THE GALOIS GROUPS OF THE POLYNOMIALS $x^{n}+a x^{s}+b$, II

Hiroyuki Osada

(Received August 19, 1986)

Introduction. In the previous paper [3], we have shown that the Galois group of a polynomial $f(x)=x^{n}+a x^{s}+b$ (with rational integers a and b) over the rational number field \boldsymbol{Q} is isomorphic to the symmetric group S_{n} of degree n under the following conditions:
(1) $f(x)$ is irreducible over \boldsymbol{Q}.
(2) $a=a_{0} c^{n}, b=b_{0} c^{n}$ and $\left(a_{0} c(n-s) s, n b_{0}\right)=1$ (relatively prime).
(3) $\left|D_{0}(f)\right|$ is not a square, where

$$
D_{0}(f)=n^{n} b_{0}^{n-s}+(-1)^{n-1} s^{s}(n-s)^{n-s} a_{0}^{n} c^{n s}
$$

is a factor of the discriminant $D(f)$ of $f(x)$.
(4) $p \| b_{0}$ for some prime number p.
(5) There exists a prime number q such that $q \mid s$ and $k<q$ for any positive integer k with $k \mid n$ and $k<s / 2$.
In this paper, we shall first show that the same result holds without the assumption (5) (Theorem 1). Further, we shall show that there exist infinitely many polynomials $x^{n}+a x^{s}+p$ satisfying the above conditions (1), (2), (3) and (4) (Theorem 2).

By Hilbert's irreducibility theorem [2], there exist infinitely many Galois extensions with Galois group S_{n} or A_{n} for any n. Schur [4, p. 193-194] gave a criterion for the Galois group of a polynomial over \boldsymbol{Q} to be isomorphic to S_{n} or to A_{n}. We here give another criterion for the Galois group of a polynomial over \boldsymbol{Q} to be isomorphic to S_{n} or to A_{n} (Theorem 3). As another consequence of our results, we can also construct infinitely many polynomials with the Galois groups A_{4}, A_{5} and A_{7} (Corollary 3, Corollary 4 to Theorem 3 and Proposition 2). Besides, we give numerical examples of polynomials with Galois group A_{7}.

The author would like to thank the referee for his valuable advices.
Let \boldsymbol{Z} be the ring of rational integers. Throughout this paper, we shall denote by K, G and $D(f)$ the splitting field, the Galois group and the discriminant of a polynomial $f(x) \in \boldsymbol{Z}[x]$, respectively.

TheOrem 1. Let $f(x)=x^{n}+a x^{s}+b$ be a polynomial in $Z[x]$. Let $a=a_{0} c^{n}$ and $b=b_{0} c^{n}$. Then the Galois group G is isomorphic to the
symmetric group S_{n} of degree n, if the following conditions are satisfied, where $D_{0}(f)=(-1)^{n(n-1) / 2} D(f) / b_{0}^{s-1} c^{n(n-1)}=n^{n} b_{0}^{n-s}+(-1)^{n-1} s^{s}(n-s)^{n-s} a_{0}^{n} c^{n s}$:
(1) $f(x)$ is irreducible over \boldsymbol{Q}.
(2) $a_{0} c(n-s) s$ and $n b_{0}$ are relatively prime, that is, $\left(a_{0} c(n-s) s\right.$, $\left.n b_{0}\right)=1$.
(3) $\left|D_{0}(f)\right|$ is not a square.
(4) $p \| b_{0}$ for some prime number p, that is, b_{0} is divisible by p and is not divisible by p^{2}.

The proof of Theorem 1 is divided into several steps.
Proposition 1. Let $f(x)$ be a monic polynomial of degree n in $\boldsymbol{Z}[x]$. Let p be a prime number and \mathfrak{F} a prime ideal in K such that $\mathfrak{F} \mid p$. Further, let $f(x) \equiv x^{s} \bar{h}(x)(\bmod p)$, where $\bar{h}(x)$ is a polynomial in $Z[x]$ and s is a positive integer. Then the inertia group of \mathfrak{F} is generated by a cycle of order s, if the following conditions are satisfied:
(1) The constant term a_{0} of $f(x)$ is divisible by p and is not divisible by p^{2}.
(2) $\bar{h}(x)(\bmod p)$ is a separable polynomial such that $\bar{h}(0) \not \equiv 0(\bmod p)$.
(3) $p \nmid s$.

Proof. Since $f(x) \equiv x^{s} \bar{h}(x)(\bmod p)$ and $\bar{h}(0) \not \equiv 0(\bmod p)$, it follows from Hensel's lemma that $f(x)=g(x) h(x)$ in the rational p-adic number field \boldsymbol{Q}_{p}, where $g(x) \equiv x^{s}(\bmod p)$ and $h(x) \equiv \bar{h}(x)(\bmod p)$. Let K_{Φ} be the \mathfrak{F}-completion of K. We obtain $K_{刃}$ from \boldsymbol{Q}_{p} by adjoining the roots of $f(x)$. Let L be the splitting field of $g(x)$ over \boldsymbol{Q}_{p}. Since $p \| a_{0}, g(x)$ is an Eisenstein polynomial with respect to the prime p. Hence $g(x)$ is irreducible over \boldsymbol{Q}_{p} and the order of the inertia group T of p in L / \boldsymbol{Q}_{p} is divisible by s. So the Galois group Z of L / \boldsymbol{Q}_{p} is transitive as a permutation group on the roots of $g(x)$. Since the Galois group Z is the decomposition group of p in L / \boldsymbol{Q}_{p}, the ramification group V of p in L / \boldsymbol{Q}_{p} is a normal subgroup of the decomposition group Z of p in L / \boldsymbol{Q}_{p}. The ramification group V is a p-subgroup of the decomposition group Z. Since Z is isomorphic to a subgroup of S_{s}, V is isomorphic to a p-subgroup of S_{s}. Since $p \nmid s$, any p-Sylow subgroup of S_{s} is isomorphic to a p-Sylow subgroup of S_{s-1}. Hence V is isomorphic to a subgroup of S_{s-1}. Thus V is necessarily trivial. Hence the inertia group T of p in L / \boldsymbol{Q}_{p} is cyclic. Moreover, T is generated by a cycle of order s, since Z is transitive as a permutation group on s letters, while T is cyclic of order divisible by s and is a normal subgroup of Z. Let M be the splitting field of $h(x)$ over \boldsymbol{Q}_{p}. Since $\bar{h}(x)$ $(\bmod p)$ is a separable polynomial, p is unramified in M / \boldsymbol{Q}_{p}. Hence T is isomorphic to the inertia group of \mathfrak{F}. This completes the proof.

Remark. When $s=p$ in this Proposition, the inertia group of \mathfrak{P} contains a cycle of order s.

Lemma 1. Let $f(x)=x^{n}+a x^{s}+b$ be an irreducible polynomial in $Z[x]$, where $a=a_{0} c^{n}, b=b_{0} c^{n}$ and $\left(a_{0} c(n-s) s, n b_{0}\right)=1$. Let p be a prime number and \mathfrak{P} a prime ideal in K such that $\mathfrak{F} \mid p$. If $p \| b_{0}$, then the inertia group of \mathfrak{P} is generated by a cycle of order s.

Proof. From the conditions, $f(x) \equiv x^{s}\left(x^{n-s}+a\right)(\bmod p)$. Since $p \nmid a(n-s)$, we see that $x^{n-s}+a(\bmod p)$ is a separable polynomial. Thus, all the conditions in Proposition 1 are satisfied.

Lemma 2. Let p be a prime number and \mathfrak{F} be a prime ideal in K such that $\mathfrak{P} \mid p$. Further, let $\left(a_{0} c(n-s) s, n b_{0}\right)=1$ and $p \mid D_{0}(f)$. Then the inertia group of \mathfrak{F} is either trivial or generated by a transposition (see [3, Lemma 3]).

Lemma 3. Let $\left(c s, n b_{0}\right)=1$. Then all the prime divisors of c are unramified in K.

Proof. Since $f(x)=x^{n}+a_{0} c^{n} x^{s}+b_{0} c^{n}$, we have $f(x) / c^{n}=(x / c)^{n}+$ $a_{0} c^{s}(x / c)^{s}+b_{0}$. Put $y=x / c$. Then we have $f(x) / c^{n}=y^{n}+a_{0} c^{s} y^{s}+b_{0}$. Since $(n, s)=1$, the discriminant of a polynomial $y^{n}+a_{0} c^{s} y^{s}+b_{0}$ is equal to $(-1)^{n(n-1) / 2} b_{0}^{s-1}\left(n^{n} b_{0}^{n-s}+(-1)^{n-1} s^{s}(n-s)^{n-s} a_{0}^{n} c^{n s}\right)$. Since $\left(c, n b_{0}\right)=1$, all the divisors of c are unramified in K.

Lemma 4. Let $\left(a_{0} c(n-s) s, n b_{0}\right)=1$ and $s \geqq 2$. For any prime \mathfrak{P} in K, the inertia group T of \mathfrak{F} is isomorphic to a subgroup of S_{s}. In case $s=1, T$ is either trivial or generated by a transposition.

Proof. Let p be a prime number and \mathfrak{F} a prime ideal in K such that $\mathfrak{P} \mid p$. If $p \mid b_{0}$, then $f(x) \equiv x^{s}\left(x^{n-s}+a\right)(\bmod p)$. Since $p \nmid(n-s) a$, we see that $x^{n-s}+a(\bmod p)$ is a separable polynomial. So the inertia group T of \mathfrak{F} is isomorphic to a subgroup of S_{s}. If $p \mid c \cdot D_{0}(f)$, then the inertia group T is either trivial or generated by a transposition by Lemmas 2 and 3.

Lemma 5. Let p be a prime number. Suppose a permutation group G on the set $\Omega=\{1,2, \cdots, n\}$ is generated by cycles of order p. If G is transitive on Ω, then it is primitive on Ω.

Proof. Assume that G is imprimitive. Let $\bar{\Omega}=\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{m}\right\}$ be a complete nontrivial block system of the imprimitive group G. Let σ be a cycle of order p among the generators in G. Without loss of generality, we can assume that $\sigma=(1,2, \cdots, p)$ and $1 \in \Delta_{1}$. Since $\left|\Delta_{i}\right| \geqq 2$ $(1 \leqq i \leqq m), \Delta_{i} \cap \Delta_{j} \neq \varnothing(i \neq j)$ and p is a prime number, we have
$1,2, \cdots, p \in \Delta_{1}$. Hence for any $i\left(1 \leqq i \leqq m\right.$, we have $\sigma\left(\Delta_{i}\right)=\Delta_{i}$. So for any generator σ of G, we have $\sigma\left(\Delta_{i}\right)=\Delta_{i}$ for any $i(1 \leqq i \leqq m)$. This contradicts our assumption that G is transitive on Ω.

Lemma 6. Let G be a primitive permutation group on the set $\Omega=$ $\{1,2, \cdots, n\}$. If G contains a transposition, then it is the symmetric group S_{n}. If G contains a cycle of order 3 , then it is either the alternating group A_{n} or the symmetric group S_{n} (see Wielandt [6, Theorem 13.3]).

By Lemmas 5 and 6, we have:
Lemma 7. Let G be a permutation group on the set $\Omega=\{1,2, \cdots, n\}$. If G is generated by transpositions and is transitive on Ω, then it is the symmetric group S_{n}. If G is generated by cycles of order 3 and is transitive on Ω, then it is either A_{n} or S_{n}.

Lemma 8. Let p be a prime number and G be a primitive permutation group on the set $\Omega=\{1,2, \cdots, n\}$ with $n \geqq p+3$. If G contains a cycle of order p, then it is either A_{n} or S_{n} (see Wielandt [6, Theorem 13.9]).

By Lemmas 5 and 8, we have:
Lemma 9. Let p be a prime number and G be a permutation group on the set $\Omega=\{1,2, \cdots, n\}$ generated by cycles of order p with $n \geqq p+3$. If G is transitive on Ω, then it is either A_{n} or S_{n}.

Lemma 10. Let p be a prime number and G be a permutation group on the set $\Omega=\{1,2, \cdots, p\}$. If G is transitive on Ω, then it is primitive on Ω (see Wielandt [6, Theorem 8.3]).

Proof of Theorem 1. Since $\left|D_{0}(f)\right|$ is not a square, the Galois group G contains a transposition by Lemma 2. Since $p \| b_{0}$ for some prime number p, G contains a cycle of order s by Lemma 1 . Let H be a subgroup of G generated by all transpositions. It is easy to see that H is a normal subgroup of G. By $H(\alpha)$ we shall denote the set $\{\tau(\alpha) \mid \tau \in H\}$, where α is a root of $f(x)$. Then $|H(\alpha)|=|H(\beta)|=k$ for any roots α and β of $f(x)$. Hence we have $k \mid n$. Since G contains a cycle of order s and $(n, s)=1$, we have $s<k$. Now assume that $k<n$. Since $f(x)$ is irreducible over \boldsymbol{Q}, G is transitive as a permutation group on the roots of $f(x)$. So there exists an element σ of G such that $H(\sigma(\alpha)) \neq H(\alpha)$. By Minkowski's theorem, there exists no unramified extension of the field \boldsymbol{Q}. Hence the Galois group G is generated by all inertia groups. So we have $\sigma=\tau_{1} \tau_{2} \cdots \tau_{m}$ for some $m \in \boldsymbol{Z}$, where $\tau_{i}(1 \leqq i \leqq m)$ is a generator of the inertia group of a prime in K. So there exists some $\tau_{i}(1 \leqq i \leqq m)$ such that $H\left(\tau_{i}(\alpha)\right) \neq H(\alpha)$. By Lemma 4 , the inertia group
of any prime in K is isomorphic to a subgroup of S_{s} for $s \geqq 2$ (resp. S_{2} for $s=1$). Hence we have $2 k<s$ for $s \geqq 2$, since $|H(\alpha)|=k$ and $(k, s)=1$. This contradicts the assumption that $s<k$ for $s \geqq 2$. In case $s=1$, for the same reason we have $2 k<s+1=2$. This is also impossible. Therefore we have $k=n$. Hence H is transitive as a permutation group on the roots of $f(x)$. Hence H is isomorphic to S_{n} by Lemma 7. Therefore G is isomorphic to S_{n}.

Remark. In case $s=1$ and 2, we do not require the conditions (3) and (4). Further, K is an unramified extension of $Q(\sqrt{D(f)})$ in the narrow sense with A_{n} as the Galois group (see [3, Corollary 2 to Theorem 1 and Theorem 2]).

Example. Let $f(x)=x^{5}+3 x+1$. Then we have $f(x) \equiv(x+1)\left(x^{4}-\right.$ $\left.x^{3}+x^{2}-x+1\right)(\bmod 3)$ and $f(\pm 1) \neq 0$. Hence it is clear that $f(x)$ is irreducible over \boldsymbol{Q}. So the Galois group of $f(x)$ over \boldsymbol{Q} is isomorphic to S_{5} by Theorem 1. Further, $K / Q(\sqrt{D(f)})$ is unramified in the narrow sense, where $D(f)=65333=79 \cdot 827$. On the other hand, the class number of $\boldsymbol{Q}(\sqrt{65333})$ is equal to 1 (see [5]).

Theorem 2. Let $f(x)=x^{n}+a x^{s}+p$ be a polynomial in $Z[x]$. If ($n, a s$) $=1$, then there exist infinitely many primes p such that the Galois group of $f(x)$ over \boldsymbol{Q} is isomorphic to S_{n}.

Proof. Since $f(x)=x^{n}+a x^{s}+p$ and $(n, a s)=1$, the discriminant is $D(f)=(-1)^{n(n-1) / 2} \cdot p^{s-1} \cdot D_{0}(f)$, where $D_{0}(f)=n^{n} p^{n-s}+(-1)^{n-1} s^{s}(n-s)^{n-s} a^{n}$. For a moment let us denote $D_{0}(f)$ by $D_{0}(p)$. Let p be any prime number such that $1+|a|<p,(p, a(n-s) s)=1$ and $\left|D_{0}(p)\right|>1$. By Funakura's lemma (see [3, Lemma 9]), $f(x)$ is irreducible over \boldsymbol{Q}. Since $(n, a s)=1$, we have $(n p, a(n-s) s)=1$. Since $\left|D_{0}(p)\right|>1$, there exists a prime number q such that $q \mid D_{0}(p)$. If $q \| D_{0}(p)$, then all the conditions in Theorem 1 are satisfied. Now assume that $q^{2} \mid D_{0}(p)$. Since $q \mid D_{0}(p)$ and $(n p, a(n-s) s)=1$, we have $(q, a(n-s) s n p)=1$ and $(p, a(n-s) s q)=1$. We replace p by $p_{1}=p+k a(n-s) s q$, where k is a positive integer. Since $(p, a(n-s) s q)=1$, by Dirichlet's theorem on prime numbers in arithmetic progressions, the Dirichlet density of the primes p_{1} satisfying $p_{1} \equiv p(\bmod a(n-s) s q)$ is equal to $1 / \varphi(a(n-s) s q)$. Hence there exist infinitely many primes p_{1} such that $p_{1}=p+k a(n-s) s q$ and $(k, q)=1$. Since $D_{0}\left(p_{1}\right)=n^{n} p_{1}^{n-s}+(-1)^{n-1} s^{s}(n-s)^{n-s} a^{n}$ and $q^{2} \mid D_{0}(p)$, we have $D_{0}\left(p_{1}\right) \equiv$ $n^{n} p^{n-s-1} k(n-s)^{2} s a q(\bmod q)$. Hence we have $q \| D_{0}\left(p_{1}\right)$, since $(q, a(n-$ $s) \operatorname{snp})=1$. So all the conditions in Theorem 1 are satisfied. This completes the proof.

Theorem 3. Let $f(x)$ be a monic polynomial of degree n in $\boldsymbol{Z}[x]$. Let $p_{i}(i=1,2)$ be prime numbers. Further, let $f(x) \equiv x^{r_{i}} g_{i}(x)\left(\bmod p_{i}\right)$ $(i=1,2)$, where $g_{i}(x)(i=1,2)$ are polynomials in $Z[x]$ and $r_{i}(i=1,2)$ are positive integers. Then the Galois group G of $f(x)$ over \boldsymbol{Q} is either isomorphic to the alternating group A_{n} or to the symmetric group S_{n}, if the following conditions are satisfied:
(1) $f(x)$ is irreducible over \boldsymbol{Q}.
(2) The constant term of $f(x)$ is divisible by p_{i} and is not divisible by $p_{i}^{2}(i=1,2)$.
(3) $g_{i}(x)\left(\bmod p_{i}\right)$ are separable polynomials such that $g_{i}(0) \not \equiv 0$ $\left(\bmod p_{i}\right)(i=1,2)$.
(4) $p_{1} \nmid r_{1}$ and r_{2} is a prime number.
(5) $\quad r_{2}+3 \leqq n<2 r_{1}$.

Proof. By Proposition 1 and by the conditions (2), (3) and (4), it follows that the Galois group G contains a cycle of order $r_{i}(i=1,2)$. So we can show in the same way as in the proof of Theorem 1 that a subgroup of G generated by all cycles of order r_{2} is transitive, from the conditions (1) and $n<2 r_{1}$. Since $n \geqq r_{2}+3, G$ is either isomorphic to A_{n} or to S_{n} by Lemma 9. This completes the proof.

In case r_{1} is a prime number, we do not require the condition $p_{1} \nmid r_{1}$. In case $r_{2}=2$ and 3 , we do not require the condition $n \geqq r_{2}+3$ by Lemma 7. Further in case $r_{2}=2$, the Galois group G is isomorphic to S_{n} by Lemma 7.

COROLLARY 1. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial in $Z[x]$. Let p, q and r be mutually distinct prime numbers. Then the Galois group G of $f(x)$ over \boldsymbol{Q} is isomorphic to S_{n}, if the following conditions are satisfied:
(1) $p \mid a_{i}(0 \leqq i \leqq n-2), p^{2} \nmid a_{0}$ and $p \nmid(n-1) a_{n-1}$.
(2) $q \mid a_{i}(0 \leqq i \leqq n-1, i \neq 2), q^{2} \nmid a_{0}$ and $q \nmid(n-2) a_{2}$.
(3) $\quad r \mid a_{i}(0 \leqq i \leqq n-1)$ and $r^{2} \nmid a_{0}$.

Proof. By the condition (3), $f(x)$ is an Eisenstein polynomial with respect to the prime r. Hence $f(x)$ is irreducible over \boldsymbol{Q}. By the conditions (1) and (2), we have $f(x) \equiv x^{n-1}\left(x+\alpha_{n-1}\right)(\bmod p)$ and $f(x) \equiv$ $x^{2}\left(x^{n-2}+a_{2}\right)(\bmod q)$. So it is easy to see that all the conditions in Theorem 3 are satisfied.

Putting $r_{1}=r_{2}$ (a prime number) in Theorem 3, we have:
Corollary 2. Let $f(x)$ be a monic polynomial of degree n in $Z[x]$. Let p be a prime number. Further, let $f(x) \equiv x^{r} g(x)(\bmod p)$, where $g(x)$
is a polynomial in $Z[x]$ and r is a positive integer. Then the Galois group G of $f(x)$ over \boldsymbol{Q} is either isomorphic to A_{n} or to S_{n}, if the following conditions are satisfied:
(1) $f(x)$ is irreducible over \boldsymbol{Q}.
(2) The constant term of $f(x)$ is divisible by p but not by p^{2}.
(3) $g(0) \not \equiv 0(\bmod p)$.
(4) r is a prime number.
(5) $r+3 \leqq n<2 r$, that is, $n / 2<r \leqq n-3$.

In this corollary, from the conditions (4) and (5), we do not require the condition that $g(x)(\bmod p)$ is a separable polynomial. Further in cases $r=2$ and 3 , we do not require the condition $n \geqq r+3$.

Example 1. Put $f(x)=x^{8}+2^{3} \cdot 5 x^{5}+2 \cdot 3 \cdot 5^{4}$. Since $f(x)$ is an Eisenstein polynomial with respect to the prime 2, $f(x)$ is irreducible over \boldsymbol{Q}. Since $f(x) \equiv x^{5}\left(x^{3}+1\right)(\bmod 3)$, we see that all the conditions in Corollary 2 are satisfied. Since the discriminant is $D(f)=2^{28} \cdot 3^{8} \cdot 5^{28}$, the Galois group of $f(x)$ over \boldsymbol{Q} is isomorphic to A_{s}.

Example 2. Put $f(x)=x^{9}-3^{2} x^{5}+2 \cdot 3 \cdot 5$. Since $f(x)$ is an Eisenstein polynomial with respect to the prime $3, f(x)$ is irreducible over \boldsymbol{Q}. Since $f(x) \equiv x^{5}\left(x^{4}+1\right)(\bmod 5)$, we see that all the conditions in Corollary 2 are satisfied. Since the discriminant is $D(f)=2^{8} \cdot 3^{22} \cdot 5^{8}$, the Galois group of $f(x)$ over \boldsymbol{Q} is isomorphic to A_{8}.

Using Corollary 2, we can construct infinitely many polynomials with the Galois groups A_{4} and A_{5}.

COROLLARY 3. Let $f(x)=x^{4}+4 x^{3}+b$ be a polynomial in $Z[x]$. Then there exist infinitely many integers b such that the Galois group of $f(x)$ over \boldsymbol{Q} is isomorphic to A_{4}.

Proof. Let $b=k^{2}+27$ for any positive integer k such that $k \equiv \pm 2$ $(\bmod 6)$. The discriminant is $D(f)=2^{8} b^{2}(b-27)=2^{8} b^{2} k^{2}$. Let p be a prime number such that $p \mid b$. Since $k \equiv \pm 2(\bmod 6)$, we have $p \geqq 5$ and $p \nmid k$. So we have $|c| \geqq 5$ and $(c, 6 k)=1$ for any integer c such that $c \mid b$. Now we show that $f(x)$ is irreducible over Q. Since $b=k^{2}+27$ and $k \equiv \pm 2(\bmod 6)$, we have $f(x) \equiv(x-1)\left(x^{3}-x^{2}-x-1\right)(\bmod 3)$. If $f(x)$ is reducible over \boldsymbol{Q}, then $f(x)$ has a factor of degree 1. But obviously $f(x)$ has no factor of degree 1 , since $|c| \geqq 5$ for any integer c such that $c \mid b$. So $f(x)$ is irreducible over \boldsymbol{Q}. Since $p \mid b$, we have $p \geqq 5$ and $f(x) \equiv$ $x^{3}(x+4)(\bmod p)$. If $p \| b$, then we see that all the conditions in Corollary 2 are satisfied. If $p^{2} \mid b$, then we replace b by $b_{1}=k_{1}^{2}+27$, where $k_{1}=$ $k+6 p$. Hence we have $b_{1} \equiv 2^{2} \cdot 3 k p\left(\bmod p^{2}\right)$ and $k_{1} \equiv \pm 2(\bmod 6)$. Since
$(p, 6 k)=1$, we have $p \| b_{1}$. Therefore we see that all the conditions in Corollary 2 are satisfied.

COROLLARY 4. Let $f(x)=x^{5}+3 \cdot 5^{2} c^{2} x^{3}+2 \cdot 3^{4} \cdot 5^{4} b c^{4}$ be a polynomial in $\boldsymbol{Z}[x]$. Then there exist infinitely many integers b and c such that the Galois group of $f(x)$ over \boldsymbol{Q} is isomorphic to A_{5}.

Proof. Since $f(x)=x^{5}+3 \cdot 5^{2} c^{2} x^{3}+2 \cdot 3^{4} \cdot 5^{4} b c^{4}$, the discriminant is $D(f)=2^{4} \cdot 3^{18} \cdot 5^{18} b^{2} c^{18}\left(5^{3} b^{2}+c^{2}\right)$. Let z be a rational integer such that $(z, 5)=1$. Let w be a square-free rational integer such that $(w, 2 \cdot 3 \cdot 5 z)=1$. Further, let $b=2 z w$ and $c=z^{2}-5^{3} w^{2}$. Then we have $5^{3} b^{2}+c^{2}=$ $\left(z^{2}+5^{3} w^{2}\right)^{2}$, since $c^{2}=\left(z^{2}+5^{3} w^{2}\right)^{2}-5^{3}(2 z w)^{2}$. Hence we see that $D(f)=$ $2^{4} \cdot 3^{16} \cdot 5^{18} b^{2} c^{18}\left(z^{2}+5^{3} w^{2}\right)^{2}$, which means that the Galois group G of $f(x)$ over \boldsymbol{Q} is isomorphic to a subgroup of A_{5}. Now put $y=(2 \cdot 3 \cdot 5 \cdot b c) / x$ and $g(y)=2^{4} \cdot 3 \cdot 5 b^{4} c f(x) / x^{5}$. Since $(b c, 5)=1, g(y)$ is irreducible over \boldsymbol{Q} by Eisenstein's criterion with respect to the prime 5. So $f(x)$ is irreducible over \boldsymbol{Q}. Hence G is transitive as a permutation group on the roots of $f(x)$. Moreover, the degree of $f(x)$ is the prime 5. Therefore G is primitive by Lemma 10. Besides, it is clear that $(w, c)=1$. Hence we see that all the conditions in Corollary 2 are satisfied, since $b=2 z w$, $(w, 2 \cdot 3 \cdot 5 z)=1$ and w is a square-free integer.

Further, we construct infinitely many polynomials with the Galois group A_{7} as follows.

Proposition 2. Let $f(x)=x^{7}-5 \cdot 7^{2} c^{2} x^{5}+2 \cdot 5^{6} \cdot 7^{6} \cdot b c^{6}$ be a polynomial in $Z[x]$. Then there exist infinitely many integers b and c such that the Galois group of $f(x)$ over \boldsymbol{Q} is isomorphic to A_{7}.

Proof. Since $f(x)=x^{7}-5 \cdot 7^{2} c^{2} x^{5}+2 \cdot 5^{6} \cdot 7^{6} \cdot b c^{6}$, the discriminant is $D(f)=2^{8} \cdot 5^{38} \cdot 7^{38} \cdot b^{4} c^{38}\left(c^{2}-7^{5} b^{2}\right)$. Let z be a rational integer such that $(z, 7)=1$. Let w be a square-free rational integer such that $(w, 2 \cdot 5 \cdot 7 z)=1$. Further, let $b=2 z w$ and $c=z^{2}+7^{5} w^{2}$. Then we have $c^{2}-7^{5} b^{2}=$ $\left(z^{2}-7^{5} w^{2}\right)^{2}$, since $c^{2}=\left(z^{2}-7^{5} w^{2}\right)^{2}+7^{5}(2 z w)^{2}$. Hence we see that $D(f)=$ $2^{6} \cdot 5^{38} \cdot 7^{38} \cdot b^{4} c^{38}\left(z^{2}-7^{5} w^{2}\right)^{2}$, which means that the Galois group G of $f(x)$ over \boldsymbol{Q} is isomorphic to a subgroup of A_{7}. Now put $y=(2 \cdot 5 \cdot 7 b c) / x$ and $g(y)=2^{6} \cdot 5 \cdot 7 b^{6} c \cdot f(x) / x^{7}$. Then $g(y)$ is irreducible over \boldsymbol{Q} by Eisenstein's criterion with respect to the prime 7. So $f(x)$ is irreducible over \boldsymbol{Q}. Hence G is transitive as a permutation group on the roots of $f(x)$. Moreover, the degree of $f(x)$ is the prime 7. Therefore G is primitive by Lemma 10. Besides, it is clear that $(w, c)=1$. So we see that all the conditions in Proposition 1 are satisfied, since $b=2 z w,(w, 2 \cdot 5 \cdot 7 z)=1$ and w is a square-free integer. Hence G contains a cycle of order 5.

So G is triply transitive (see Wielandt [6, Theorem 13.8]). Then G is either isomorphic to A_{7} or to S_{7} (see Burnside [1, p. 216]). Therefore G is isomorphic to A_{7}.

Now we list some of the pairs (b, c) satisfying the conditions in Proposition 2.
$(6,151264)$, $(12,151267)$, $(24,151279)$, $(30,151288)$, (48, 151327), $(60,151363)$, $(66,151384)$, $(78,151432),(96,151519),(102,151552)$, (114, 151624), (120, 151663), (132, 151747), (138, 151792), (150, 151888), (156,151939), (174,152104), (186,152224$)$, (192, 152287), (204, 152419), (222, 152632), (228, 152707), (240, 152863), (246, 152944), (258, 153112), (264,153199), $(276,153379)$, $(282,153472),(300,153763),(312,153967)$, (318, 154072), (330, 154288).

References

[1] W. Burnside, Theory of Groups of Finite Order, Cambridge Univ. Press, 1911.
[2] D. Hilbert, Ueber die irreduzibilität ganzen rationalen Funktionen mit ganzzahligen Koeffizienten, J. Reine Angew. Math. 110 (1892), 104-129.
[3] H. Osada, The Galois groups of the polynomials $x^{n}+a x^{l}+b$, J. Number Theory 25 (1987), 230-238.
[4] I. Schur, Gesammelte Abhandlungen, Bd III, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
[5] H. Wada, A Table of Ideal Class Numbers of Real Quadratic Fields (in Japanese), Lecture Note in Math. 10 (1981), Sophia Univ., Tokyo.
[6] H. Wielandt, Finite Permutation Groups, Academic Press, 1964.
Department of Mathematics
Rikkyo University
Ikebukuro, Tokyo 171
Japan

