THE GALOIS GROUPS OF THE POLYNOMIALS $x^n + ax^s + b$, II

HIROYUKI OSADA

(Received August 19, 1986)

Introduction. In the previous paper [3], we have shown that the Galois group of a polynomial $f(x) = x^n + ax^s + b$ (with rational integers a and b) over the rational number field Q is isomorphic to the symmetric group S_n of degree n under the following conditions:

(1) f(x) is irreducible over Q.

(2) $a = a_0c^n$, $b = b_0c^n$ and $(a_0c(n - s)s, nb_0) = 1$ (relatively prime).

(3) $|D_0(f)|$ is not a square, where

$$D_{0}(f) = n^{n}b_{0}^{n-s} + (-1)^{n-1}s^{s}(n-s)^{n-s}a_{0}^{n}c^{ns}$$

is a factor of the discriminant D(f) of f(x).

(4) $p||b_0$ for some prime number p.

(5) There exists a prime number q such that q|s and k < q for any positive integer k with k|n and k < s/2.

In this paper, we shall first show that the same result holds without the assumption (5) (Theorem 1). Further, we shall show that there exist infinitely many polynomials $x^n + ax^s + p$ satisfying the above conditions (1), (2), (3) and (4) (Theorem 2).

By Hilbert's irreducibility theorem [2], there exist infinitely many Galois extensions with Galois group S_n or A_n for any n. Schur [4, p. 193-194] gave a criterion for the Galois group of a polynomial over Qto be isomorphic to S_n or to A_n . We here give another criterion for the Galois group of a polynomial over Q to be isomorphic to S_n or to A_n (Theorem 3). As another consequence of our results, we can also construct infinitely many polynomials with the Galois groups A_4 , A_5 and A_7 (Corollary 3, Corollary 4 to Theorem 3 and Proposition 2). Besides, we give numerical examples of polynomials with Galois group A_7 .

The author would like to thank the referee for his valuable advices.

Let Z be the ring of rational integers. Throughout this paper, we shall denote by K, G and D(f) the splitting field, the Galois group and the discriminant of a polynomial $f(x) \in \mathbb{Z}[x]$, respectively.

THEOREM 1. Let $f(x) = x^n + ax^s + b$ be a polynomial in Z[x]. Let $a = a_0c^n$ and $b = b_0c^n$. Then the Galois group G is isomorphic to the

symmetric group S_n of degree n, if the following conditions are satisfied, where $D_0(f) = (-1)^{n(n-1)/2} D(f) / b_0^{s-1} c^{n(n-1)} = n^n b_0^{n-s} + (-1)^{n-1} s^s (n-s)^{n-s} a_0^n c^{ns}$:

(1) f(x) is irreducible over Q.

(2) $a_0c(n-s)s$ and nb_0 are relatively prime, that is, $(a_0c(n-s)s, nb_0) = 1$.

(3) $|D_0(f)|$ is not a square.

(4) $p||b_0$ for some prime number p, that is, b_0 is divisible by p and is not divisible by p^2 .

The proof of Theorem 1 is divided into several steps.

PROPOSITION 1. Let f(x) be a monic polynomial of degree n in $\mathbb{Z}[x]$. Let p be a prime number and \mathfrak{P} a prime ideal in K such that $\mathfrak{P}|p$. Further, let $f(x) \equiv x^*\overline{h}(x) \pmod{p}$, where $\overline{h}(x)$ is a polynomial in $\mathbb{Z}[x]$ and s is a positive integer. Then the inertia group of \mathfrak{P} is generated by a cycle of order s, if the following conditions are satisfied:

(1) The constant term a_0 of f(x) is divisible by p and is not divisible by p^2 .

(2) $\bar{h}(x) \pmod{p}$ is a separable polynomial such that $\bar{h}(0) \not\equiv 0 \pmod{p}$.

PROOF. Since $f(x) \equiv x^* \overline{h}(x) \pmod{p}$ and $\overline{h}(0) \not\equiv 0 \pmod{p}$, it follows from Hensel's lemma that f(x) = g(x)h(x) in the rational *p*-adic number field Q_p , where $g(x) \equiv x^* \pmod{p}$ and $h(x) \equiv \overline{h}(x) \pmod{p}$. Let $K_{\mathfrak{g}}$ be the \mathfrak{P} -completion of K. We obtain $K_{\mathfrak{P}}$ from Q_p by adjoining the roots of f(x). Let L be the splitting field of g(x) over Q_p . Since $p||a_0, g(x)$ is an Eisenstein polynomial with respect to the prime p. Hence g(x) is irreducible over Q_p and the order of the inertia group T of p in L/Q_p is divisible by s. So the Galois group Z of L/Q_p is transitive as a permutation group on the roots of g(x). Since the Galois group Z is the decomposition group of p in L/Q_p , the ramification group V of p in L/Q_p is a normal subgroup of the decomposition group Z of p in L/Q_p . The ramification group V is a p-subgroup of the decomposition group Z. Since Z is isomorphic to a subgroup of S_s , V is isomorphic to a p-subgroup of S_s . Since $p \nmid s$, any p-Sylow subgroup of S_s is isomorphic to a p-Sylow subgroup of S_{s-1} . Hence V is isomorphic to a subgroup of S_{s-1} . Thus V is necessarily trivial. Hence the inertia group T of p in L/Q_p is cyclic. Moreover, T is generated by a cycle of order s, since Z is transitive as a permutation group on s letters, while T is cyclic of order divisible by s and is a normal subgroup of Z. Let M be the splitting field of h(x) over Q_p . Since $\overline{h}(x)$ (mod p) is a separable polynomial, p is unramified in M/Q_{p} . Hence T is isomorphic to the inertia group of P. This completes the proof.

438

 $⁽³⁾ p \nmid s.$

REMARK. When s = p in this Proposition, the inertia group of \mathfrak{P} contains a cycle of order s.

LEMMA 1. Let $f(x) = x^n + ax^s + b$ be an irreducible polynomial in Z[x], where $a = a_0c^n$, $b = b_0c^n$ and $(a_0c(n - s)s, nb_0) = 1$. Let p be a prime number and \mathfrak{P} a prime ideal in K such that $\mathfrak{P}|p$. If $p||b_0$, then the inertia group of \mathfrak{P} is generated by a cycle of order s.

PROOF. From the conditions, $f(x) \equiv x^{s}(x^{n-s} + a) \pmod{p}$. Since $p \nmid a(n-s)$, we see that $x^{n-s} + a \pmod{p}$ is a separable polynomial. Thus, all the conditions in Proposition 1 are satisfied.

LEMMA 2. Let p be a prime number and \mathfrak{P} be a prime ideal in K such that $\mathfrak{P}|p$. Further, let $(a_0c(n-s)s, nb_0) = 1$ and $p|D_0(f)$. Then the inertia group of \mathfrak{P} is either trivial or generated by a transposition (see [3, Lemma 3]).

LEMMA 3. Let $(cs, nb_0) = 1$. Then all the prime divisors of c are unramified in K.

PROOF. Since $f(x) = x^n + a_0 c^n x^s + b_0 c^n$, we have $f(x)/c^n = (x/c)^n + a_0 c^s (x/c)^s + b_0$. Put y = x/c. Then we have $f(x)/c^n = y^n + a_0 c^s y^s + b_0$. Since (n, s) = 1, the discriminant of a polynomial $y^n + a_0 c^s y^s + b_0$ is equal to $(-1)^{n(n-1)/2} b_0^{s-1} (n^n b_0^{n-s} + (-1)^{n-1} s^s (n-s)^{n-s} a_0^n c^{ns})$. Since $(c, nb_0) = 1$, all the divisors of c are unramified in K.

LEMMA 4. Let $(a_0c(n-s)s, nb_0) = 1$ and $s \ge 2$. For any prime \mathfrak{P} in K, the inertia group T of \mathfrak{P} is isomorphic to a subgroup of S_s . In case s = 1, T is either trivial or generated by a transposition.

PROOF. Let p be a prime number and \mathfrak{P} a prime ideal in K such that $\mathfrak{P}|p$. If $p|b_0$, then $f(x) \equiv x^s(x^{n-s} + a) \pmod{p}$. Since $p \nmid (n-s)a$, we see that $x^{n-s} + a \pmod{p}$ is a separable polynomial. So the inertia group T of \mathfrak{P} is isomorphic to a subgroup of S_s . If $p|c \cdot D_0(f)$, then the inertia group T is either trivial or generated by a transposition by Lemmas 2 and 3.

LEMMA 5. Let p be a prime number. Suppose a permutation group G on the set $\Omega = \{1, 2, \dots, n\}$ is generated by cycles of order p. If G is transitive on Ω , then it is primitive on Ω .

PROOF. Assume that G is imprimitive. Let $\overline{Q} = \{\Delta_1, \Delta_2, \dots, \Delta_m\}$ be a complete nontrivial block system of the imprimitive group G. Let σ be a cycle of order p among the generators in G. Without loss of generality, we can assume that $\sigma = (1, 2, \dots, p)$ and $1 \in \Delta_1$. Since $|\Delta_i| \ge 2$ $(1 \le i \le m), \ \Delta_i \cap \Delta_j \ne \emptyset$ $(i \ne j)$ and p is a prime number, we have 1, 2, \dots , $p \in \Delta_i$. Hence for any i $(1 \leq i \leq m)$, we have $\sigma(\Delta_i) = \Delta_i$. So for any generator σ of G, we have $\sigma(\Delta_i) = \Delta_i$ for any i $(1 \leq i \leq m)$. This contradicts our assumption that G is transitive on Ω .

LEMMA 6. Let G be a primitive permutation group on the set $\Omega = \{1, 2, \dots, n\}$. If G contains a transposition, then it is the symmetric group S_n . If G contains a cycle of order 3, then it is either the alternating group A_n or the symmetric group S_n (see Wielandt [6, Theorem 13.3]).

By Lemmas 5 and 6, we have:

LEMMA 7. Let G be a permutation group on the set $\Omega = \{1, 2, \dots, n\}$. If G is generated by transpositions and is transitive on Ω , then it is the symmetric group S_n . If G is generated by cycles of order 3 and is transitive on Ω , then it is either A_n or S_n .

LEMMA 8. Let p be a prime number and G be a primitive permutation group on the set $\Omega = \{1, 2, \dots, n\}$ with $n \ge p+3$. If G contains a cycle of order p, then it is either A_n or S_n (see Wielandt [6, Theorem 13.9]).

By Lemmas 5 and 8, we have:

LEMMA 9. Let p be a prime number and G be a permutation group on the set $\Omega = \{1, 2, \dots, n\}$ generated by cycles of order p with $n \ge p + 3$. If G is transitive on Ω , then it is either A_n or S_n .

LEMMA 10. Let p be a prime number and G be a permutation group on the set $\Omega = \{1, 2, \dots, p\}$. If G is transitive on Ω , then it is primitive on Ω (see Wielandt [6, Theorem 8.3]).

PROOF OF THEOREM 1. Since $|D_0(f)|$ is not a square, the Galois group G contains a transposition by Lemma 2. Since $p||b_0$ for some prime number p, G contains a cycle of order s by Lemma 1. Let H be a subgroup of G generated by all transpositions. It is easy to see that H is a normal subgroup of G. By $H(\alpha)$ we shall denote the set $\{\tau(\alpha)|\tau \in H\}$, where α is a root of f(x). Then $|H(\alpha)| = |H(\beta)| = k$ for any roots α and β of f(x). Hence we have k|n. Since G contains a cycle of order s and (n, s) = 1, we have s < k. Now assume that k < n. Since f(x) is irreducible over Q, G is transitive as a permutation group on the roots of f(x). So there exists an element σ of G such that $H(\sigma(\alpha)) \neq H(\alpha)$. By Minkowski's theorem, there exists no unramified extension of the field Q. Hence the Galois group G is generated by all inertia groups. So we have $\sigma = \tau_1 \tau_2 \cdots \tau_m$ for some $m \in \mathbb{Z}$, where τ_i $(1 \leq i \leq m)$ is a generator of the inertia group of a prime in K. So there exists some τ_i $(1 \leq i \leq m)$ is a generator τ_i by such that $H(\tau_i(\alpha)) \neq H(\alpha)$.

440

of any prime in K is isomorphic to a subgroup of S_s for $s \ge 2$ (resp. S_2 for s = 1). Hence we have 2k < s for $s \ge 2$, since $|H(\alpha)| = k$ and (k, s) = 1. This contradicts the assumption that s < k for $s \ge 2$. In case s = 1, for the same reason we have 2k < s + 1 = 2. This is also impossible. Therefore we have k = n. Hence H is transitive as a permutation group on the roots of f(x). Hence H is isomorphic to S_n by Lemma 7. Therefore G is isomorphic to S_n .

REMARK. In case s = 1 and 2, we do not require the conditions (3) and (4). Further, K is an unramified extension of $Q(\sqrt{D(f)})$ in the narrow sense with A_n as the Galois group (see [3, Corollary 2 to Theorem 1 and Theorem 2]).

EXAMPLE. Let $f(x) = x^5 + 3x + 1$. Then we have $f(x) \equiv (x + 1)(x^4 - x^3 + x^2 - x + 1) \pmod{3}$ and $f(\pm 1) \neq 0$. Hence it is clear that f(x) is irreducible over Q. So the Galois group of f(x) over Q is isomorphic to S_5 by Theorem 1. Further, $K/Q(\sqrt{D(f)})$ is unramified in the narrow sense, where $D(f) = 65333 = 79 \cdot 827$. On the other hand, the class number of $Q(\sqrt{65333})$ is equal to 1 (see [5]).

THEOREM 2. Let $f(x) = x^n + ax^s + p$ be a polynomial in $\mathbb{Z}[x]$. If (n, as) = 1, then there exist infinitely many primes p such that the Galois group of f(x) over \mathbb{Q} is isomorphic to S_n .

PROOF. Since $f(x) = x^n + ax^s + p$ and (n, as) = 1, the discriminant is $D(f) = (-1)^{n(n-1)/2} \cdot p^{s-1} \cdot D_0(f), \text{ where } D_0(f) = n^n p^{n-s} + (-1)^{n-1} s^s (n-s)^{n-s} a^n.$ For a moment let us denote $D_0(f)$ by $D_0(p)$. Let p be any prime number such that 1 + |a| < p, (p, a(n-s)s) = 1 and $|D_0(p)| > 1$. By Funakura's lemma (see [3, Lemma 9]), f(x) is irreducible over Q. Since (n, as) = 1, we have (np, a(n-s)s) = 1. Since $|D_0(p)| > 1$, there exists a prime number q such that $q|D_0(p)$. If $q||D_0(p)$, then all the conditions in Theorem 1 are satisfied. Now assume that $q^2|D_0(p)$. Since $q|D_0(p)$ and (np, a(n-s)s) = 1, we have (q, a(n-s)snp) = 1 and (p, a(n-s)sq) = 1. We replace p by $p_1 = p + ka(n - s)sq$, where k is a positive integer. Since (p, a(n - s)sq) = 1, by Dirichlet's theorem on prime numbers in arithmetic progressions, the Dirichlet density of the primes p_1 satisfying $p_1 \equiv p \pmod{a(n-s)sq}$ is equal to $1/\varphi(a(n-s)sq)$. Hence there exist infinitely many primes p_1 such that $p_1 = p + ka(n-s)sq$ and (k, q) = 1. Since $D_0(p_1) = n^n p_1^{n-s} + (-1)^{n-1} s^s (n-s)^{n-s} a^n$ and $q^2 | D_0(p)$, we have $D_0(p_1) \equiv$ $n^n p^{n-s-1}k(n-s)^2 saq \pmod{q}$. Hence we have $q \| D_0(p_1)$, since $(q, a(n-s)^2) + (q, a(n-s)^2) + (q, a(n-s)^2)$. s(snp) = 1. So all the conditions in Theorem 1 are satisfied. This completes the proof. THEOREM 3. Let f(x) be a monic polynomial of degree n in $\mathbb{Z}[x]$. Let p_i (i = 1, 2) be prime numbers. Further, let $f(x) \equiv x^{r_i}g_i(x) \pmod{p_i}$ (i = 1, 2), where $g_i(x)$ (i = 1, 2) are polynomials in $\mathbb{Z}[x]$ and r_i (i = 1, 2)are positive integers. Then the Galois group G of f(x) over Q is either isomorphic to the alternating group A_n or to the symmetric group S_n , if the following conditions are satisfied:

(1) f(x) is irreducible over Q.

(2) The constant term of f(x) is divisible by p_i and is not divisible by p_i^2 (i = 1, 2).

(3) $g_i(x) \pmod{p_i}$ are separable polynomials such that $g_i(0) \neq 0 \pmod{p_i}$ (i = 1, 2).

(4) $p_1 \nmid r_1$ and r_2 is a prime number.

 $(5) \quad r_2 + 3 \leq n < 2r_1.$

PROOF. By Proposition 1 and by the conditions (2), (3) and (4), it follows that the Galois group G contains a cycle of order r_i (i = 1, 2). So we can show in the same way as in the proof of Theorem 1 that a subgroup of G generated by all cycles of order r_2 is transitive, from the conditions (1) and $n < 2r_1$. Since $n \ge r_2 + 3$, G is either isomorphic to A_n or to S_n by Lemma 9. This completes the proof.

In case r_1 is a prime number, we do not require the condition $p_1 \nmid r_1$. In case $r_2 = 2$ and 3, we do not require the condition $n \ge r_2 + 3$ by Lemma 7. Further in case $r_2 = 2$, the Galois group G is isomorphic to S_n by Lemma 7.

COROLLARY 1. Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a polynomial in $\mathbb{Z}[x]$. Let p, q and r be mutually distinct prime numbers. Then the Galois group G of f(x) over Q is isomorphic to S_n , if the following conditions are satisfied:

(1) $p|a_i \ (0 \leq i \leq n-2), \ p^2 \nmid a_0 \ and \ p \nmid (n-1)a_{n-1}.$

- (2) $q|a_i \ (0 \leq i \leq n-1, i \neq 2), \ q^2 \nmid a_0 \ and \ q \nmid (n-2)a_2.$
- (3) $r|a_i \ (0 \leq i \leq n-1) \ and \ r^2 \nmid a_0$.

PROOF. By the condition (3), f(x) is an Eisenstein polynomial with respect to the prime r. Hence f(x) is irreducible over Q. By the conditions (1) and (2), we have $f(x) \equiv x^{n-1}(x + a_{n-1}) \pmod{p}$ and $f(x) \equiv x^2(x^{n-2} + a_2) \pmod{q}$. So it is easy to see that all the conditions in Theorem 3 are satisfied.

Putting $r_1 = r_2$ (a prime number) in Theorem 3, we have:

COROLLARY 2. Let f(x) be a monic polynomial of degree n in $\mathbb{Z}[x]$. Let p be a prime number. Further, let $f(x) \equiv x^r g(x) \pmod{p}$, where g(x)

is a polynomial in Z[x] and r is a positive integer. Then the Galois group G of f(x) over Q is either isomorphic to A_n or to S_n , if the following conditions are satisfied:

- (1) f(x) is irreducible over Q.
- (2) The constant term of f(x) is divisible by p but not by p^2 .
- $(3) \quad g(0) \not\equiv 0 \pmod{p}.$
- (4) r is a prime number.
- (5) $r+3 \leq n < 2r$, that is, $n/2 < r \leq n-3$.

In this corollary, from the conditions (4) and (5), we do not require the condition that $g(x) \pmod{p}$ is a separable polynomial. Further in cases r = 2 and 3, we do not require the condition $n \ge r + 3$.

EXAMPLE 1. Put $f(x) = x^8 + 2^3 \cdot 5x^5 + 2 \cdot 3 \cdot 5^4$. Since f(x) is an Eisenstein polynomial with respect to the prime 2, f(x) is irreducible over Q. Since $f(x) \equiv x^5(x^3 + 1) \pmod{3}$, we see that all the conditions in Corollary 2 are satisfied. Since the discriminant is $D(f) = 2^{28} \cdot 3^8 \cdot 5^{28}$, the Galois group of f(x) over Q is isomorphic to A_s .

EXAMPLE 2. Put $f(x) = x^9 - 3^2x^5 + 2 \cdot 3 \cdot 5$. Since f(x) is an Eisenstein polynomial with respect to the prime 3, f(x) is irreducible over Q. Since $f(x) \equiv x^5(x^4 + 1) \pmod{5}$, we see that all the conditions in Corollary 2 are satisfied. Since the discriminant is $D(f) = 2^8 \cdot 3^{22} \cdot 5^8$, the Galois group of f(x) over Q is isomorphic to A_9 .

Using Corollary 2, we can construct infinitely many polynomials with the Galois groups A_4 and A_5 .

COROLLARY 3. Let $f(x) = x^4 + 4x^3 + b$ be a polynomial in $\mathbb{Z}[x]$. Then there exist infinitely many integers b such that the Galois group of f(x) over \mathbb{Q} is isomorphic to A_4 .

PROOF. Let $b = k^2 + 27$ for any positive integer k such that $k \equiv \pm 2 \pmod{6}$. The discriminant is $D(f) = 2^8 b^2 (b - 27) = 2^8 b^2 k^2$. Let p be a prime number such that p|b. Since $k \equiv \pm 2 \pmod{6}$, we have $p \ge 5$ and $p \nmid k$. So we have $|c| \ge 5$ and (c, 6k) = 1 for any integer c such that c|b. Now we show that f(x) is irreducible over Q. Since $b = k^2 + 27$ and $k \equiv \pm 2 \pmod{6}$, we have $f(x) \equiv (x - 1)(x^3 - x^2 - x - 1) \pmod{3}$. If f(x) is reducible over Q, then f(x) has a factor of degree 1. But obviously f(x) has no factor of degree 1, since $|c| \ge 5$ for any integer c such that c|b. So f(x) is irreducible over Q. Since p|b, we have $p \ge 5$ and $f(x) \equiv x^3(x + 4) \pmod{p}$. If p||b, then we see that all the conditions in Corollary 2 are satisfied. If $p^2|b$, then we replace b by $b_1 = k_1^2 + 27$, where $k_1 = k + 6p$. Hence we have $b_1 \equiv 2^2 \cdot 3kp \pmod{p^2}$ and $k_1 \equiv \pm 2 \pmod{6}$.

(p, 6k) = 1, we have $p || b_i$. Therefore we see that all the conditions in Corollary 2 are satisfied.

COROLLARY 4. Let $f(x) = x^5 + 3 \cdot 5^2 c^2 x^3 + 2 \cdot 3^4 \cdot 5^4 bc^4$ be a polynomial in $\mathbb{Z}[x]$. Then there exist infinitely many integers b and c such that the Galois group of f(x) over \mathbb{Q} is isomorphic to A_5 .

PROOF. Since $f(x) = x^5 + 3 \cdot 5^2 c^2 x^3 + 2 \cdot 3^4 \cdot 5^4 bc^4$, the discriminant is $D(f) = 2^4 \cdot 3^{16} \cdot 5^{18} b^2 c^{16} (5^3 b^2 + c^2)$. Let z be a rational integer such that $(x, 2 \cdot 3 \cdot 5z) = 1$. Further, let w be a square-free rational integer such that $(w, 2 \cdot 3 \cdot 5z) = 1$. Further, let b = 2zw and $c = z^2 - 5^3 w^2$. Then we have $5^3 b^2 + c^2 = (z^2 + 5^3 w^2)^2$, since $c^2 = (z^2 + 5^3 w^2)^2 - 5^3 (2zw)^2$. Hence we see that $D(f) = 2^4 \cdot 3^{16} \cdot 5^{18} b^2 c^{16} (z^2 + 5^3 w^2)^2$, which means that the Galois group G of f(x) over Q is isomorphic to a subgroup of A_5 . Now put $y = (2 \cdot 3 \cdot 5 \cdot bc)/x$ and $g(y) = 2^4 \cdot 3 \cdot 5 b^4 c f(x)/x^5$. Since (bc, 5) = 1, g(y) is irreducible over Q by Eisenstein's criterion with respect to the prime 5. So f(x) is irreducible over G is primitive by Lemma 10. Besides, it is clear that (w, c) = 1. Hence we see that all the conditions in Corollary 2 are satisfied, since b = 2zw, $(w, 2 \cdot 3 \cdot 5z) = 1$ and w is a square-free integer.

Further, we construct infinitely many polynomials with the Galois group A_7 as follows.

PROPOSITION 2. Let $f(x) = x^7 - 5 \cdot 7^2 c^2 x^5 + 2 \cdot 5^6 \cdot 7^6 \cdot bc^6$ be a polynomial in $\mathbb{Z}[x]$. Then there exist infinitely many integers b and c such that the Galois group of f(x) over \mathbb{Q} is isomorphic to A_7 .

PROOF. Since $f(x) = x^7 - 5 \cdot 7^2 c^2 x^5 + 2 \cdot 5^6 \cdot 7^6 \cdot bc^6$, the discriminant is $D(f) = 2^6 \cdot 5^{36} \cdot 7^{33} \cdot b^4 c^{36} (c^2 - 7^5 b^2)$. Let z be a rational integer such that (z, 7) = 1. Let w be a square-free rational integer such that $(w, 2 \cdot 5 \cdot 7z) = 1$. Further, let b = 2zw and $c = z^2 + 7^5 w^2$. Then we have $c^2 - 7^5 b^2 = (z^2 - 7^5 w^2)^2$, since $c^2 = (z^2 - 7^5 w^2)^2 + 7^5 (2zw)^2$. Hence we see that $D(f) = 2^6 \cdot 5^{36} \cdot 7^{38} \cdot b^4 c^{36} (z^2 - 7^5 w^2)^2$, which means that the Galois group G of f(x) over Q is isomorphic to a subgroup of A_7 . Now put $y = (2 \cdot 5 \cdot 7bc)/x$ and $g(y) = 2^6 \cdot 5 \cdot 7b^6 c \cdot f(x)/x^7$. Then g(y) is irreducible over Q by Eisenstein's criterion with respect to the prime 7. So f(x) is irreducible over Q. Hence G is transitive as a permutation group on the roots of f(x). Moreover, the degree of f(x) is the prime 7. Therefore G is primitive by Lemma 10. Besides, it is clear that (w, c) = 1. So we see that all the conditions in Proposition 1 are satisfied, since b = 2zw, $(w, 2 \cdot 5 \cdot 7z) = 1$ and w is a square-free integer. Hence G contains a cycle of order 5.

So G is triply transitive (see Wielandt [6, Theorem 13.8]). Then G is either isomorphic to A_7 or to S_7 (see Burnside [1, p. 216]). Therefore G is isomorphic to A_7 .

Now we list some of the pairs (b, c) satisfying the conditions in Proposition 2.

References

- [1] W. BURNSIDE, Theory of Groups of Finite Order, Cambridge Univ. Press, 1911.
- [2] D. HILBERT, Ueber die irreduzibilität ganzen rationalen Funktionen mit ganzzahligen Koeffizienten, J. Reine Angew. Math. 110 (1892), 104-129.
- [3] H. OSADA, The Galois groups of the polynomials $x^n + ax^l + b$, J. Number Theory 25 (1987), 230-238.
- [4] I. SCHUR, Gesammelte Abhandlungen, Bd III, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
- [5] H. WADA, A Table of Ideal Class Numbers of Real Quadratic Fields (in Japanese), Lecture Note in Math. 10 (1981), Sophia Univ., Tokyo.
- [6] H. WIELANDT, Finite Permutation Groups, Academic Press, 1964.

DEPARTMENT OF MATHEMATICS Rikkyo University Ikebukuro, Tokyo 171 Japan