n and & < s/2.
In this paper, we shall first show that the same result holds without the
assumption (5) (Theorem 1). Further, we shall show that there exist
infinitely many polynomials xn + ax8 + p satisfying the above conditions
(1), (2), (3) and (4) (Theorem 2).

By Hubert's irreducibility theorem [2], there exist infinitely many
Galois extensions with Galois group Sn or An for any n. Schur [4, p.
193-194] gave a criterion for the Galois group of a polynomial over Q
to be isomorphic to Sn or to An. We here give another criterion for the
Galois group of a polynomial over Q to be isomorphic to Sn or to An

(Theorem 3). As another consequence of our results, we can also con-
struct infinitely many polynomials with the Galois groups Ai9 AQ and A7

(Corollary 3, Corollary 4 to Theorem 3 and Proposition 2). Besides, we
give numerical examples of polynomials with Galois group A7.

The author would like to thank the referee for his valuable advices.

Let Z be the ring of rational integers. Throughout this paper, we
shall denote by K, G and D(f) the splitting field, the Galois group and
the discriminant of a polynomial f(x)eZ[x], respectively.

THEOREM 1. Let f(x) = xn.+ ax8 + b be a polynomial in Z[x], Let
a = aoc

n and b = boc
n. Then the Galois group G is isomorphic to the
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symmetric group Sn of degree n, if the following conditions are satisfied,
where D0(f) = (-l)n'n-1)/2D{f)lbΓιcn{n-ι) = nnbΓ8 + (-l)π"V(τι - s)n-*an,cn':

(1) f(x) is irreducible over Q.
(2) aoc(n — s)s and nb0 are relatively prime, that is, (aoc(n — s)s,

nb0) = 1.
( 3) |A(/)I is not a square.
(4) p\\bQ for some prime number p, that is, b0 is divisible by p and

is not divisible by p2.

The proof of Theorem 1 is divided into several steps.

PROPOSITION 1. Let f(x) be a monic polynomial of degree n in Z[x].
Let p be a prime number and Sβ a prime ideal in K such that ψ\p.
Further, let f(x) = x*h(x) (modp), where h(x) is a polynomial in Z[x]
and s is a positive integer. Then the inertia group of 5̂ is generated
by a cycle of order s, if the following conditions are satisfied:

(1) The constant term a0 of f{x) is divisible by p and is not divis-
ible by p2.

(2) h(x) (mod p) is a separable polynomial such that h(0) & 0 (mod p).
( 3 ) p)fs.

PROOF. Since f(x) = x8h(x) (modp) and A(0) ΐ 0 (modp), it follows
from HenseΓs lemma that f(x) — g{x)h{x) in the rational p-adic number
field Qp, where g(x) = x8 (modp) and h(x) = h(x) (modp). Let K* be the
^β-completion of K. We obtain K% from Qp by adjoining the roots of
f{x). Let L be the splitting field of g(x) over Qp. Since p||α0, g(x) is an
Eisenstein polynomial with respect to the prime p. Hence g(x) is irre-
ducible over Qp and the order of the inertia group T of p in L/Qp is
divisible by s. So the Galois group Z of L/Qp is transitive as a permutation
group on the roots of g(x). Since the Galois group Z is the decomposi-
tion group of p in L/Qp, the ramification group V of p in L/Qp is a
normal subgroup of the decomposition group Z of p in L/Qp. The rami-
fication group V is a p-subgroup of the decomposition group Z. Since Z
is isomorphic to a subgroup of S8, V is isomorphic to a p-subgroup of S8.
Since pJfs, any p-Sylow subgroup of S8 is isomorphic to a p-Sylow subgroup
of Sβ_! Hence V is isomorphic to a subgroup of Sf_lβ Thus V is neces-
sarily trivial. Hence the inertia group Γof p in L/Qp is cyclic. Moreover,
Tis generated by a cycle of order s, since Zis transitive as a permutation
group on s letters, while T is cyclic of order divisible by s and is a normal
subgroup of Z. Let M be the splitting field of h(x) over Qp. Since h{x)
(modp) is a separable polynomial, p is unramified in M/Qp. Hence T is
isomorphic to the inertia group of φ. This completes the proof. •
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REMARK. When s = p in this Proposition, the inertia group of Sβ
contains a cycle of order s.

LEMMA 1. Let f(x) = xn + ax8 + b be an irreducible polynomial in
Z[x], where a = αoc

π, b = boc
n and (aoc(n — s)s, nb0) = 1. Let pbea prime

number and Sβ a prime ideal in K such that ?β\p. If p\\b0, then the inertia
group of Sβ is generated by a cycle of order s.

PROOF. From the conditions, f(x) = x8{xn~8 + α) (mod p). Since
p)(a(n — s), we see that xn~8 + a (moάp) is a separable polynomial.
Thus, all the conditions in Proposition 1 are satisfied. •

LEMMA 2. Let p be a prime number and 3̂ be a prime ideal in K
such that ^>\p. Further, let (aoc(n — s)s, nb0) = 1 and p\DQ(f). Then the
inertia group of ?̂ is either trivial or generated by a transposition (see
[3, Lemma 3]).

LEMMA 3. Let (cs, nb0) — 1. Then all the prime divisors of c are
unramified in K.

PROOF. Since f(x) = xn + aQcnx8 + δoc
π, we have f(x)/cn = (x/c)n +

aoc
8(x/c)8 + b0. Put y = x/c. Then we have f(x)/cn = yn + α0c

β2/8 + 60

Since (n, s) = 1, the discriminant of a polynomial i/n + aoc
8y8 + 60 is equal

to (-l)n ( r e-1 ) / 26r(^n6r8 + (-l)n-V(n - β^-αJO. Since (c, rc&0) = 1, all
the divisors of c are unramified in i£\ •

LEMMA 4. Let (aoc(n — s)s, nbQ) — 1 and s jg 2. For any prime β̂
m JΓ, the inertia group T of ^ is isomorphic to a subgroup of S8. In
case s = 1, T is either trivial or generated by a transposition.

PROOF. Let p be a prime number and 5̂ a prime ideal in K such
that ^ |p . If p\b0, then f(x) = x8(xn~8 + a) (modp). Since p\{n-s)a9

we see that xn~8 + α(mod p) is a separable polynomial. So the inertia
group T of φ is isomorphic to a subgroup of S8. If p\c-D0(f), then the
inertia group Γ is either trivial or generated by a transposition by Lemmas
2 and 3. •

LEMMA 5. Let p be a prime number. Suppose a permutation group
G on the set Ω = {1, 2, , n) is generated by cycles of order p. If G
is transitive on Ω, then it is primitive on Ω.

PROOF. Assume that G is imprimitive. Let Ω = {Δx, Δ2, , Δm} be
a complete nontrivial block system of the imprimitive group G. Let σ
be a cycle of order p among the generators in G. Without loss of
generality, we can assume that σ = (1, 2, , p) and 1 e Δlβ Since |ΔJ ^ 2
(1 ^ i <̂  m), ΔjΠΔy Φ 0 (i =£ j) and p is a prime number, we have
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1, 2, , p eΔx. Hence for any i (1 ^ i <̂  m), we have <7(Δ,) = Δ<. So
for any generator σ of G, we have σ(Δέ) = Δt for any i (1 ^ i <̂  m).
This contradicts our assumption that (? is transitive on Ω. •

LEMMA 6. Let G be a primitive permutation group on the set Ω =
{1, 2, , ri\. IfG contains a transposition, then it is the symmetric group
Sn. IfG contains a cycle of order 3, then it is either the alternating
group An or the symmetric group Sn (see Wielandt [6, Theorem 13.3]).

By Lemmas 5 and 6, we have:

LEMMA 7. Let G be a permutation group on the set Ω — {1, 2, , n}.
If G is generated by transpositions and is transitive on Ω, then it is the
symmetric group Sn. If G is generated by cycles of order 3 and is
transitive on Ω, then it is either An or Sn.

LEMMA 8. Let p be a prime number and G be a primitive permuta-
tion group on the set Ω = {1, 2, , n) with n ^ p + 3. If G contains a
cycle of order p, then it is either An or Sn (see Wielandt [6, Theorem 13.9]).

By Lemmas 5 and 8, we have:

LEMMA 9. Let p be a prime number and G be a permutation group
on the set Ω = {1, 2, , n} generated by cycles of order p with n ^ p + 3.
If G is transitive on Ω, then it is either An or Sn.

LEMMA 10. Let p be a prime number and G be a permutation group
on the set Ω = {1, 2, , p}. // G is transitive on Ω, then it is primitive
on Ω (see Wielandt [6, Theorem 8.3]).

PROOF OF THEOREM 1. Since IA(/)I is not a square, the Galois group
G contains a transposition by Lemma 2. Since p||60 for some prime
number p, G contains a cycle of order s by Lemma 1. Let H be a
subgroup of G generated by all transpositions. It is easy to see that H
is a normal subgroup of G. By H(a) we shall denote the set {τ(a)\τeH},
where a is a root of f(x). Then \H(a)\ = \H(β)\ = k for any roots a and
β of f(x). Hence we have k\n. Since G contains a cycle of order s and
(n, s) — 1, we have s < k. Now assume that k < n. Since f(x) is ir-
reducible over Q, G is transitive as a permutation group on the roots
of fix). So there exists an element σ of G such that H{σ{a)) Φ H(a).
By Minkowski's theorem, there exists no unramified extension of the
field Q. Hence the Galois group G is generated by all inertia groups.
So we have σ = r tτ2 τm for some m 6 Z, where τt (1 ^ i ^ m) is a
generator of the inertia group of a prime in K. So there exists some
Ti (1 ^ i ^ m) such that Hiz^a)) Φ H(a). By Lemma 4, the inertia group
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of any prime in K is isomorphic to a subgroup of S8 for s ^ 2 (resp. S2

for s = 1). Hence we have 2k < s for s ^ 2, since |£Γ(α)| = fe and
(fc, s) = 1. This contradicts the assumption that s < fc for s ^ 2. In
case s = l, for the same reason we have 2fc < s + 1 = 2. This is also
impossible. Therefore we have k = n. Hence H is transitive as a
permutation group on the roots of /(#)• Hence fl* is isomorphic to Sπ by
Lemma 7. Therefore G is isomorphic to Sn. •

REMARK. In case s — 1 and 2, we do not require the conditions (3)
and (4). Further, K is an unramified extension of Q(I/JD(/)) in the
narrow sense with An as the Galois group (see [3, Corollary 2 to
Theorem 1 and Theorem 2]).

EXAMPLE. Let f(x) = x* + Sx + 1. Then we have f(x) = (x +
xs + α2 - x + 1) (mod 3) and /(±1) ^ 0. Hence it is clear that f(x) is
irreducible over Q. So the Galois group of f(x) over Q is isomorphic to Sδ

by Theorem 1. Further, K/Q(\/D(f)) is unramified in the narrow sense,
where £>(/) = 65333 = 79-827. On the other hand, the class number of
Q(v/65333) is equal to 1 (see [5]).

THEOREM 2. Let f(x) = xn + ax8 + p be a polynomial in Z[x]. If
(n, as) = 1, then there exist infinitely many primes p such that the
Galois group of f(x) over Q is isomorphic to Sn.

PROOF. Since f(x) — xn + ax8 + p and (n, as) = 1, the discriminant is
D(f) = (-i)^-i)/*. p - i . D0(f), where DQ(f) = nnpn~8 + (-l)n~V(n - s)n~8an.
For a moment let us denote D0(f) by D0(p). Let p be any prime number
such that 1 + \a\ < p, (p, a(n — s)s) = 1 and |Z>o(ϊ0l > l By Funakura's
lemma (see [3, Lemma 9]), f(x) is irreducible over Q. Since (n, as) = 1,
we have (np, a{n — s)s) = 1. Since |DO(P)I > 1> there exists a prime
number q such that q\D0(p). If g||A(P)> then all the conditions in
Theorem 1 are satisfied. Now assume that q2\D0(p). Since q\D0(p) and
{np, a(n — s)s) = 1, we have (g, α(w — s)s?ιp) = 1 and (p, α(w — s)sq) = 1.
We replace p by Pi = p + fcα(w — s)sqf where k is a positive integer.
Since (p, α(w — s)sq) = 1, by Dirichlet's theorem on prime numbers in
arithmetic progressions, the Dirichlet density of the primes pι satisfying
pλ = p (mod a(n — s)sq) is equal to l/φ(a(n — s)sq). Hence there exist
infinitely many primes px such that px — p + ka(n — s)sq and (k, q) = 1.
Since D0(Pi) = ^πP?"8 + (-l)""V(n - s)n~8an and g2|A(p), we have Z)0(Pi) =
nnpn~8~ιk{n — sfsaq (modg). Hence we have <?||A(Pi)> since {q, a(n —
s)snp) = 1. So all the conditions in Theorem 1 are satisfied. This com-
pletes the proof. •
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THEOREM 3. Let fix) be a monic polynomial of degree n in Z[x],
Let Pi (i = 1, 2) be prime numbers. Further, let fix) = xri9i(x) (mod p%)
(ί =• 1, 2), where g^x) (i = 1, 2) are polynomials in Z[x] and rt {i — 1, 2)
are positive integers. Then the Galois group G of fix) over Q is either
isomorphic to the alternating group An or to the symmetric group Sn,
if the following conditions are satisfied:

(1) fix) is irreducible over Q.
(2) The constant term of fix) is divisible by pt and is not divisible

by p\ (i = 1, 2).
( 3 ) gt{x) (mod p%) are separable polynomials such that g^O) ^ 0

(mod pt) (i = 1,2).
( 4 ) pι)(r1 and r2 is a prime number.
( 5 ) r2 + 3 ^ n < 2rx.

PROOF. By Proposition 1 and by the conditions (2), (3) and (4), it
follows that the Galois group G contains a cycle of order rt (i = 1, 2).
So we can show in the same way as in the proof of Theorem 1 that a
subgroup of G generated by all cycles of order r2 is transitive, from the
conditions (1) and n < 2rλ. Since n ^ r2 + 3, G is either isomorphic to
An or to Sn by Lemma 9. This completes the proof. •

In case rι is a prime number, we do not require the condition p^r^
In case r2 = 2 and 3, we do not require the condition n ^ r2 + 3 by
Lemma 7. Further in case r2 = 2, the Galois group G is isomorphic to
Sn by Lemma 7.

COROLLARY 1. Let f(x) = xn + a^x"'1 A f- aλx + aQ be a polynomial
in Z\x\. Let pf q and r be mutually distinct prime numbers. Then
the Galois group G of f(x) over Q is isomorphic to Sn, if the following
conditions are satisfied:

(1) p\at (0 ^ i ^ n — 2), p2^a0 and p\[n — l)αn_ lβ

( 2 ) q\at (0 <: i ^ n - 1, i Φ 2), <f | α 0 and q\{n - 2)α2.
( 3 ) r\at ( 0 ^ i ^ n - ί ) and r2)fa0.

PROOF. By the condition (3), f{x) is an Eisenstein polynomial with
respect to the prime r. Hence f{x) is irreducible over Q. By the con-
ditions (1) and (2), we have f(x) = xn~\x + αn_J (mod p) and f(x) =
x\xn~2 + α2) (moάq). So it is easy to see that all the conditions in
Theorem 3 are satisfied. •

Putting rx = r2 (a prime number) in Theorem 3, we have:

COROLLARY 2. Let fix) be a monic polynomial of degree n in Z[x].
Let p be a prime number. Further, let f(x) = xrgix) (modp), where gix)
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is a polynomial in Z[x] and r is a positive integer. Then the Galois
group G of fix) over Q is either isomorphic to An or to Sn, if the following
conditions are satisfied:

(1) fix) is irreducible over Q.
(2) The constant term of fix) is divisible by p but not by p2.
(3) 0(0) Ξ£0 (modp).
(4 ) r is a prime number.
( 5 ) r + 3 ^ n < 2r, that is, n/2 < r ^ n - 3.

In this corollary, from the conditions (4) and (5), we do not require
the condition that g(x) (modp) is a separable polynomial. Further in
cases r = 2 and 3, we do not require the condition n ^ r + 3.

EXAMPLE 1. Put fix) = x8 + 23 5x* + 2 3 5\ Since f(x) is an
Eisenstein polynomial with respect to the prime 2, f(x) is irreducible
over Q. Since f(x) = x\xB + 1) (mod 3), we see that all the conditions in
Corollary 2 are satisfied. Since the discriminant is D(f) = 228 38 528, the
Galois group of fix) over Q is isomorphic to A8.

EXAMPLE 2. Put f{x) = x9 - 3V + 2 3 5. Since fix) is an Eisenstein
polynomial with respect to the prime 3, fix) is irreducible over Q. Since
f(x) = χ5iχ* + 1) (mod 5), we see that all the conditions in Corollary 2 are
satisfied. Since the discriminant is D(f) = 28 322 58, the Galois group of
f(x) over Q is isomorphic to AQ.

Using Corollary 2, we can construct infinitely many polynomials with
the Galois groups A4 and Aδ.

COROLLARY 3. Let f{x) = sc4 + 4cc3 + b be a polynomial in Z[x],
Then there exist infinitely many integers b such that the Galois group
of f{x) over Q is isomorphic to A±.

PROOF. Let b = k2 + 27 for any positive integer k such that k = ±2
(mod 6). The discriminant is D(f) = 2Ψ(b - 27) = 2 W . Let p be a
prime number such that p\b. Since k = ±2 (mod 6), we have p ^ 5 and
p\k. So we have \c\ ^ 5 and (c, 6Jk) = 1 for any integer c such that c|&.
Now we show that f(x) is irreducible over Q. Since 6 = k2 + 27 and
ft = ±2 (mod 6), we have f{x) s (a? - l)(α;3 - α2 - a? - 1) (mod 3). If f(x)
is reducible over Q, then f{x) has a factor of degree 1. But obviously
f{x) has no factor of degree 1, since \c\ ^ 5 for any integer c such that
c\b. So fix) is irreducible over Q. Since p\b, we have p ^ 5 and fix) Ξ=
aj3(x + 4) (modp). If p\\b, then we see that all the conditions in Corollary
2 are satisfied. If p2\b, then we replace b by δj. = k\ + 27, where fex =
fe + 6p. Hence we have b, = 22 3fcp (mod p2) and kx = ±2 (mod 6). Since
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(p, 6k) = 1, we have p\\bt. Therefore we see that all the conditions in
Corollary 2 are satisfied. •

COROLLARY 4. Let fix) = x* + 3 5 W + 2 34 54δc4 be a polynomial
in Z[x\. Then there exist infinitely many integers b and c such that
the Galois group of f(x) over Q is isomorphic to Aδ.

PROOF. Since f(x) = x* + 3 52cV + 2 34 546c\ the discriminant is
D{f) = 24 3lβ 5186V6(5362 + c2). Let 2 be a rational integer such that
(2, 5) = 1. Let w be a square-free rational integer such that {w, 2 3 5ίs) = l.
Further, let b = 2zw and c = z2 - 5V. Then we have 53δ2 + c2 =
(z2 + 5W)2, since c2 = (z2 + 5W)2 - 53(2zw)2. Hence we see that D(f) =
24 316 518δ2c16(z2 + 5W)2, which means that the Galois group G of f{x)
over Q is isomorphic to a subgroup of A5. Now put y = (2 3 5 6c)/ίc
and g(y) = 24 3 5¥cf(x)/x\ Since (6c, 5) = 1, g(y) is irreducible over Q
by Eisenstein's criterion with respect to the prime 5. So f(x) is irreduc-
ible over Q. Hence G is transitive as a permutation group on the roots
of f(x). Moreover, the degree of f(x) is the prime 5. Therefore G is
primitive by Lemma 10. Besides, it is clear that {w, c) = 1. Hence we
see that all the conditions in Corollary 2 are satisfied, since 6 = 2zw,
(w, 2 3 5z) = 1 and w is a square-free integer. •

Further, we construct infinitely many polynomials with the Galois
group AΊ as follows.

PROPOSITION 2. Let f(x) = x7 - 5 7 W + 2 56 76 6cβ δe a polynomial
in Z[x]. Then there exist infinitely many integers b and c such that
the Galois group of.f(x) over Q is isomorphic to A7.

PROOF. Since f(x) = x7 - 5 72cV + 2 56 T bc\ the discriminant is
D(f) = 2β - 53β 733 δ4c36(c2 - 7562). Let z be a rational integer such that
(2, 7) = 1. Let w be a square-free rational integer such that (w, 2 5 7z) = 1.
Further, let 6 = 2zw and c = z2 + 75w2. Then we have c2 - 7562 =
(z2 - 75w2)2, since c2 = (z2 - Tw2)2 + 75(2^)2. Hence we see that D(f) =
26 53β 738 ί ) V V - 7 V ) 2 , which means that the Galois group G of f(x)
over Q is isomorphic to a subgroup of A7. Now put y = (2 5 76c)/# and
g(y) = 2Q 5-7bβc-f(x)/x7. Then g(y) is irreducible over Q by Eisenstein's
criterion with respect to the prime 7. So /(#) is irreducible over Q.
Hence G is transitive as a permutation group on the roots of f(x). More-
over, the degree of f(x) is the prime 7. Therefore G is primitive by
Lemma 10. Besides, it is clear that (w, c) = 1. So we see that all the
conditions in Proposition 1 are satisfied, since 6 = 2zw, (w, 2-5 7z) = 1
and w is a square-free integer. Hence G contains a cycle of order 5.
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So G is triply transitive (see Wielandt [6, Theorem 13.8]). Then G is
either isomorphic to A7 or to S7 (see Burnside [1, p. 216]). Therefore G
is isomorphic to AΊ. •

Now we list some of the pairs (6, c) satisfying the conditions in
Proposition 2.

(6, 151264), (12, 151267), (24, 151279), (30, 151288), (48, 151327),
(60, 151363), (66, 151384), (78, 151432), (96, 151519), (102, 151552),

(114, 151624), (120, 151663), (132, 151747), (138, 151792), (150, 151888),
(156, 151939), (174, 152104), (186, 152224), (192, 152287), (204, 152419),
(222, 152632), (228, 152707), (240, 152863), (246, 152944), (258, 153112),
(264, 153199), (276, 153379), (282, 153472), (300, 153763), (312, 153967),
(318, 154072), (330, 154288).
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