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1. Introduction. Leray, in his famous paper [6] of 1934, proved the
existence of weak solutions of the Navier-Stokes equations in the spatial
domain 2 = R®. Hopf, in his famous paper [4] of 1951, proved the
existence of weak solutions in arbitrary open subsets 2 of R*, n = 2.
Leray, however, proved for his solutions two important properties that
Hopf did not, namely the strong energy inequality (i.e., that the energy
inequality (4) below should hold for almost all s, > 0) and the epochs of
regularity property (Definition 8, below). Ladyzhenskaya, in her book
[6], reformulated Hopf’s theorem so as to include the strong energy
inequality (slightly modified). She proved it for bounded domains, and
claimed that the proof carries over without change to unbounded domains.
This claim was evidently based on an oversight; one which has been
shared since by several other authors. In recent years, as it has become
realized that an oversight was made, there have been many efforts to
prove the strong energy inequality in unbounded domains other than the
whole space R® considered by Leray. But to date, these efforts have
failed.

The epochs of regularity property was proved in the case of bounded
three dimensional domains by Shinbrot and Kaniel, who included it in
their 1966 paper [11]. Their proof follows the same line of argument as
Leray’s. It consists in pointing out that, for almost every time ¢t = 0, a
weak solution has enough regularity to serve as the initial value for a
smooth solution, and that the two solutions can be identified over the
time interval during which the smooth solution remains smooth. That
the weak and smooth solutions are the same on this interval follows from
a uniqueness theorem of Leray, which has been generalized by others,
notably by Serrin in [10]. Its application in proving the epochs of
regularity property requires that the weak solution satisfy the strong
energy inequality. Thus, in [6] and [11], the epochs of regularity property
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is obtained as a consequence of the strong energy inequality. In my
paper [2], on the existence, regularity and decay of solutions, I constructed
smooth solutions in unbounded domains which, among other things, are
suitable for use as the smooth solutions in the argument of Leray and
of Shinbrot and Kaniel. As an application of the main results of [2], I
claimed in Theorem 8 of that paper, that the epochs of regularity
property holds for weak solutions in unbounded three-dimensional domains.
I claimed this believing that the strong energy inequality had been
established and was well known for arbitrary domains, unaware of the
error in [5]. That this is not true has been very kindly brought to
my attention by Professor K. Masuda. It is particularly unfortunate
that I did not realize this when writing [2], because the special manner
in which solutions were constructed there makes possible a direct proof
of the epochs of regularity property, in either bounded or unbounded
domains, without appealing to the strong energy inequality. Our purpose
here is to present this alternative argument, proving for the first time
the existence of weak solutions possessing the epochs of regularity
property in unbounded domains other than the whole space R?, considered
by Leray.

Leray proved for his solutions that the Dirichlet norm tends to infinity
at the right end point of each epoch of regularity (except the last which
is a semi-infinite interval). Using this, he obtained a bound for the sum
of the square roots of the lengths of the epochs (excluding the last).
We have been unable to show for our solutions that the Dirichlet norm
must necessarily tend to infinity at singularities; it will be explained how
there might be other types of singularities. However, by -carefully
examining our construction, we do prove a result like Leray’s on the
lengths of the epochs. Also, what is closely related, we obtain a bound
for the one-half dimensional Hausdorff measure of the set of singular
points in time.

Hopf’s original construction of solutions by Galerkin approximation
applies in a single step to any domain, bounded or unbounded. In
Ladyzhenskaya’s modification of the argument, solutions in unbounded
domains are obtained from a sequence of solutions defined in an expanding
sequence of bounded subdomains. We adopted the latter procedure in
[2], in order to use the eigenfunctions of the Stokes operator as basis
functions. This permitted further estimates for the Galerkin approxima-
tions, ultimately yielding the local existence of a smooth classical solution.
Here, we use the same basic construction, but with two innovations. The
first is a new estimate for the Galerkin approximations, given as (30)
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below. The other is a new condition in the selection of a subsequence
of the Galerkin approximations, and subsequently of the weak solutions
defined in bounded subdomains, so as to preserve (30) in the final result,
i.e., for a globally existing weak solution. The experienced reader will
probably understand these main points by simply reading Theorems 3
and 4. However, to make the proof solid, we need to lay out, in just
the right form, the construction and selection procedure of Hopf/
Ladyzhenskaya. This is done in Theorems 1 and 2. The proofs of these
theorems are given somewhat briefly, though hopefully clarifying several
points which were not addressed in [4] and [5].

In the papers just mentioned, the solution % is obtained as the limit
of Galerkin approximations. But a choice is not made between introducing
it as a limit in L?® of space-time, or as a limit in L* of space, at every
time. It is simply regarded as the limit in both senses simultaneously,
without any mention of justification. This identification of the two limits,
early in the proof, greatly facilitates matters, particularly in proving the
solution’s weak continuity in L*Q), as a function of time, and in proving
the strong energy inequality for bounded domains. These properties then
follow directly from corresponding properties of the Galerkin approxima-
tions. Here, in the appendix to this paper, we provide a lemma which
justifies the identification of the two limits. Although this lemma was
originally proven in my thesis [3], it has not appeared in my previous
papers because they have all dealt with stronger solutions possessing a
time derivative in L® of space-time. In that context, I have regarded it
as preferable to take limits only in L? of space-time, and to introduce
the values of % on time-cuts as traces. In the context of weak solutions,
some authors have treated the issue carefully by taking limits only in
space-time, and then late in the proof justified a redefinition of the
solution on a set of t-measure zero, so as to make it weakly L*-continuous
in time; see [8] and [10]. The justifications given at that point are
essentially based on having established the existence of a weak distribu-
tional time derivative, something not needed for our argument. It seems
much easier to follow the line of proof given in [5], coupled with the
justification provided here, in the appendix.

2. Definitions. Let QCR", n = 2, be open.
Let D(2) ={geCr(2): V-¢ = 0},
J(2) = Completion of D(Q2) in L*Q),
J(2) = Completion of D(2) in WiQ).
JH(Q) = {p € Wi(@): V4 = 0},
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P: L*(Q2) — J(2) be defined by orthogonal projection in L*Q),
A = PA be the Stokes operator.
Let a €J(2), and let fe L0, T; L*Q)), for every T > 0.

We distinguish between two types of weak solutions of the Navier-
Stokes problem

U+ uVu=—-Vp+Au+f and V.u=0, in 2x(0, =),
Ujg=o = Q Ug =0, u(@)eJ,(R2) for t>0.

The first definition below is Leray’s original definition, adopted also by
Ladyzhenskaya, making the strong energy inequality one of the basic
properties of a weak solution. When a Leray solution exists in a three-
dimensional domain with smooth boundary, it possesses the epochs of
regularity property. But its existence is not yet known in unbounded
three-dimensional domains other than the whole space R®. Dropping the
strong energy inequality from the other conditions, we have what is
essentially Hopf’s definition. The existence of a Hopf solution is known
in any open set 2CR", n = 2. We shall modify Hopf’s construction so
as to obtain the epochs of regularity property in any three-dimensional

domain whose boundary, if nonempty, is uniformly twice continuously
differentiable.

(1)

DEFINITION 1. We call w a Leray solution of (1) if and only if it

(2) is defined (pointwise) and measurable on 2 X [0, «); is also measurable
in 2 and belongs to J(Q) for every te&[0, «); has LQ)-norm |u(-, t)
uniformly bounded over every finite time interval ¢<[0, T]; has gener-
alized first order spatial derivatives Vu e L*(2x (0, T')) for every T > 0;
belongs to J,(2) for almost all ¢ > 0; satisfies

(3) So [(u, ¢) — (Vu, V) — (u-Vu, ¢) + (f, $)ldt = (u(s), 4(s)) — (a, $(0)) ,

for all smooth solenoidal functions ¢(x, t) with compact supports in £2x
[0, ), and for all s = 0; and satisfies

(4) Sl + | vulae < Liui + | ¢ w
for almost all values of s, = 0 including s, = 0, and for all values of
s> 8.

DEFINITION 2. We call u a Hopf solution of (1) if it satisfies the
conditions (2), (3), and (4), except that the energy inequality (4) is re-
quired to hold only for s, = 0.
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DEFINITION 3. We say that a weak solution # of (1) possesses the
epochs of regularity property if and only if there exists an open subset
RcC|[0, =), such that the measure of [0, <) — R is zero, and such that
for every compact interval IC R there holds

(5) sup [l + | (ullvto + )t < oo .

REMARK 1. The condition that wu(t)eJ,(R), for a.a. t >0, is in
general necessary for the well posing of problem (1) in unbounded
domains. Indeed, without it, and even if it is replaced by the weaker
condition that wu(t) e JF(2) for a.a. ¢ > 0, there exist domains for which
problem (1) possesses fully classical nontrivial solutions corresponding to
the data a =0 and f=0. This was shown and the matter investigated
in [1].

REMARK 2. Since u(t) is bounded in J(2) over any finite interval of
time, it follows from (38) that u(t) is weakly continuous in L*Q) for all
t = 0. Therefore, (4) ensures that w(t) is strongly right continuous in
L*(2) for almost all ¢t = 0, including ¢ = 0. In particular, ||u(t) — a|| — 0
as t — 07,

3. The preliminary construction. In this section we give Ladyzhen-
skaya’s version of Hopf’s theorem. Where we are sketchy with the
details, most can be found in [5]. The principal thing which may be
new here is our suggestion for clarifying the limits to be taken in in-
troducing the solution wu.

THEOREM 1. If Q2 is a bounded open subset of R", n = 2, then there
exists a Leray solution of the Nawvier-Stokes problem (1).

ProOF. There exists a system of functions {a'(x)} belonging to
J ()N WR)NC(R), which is orthonormal in J(2), whose finite linear
combinations can approximate any function from D(2) arbitrarily well in
the norm supg|:| + ||V-||2e)- Let {a'(x)} be such a system. Let

ux, t) = ,ﬁ.ckn(t)a"(x) , n=12 -+,

satisfy, for I =1, ---, », the conditions
(u? +u*vur — Au" — f,a) =0, fora.a. t=0,
u™(0) —a,a’) =0.

From (6) one obtains (1/2)(d/dt)||u"|* + ||Vu"|]* = (f, w"), and so

(6)
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(1) M@l + | vwriiat = Sl + | wde
for all 0 < s, < s < . Since (d/dt)|u"]| < ||f|l, one has

(8) lw)| < lall + [ Iflde,  for al sz 0,
and

(9) %MWW+YWWWR§Q’ forall T=0.

It follows that the coefficients {c,.(t)} are all uniformly bounded on
any finite interval 0<¢<T. For fixed k, the sequence {¢,,[)}, n=1,2, -,
is also equicontinuous over [0, T']. Indeed, one finds using (6) and (9),
that for any 0 < s < 8’ < T, there holds

A0 lon®) = eu®l = || (— @ ur, @) - (ur, Ve + (7, )t
<con/y—s+ | Ifla,

where Cj depends only on C, in (9), and C, depends only on a*.

Hence there exists a subsequence of {n}, again denoted by {n}, such
that for each k& and T, the sequence {c,.(t)} is uniformly convergent on
[0, T], as n — oo, to a continuous limit ¢,(f). To be as concrete as pos-
sible, we will introduce % as a limit of the series

umﬂ~§MMWL

There are several ways this can be done. One can define u as a limit
in L*Q), for each fixed ¢, or as a limit in L*2 %[0, T)), for every T = 0.
Convergence is assured in either sense because the partial sums of the
series all satisfy the estimate (8), and because the system {a*} is orthogonal
in L¥Q). In fact, we need % to be the limit in both senses. For each
fixed ¢ = 0, let (-, t) be the limit of the series in L*(2). More precisely,
since an element of L*(Q) is an equivalence class of measurable functions,
let #4(-, t) be a particular measurable function representing the limit. Of
course, #i(x, t) need not be measurable in 2x][0, ). Let %(x,t) be a
function, measurable in 2 x[0, ), which is representative of the limit
of the series in L*Q2 %[0, T)), for every T. Of course, one can not expect
#(z, t) to be the limit of the series in L*(R2), for all values of ¢. How-
ever, in the appendix, we show that for almost all ¢ = 0,

11 a(x, t) = iz, t) , for almost all zeQ.
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Therefore, setting

u(z, t) , if ¢ is such that (11) holds ,

, 1) = . .
u(@, o) (e, t) , if ¢ is such that (11) does not hold ,

we obtain a function (defined pointwise) which is measurable in £, for
every t, as well as in 2X%][0, ), and to which the series converges, both
in L¥Q) for every ¢, and in L*Q2x[0, T)), for every T.

In view of (9), and of the convergence c,,(t) — ¢, (¢t), for all k, the
subsequence of Galerkin approximations {u"} converges to # weakly in
L*Q), for every t, as well as in L*Qx[0, T)), for every T. We wish
to show that the convergence is strong in L*Q2 %[0, T)).

To that end, note first that the uniformity of the convergence c,,(t) —
¢,(t), on [0, T], for each fixed k, implies that the weak convergence of
u"(+, t) to u(-, t) in L*R), is uniform in ¢. That is, for every ¢e L*Q),
and every ¢, T > 0, there exists an integer N such that

(12) I(u"(t) — u(t), ¢)| < e, for all te[0,T], and n = N.

Then recall Friedrich’s lemma: For any bounded domain 2, and any

¢ > 0, there exist functions {w,, ---, wy} such that
N o
(13) | u]? gkg(u, W) + e||Vul?, for all ue WiQ).

Thus, for any two Galerkin approximations %" and #™, one has
T N T T

1y [ —wmpae < 3] @ — um ora + ef (V@ - wmie
Using (9) and (12), this implies, for the chosen subsequence, that u" — u
strongly in L*®2 %[0, T)), for every T > 0.

In view of (9), u has derivatives Vu € L*(2x (0, T)), and Vu" — Vu
weakly in L*(2x (0, T)), for every T > 0.

Let us regard L*0, T; J,(2)) as the completion, in the obvious norm,
of all smooth solenoidal functions with compact supports in £2x[0, T].
Since {u"} is bounded in L*(0, T; J,(2)), there exists a further subsequence
whose arithmetic means (u' + --- + w")/n converge strongly in L*0, T}
J(2)), to some element # of L*0, T;J,(2)). However, these arithmetic
means also converge to « in L*0, T; L)), permitting the identification
# = % almost everywhere. Thus wueL*0, T; J(2)). TUsing mollifiers
with respect to time, we conclude that wu(f) eJ,(2), for almost all

t>0.
To establish (3), note that, for » = m, and any s = 0, (6) implies
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@) [T o0 — (Vw8 — Va6 + (7 67N

= (u"(s), $"(8)) — (@, $™0)) ,

where ¢™ is an arbitrary function of the form g¢™(z, t) = >, d.(t)a*(x),
with continuously differentiable coefficients d, on [0, «). Since u" con-
verges to u in every time-cut, as well as in space-time, one can justify
letting #n — o in (15). This implies (3), because any smooth solenoidal
function ¢(x, t), with compact support in 2x[0, s], can be approximated
arbitrarily well by functions of the form g™ in the norm

s NZRR
Sup 18]+ sup [ + | |vgliat

For this, see Masuda [7, p. 630].
Finally, one can show that the strong energy inequality (4) follows
from (7). Indeed, we observe that

lim S( £, umydt = S( £, wdt

n—00

by (8) and the Lebesgue convergence theorem. Hence (7) easily implies
18) @l + | Ivulrdt < T lim inf fur)l + | wt
81 n—00 8y

for all 0 £ s, <s< . For s, =0, one has
(17 luts)l| = lim inf[ju(s,)] ,

because u"(0) — a strongly in L*Q2). Another argument is needed for
s, > 0. The strong convergence of u™ to u in L*(2 X (0, T)) implies that
|lun(s)|| converges to ||u(s)|| in L'(0, T), and hence in measure over the
interval (0, T). It follows that there exists a subsequence of the func-
tions {||u"(s)||}, which converges to ||u(s)|| for almost all ¢€(0, T). Hence,
(17) holds for almost all s, > 0. This completes the proof of Theorem 1.

THEOREM 2. For any open 2CR", n = 2, there exists a Hopf solu-
tion of the Navier-Stokes problem (1).

ProoF. Let 2 = Uy, 2,, where 2,CcQ2,C---, and each 2, is open
and bounded. Let a, € D(2,) satisfy ||a,|| < ||a||, and |la, —a||—0 as = —0.
Let %" be a weak solution, obtained by the construction of Theorem 1,
of the Navier-Stokes problem in 2,x[0, =), with initial velocity a,, and
with external force taken to be the restriction of f to 2,%][0, «).

The solutions %" inherit the estimates (8) and (9) from the original
Galerkin approximations, i.e.,
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(18 l@@)l < lall + {I£1d¢, foral szo,
and
19) ?uTI;[Iﬁ"II? + STIIVﬁ"[lzdt <C,, forall T=0.

Let {a'(x)} be a system of functions belonging to D(2), orthonormal
in J(2), whose finite linear combinations can approximate any function
from D(Q) arbitrarily well in the norm supe|-| + ||-[lwi. Such systems
exist.

We extend the domain of definition of each #" to all 2x[0, «), by
setting it equal to zero outside 2,. Clearly 4" € J(?), for every t. Let

@, £) = 38,(004@)

be the Fourier series of #" with respect to the {a*}. The coefficients
{¢,.(®)} are all uniformly bounded on any finite interval [0, T'], in view
of (18). For fixed k, the sequence {¢,,(t)} is equicontinuous in n, at least
for all n large enough that the support of a* lies in £,. This is proved
using (3), in which we can set w = %" and ¢ = a¢*. Then exactly as in
(10), although now only for n large enough that supp(a*)C2,, one obtains

(20) ) = 2@ S CoVT =5 + (Tl flae

forall 0 <s<s £T, and every T > 0.

Therefore, as before, we can select a subsequence of {n}, again
denoted by {n}, such that for each k¥ and T, the sequence {¢,,(t)} is uni-
formly convergent on [0, T'], as n — o, to a continuous limit ¢,(¢). As
before, the partial sums of the series

(21) u(w, 1) ~ 3. 5.(t)a¥(a)

converge weakly in L¥Q) for every ¢t = 0, as well as in L*(Q2 %[0, T]) for
every T > 0. And again, by the lemma in the appendix, there is a
function u defined pointwise in 2 X [0, ), which is the limit of the series
in both senses, for every ¢t = 0, and every T > 0.

In view of (19), and of the convergence ¢,,(t) — ¢,(t), for all %k, the
subsequence of solutions {#"} converges to u weakly in L*Q), for every
t, as well as weakly in L*(Q2 [0, T]), for every T. We have not found
a way to show that the convergence is strong in L*(Q2 x[0, T]), because
2 is unbounded, and this, of course, is why we fail to obtain the in-
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equality (4), for values of s, > 0. But to prove that u satisfies (3), it
suffices to show that @ converges to u strongly in LXQ’'x[0, T]), for
every bounded 2'cQ.

The analogue of (12) is proved exactly as before. Thus, for every
¢ € L*(Q), and every ¢, T > 0, there exists an integer N such that

(22)  |(@"(@) —u(), ¢)l<e, forall tel[0,T], and n=N.

Again we have a version of Friedrich’s lemma: For any bounded
subset 2’ of 2, and any ¢ > 0, there exist functions {w,, - - -, wy} defined
in 2, such that

N o
(23) luller = 3w, @)% + ellulliye »  for all ue Wi().

Hence, for any two of our solutions, %" and %™, we have
T N T T

@ (e -alar s 3 @ - an o+ e[ o - @t
Using (19) and (22), this implies, for the chosen subsequence, that #&" — u
strongly in L*Q’'x[0, T]), for every bounded 2'c®, and every T > 0.

In view of (19), w has derivatives Vu e L}Q2x[0, T]), and V" — Vu
weakly in L*(Q2x][0, T]), for every T > 0. One shows as before that
u(-, t) e J,(2), for almost every t > 0.

To establish (3), let s and ¢ be a given. Then for all n sufficiently
large that supp(¢) Cc2,x[0, s], we have

(25) @, 6) = (V&r, Vg) — @ V&, ¢) + (£, Pldt
= @), 66) — @(O), 90)

since each #" is a solution. Thus, one obtains (8) by taking the limit as
m— oo,

The proof of the energy inequality (4), for s, = 0, is proved exactly
as in Theorem 1. But the argument given in Theorem 1 for s, > 0 fails,
because we have not shown that #* — u strongly in L*(Qx[0, T']). This
completes the proof of Theorem 2.

4. The main result. Below, we refer to the boundary 02 of 2 as
uniformly C? if and only if 2 = U, 2,, where 2,C2,C---, and 02, € C*
for every n, with the C*regularity of 02, bounded independently of .

THEOREM 3. Let QCR® be open, with uniformly C* boundary o9.
Let fe LX0, T; L)), for every T > 0. Then there exists a Hopf solution
of problem (1), possessing the epochs of regularity property.
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PrROOF. We construct the solution # exactly as in Theorem 2, except
that we are more specific about two things. First, in writing the union
2= U2, 2,, we assume that the subdomains 2, are of class C?, with the
Ctregularity of 02, bounded independently of n. Second, in the con-
struction of the solution %", in 2,x][0, «), we use as basis functions the
eigenfunctions of the Stokes operator A, J,(2,)N W2, — J(R,). This
will allow us to obtain a further a priori estimate for the Galerkin ap-
proximations, the solutions {#"},a nd ultimately u.

It was proven in [2, p. 646] that any function »eJ,(2,)N WiR,)

satisfies the estimate
(26) | D*lo, < clll&lla, + [Vollo,]

with a constant ¢ which depends only on the C*regularity of 42,, and
not the size of 2,. Here D% represents all the second order spatial
derivatives of . Therefore, using also the Sobolev inequalities ||v|, <
¢|Voll, valid for ve WiR"), and gl < Vgl [lg]"* + lIgl), valid for
¢ € Wi(R) with a constant that depends only on the C*-regularity of 09,
we have

(@7) -V, Bo)l = [oll 190l 13,00
< el Vol 1D 1A,0]] + ¢[[ Vo] |1A,0]]
< o[ Vol |1B,0] + o[ Vol [1A,0]
=

1Bl + S Vol + Lo vl

with constants independent of the size of 2,.
Without loss of generality, it will be enough to establish the epochs
of regularity property on the time interval [0, 1]. According to (9), we
1

know there is a constant D, depending only on |la|| and S Ilflldt, such that
0

(28) |Ivalae < D,

for any of the Galerkin approximations % used in constructing any of
the solutions #" in the subdomains 2,. Henceforth, 4% will denote any
such Galerkin approximation. Since we are now using eigenfunctions of
the Stokes operator as basis functions, an appropriate linear combination
of the differential equations (6) yields

_;_%nvanz + |1 &l = (@-va, B,3) — (f, K1) .

Therefore, using (27), we have
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(29) %nvunzgcluvauwcznvanwnfnz, for ¢t=0,

with constants ¢, and ¢, independent of #; in particular, independent of
the size of 2,.

We claim the following. For every ke N, there exists a correspond-
ing N,e N, such that for every Galerkin approximation #, there exists
a subset R,(#) of the intervals [0, N;'], [N;:Y, 2N;'], - -+, [(N, — 1)N;Y, 1],
such that (identifying R,(#) with the union of its intervals)

(i) meas([0, 1] — R, (®)) = 1/k,

30) (i) ||VE@|* <4kD, for teR,(@).

As a first step in proving this, consider a fixed value of %k, and let
é,(t; t,) be the solution of the initial value problem
¢l'c = cl¢12c + cz¢i + ”f”2 ’
¢Ic(to; to) = 3kD ’
continued both backwards and forwards in time, form an arbitrary initial
time ¢, €[0, 1]. Due to the form of the differential equation, and the in-
tegrability of || f(¢)||%, it is possible to choose N,, independently of ¢,<][0, 1],
so that
¢Ic é 4kD on [tor to + Nl—c-l] ’
o, = 2kD on [t, — Ni', ¢t,] .
Clearly, any solution 4 of the differential inequality

@31

(32) ¥ S e’ + ey’ + |11,

satisfies

(33) ¥ <4kD on [t,t, + N;'[, if () <3kD,
and

(34) Y =2kD on [t,— Ng't], if () = 3kD.

For a later purpose, we also require that N, > 2k.

Having chosen N, > 2k so that (81) holds, we now consider an
arbitrary Galerkin approximation #, and seek to find R,(#%) so that (30)
holds. Of course, (29) implies that + = ||[V#|]® is a solution of (32).
Therefore (34) implies that

-1

l
(35) S(lk)N_llIVulPdthchN,:‘, if |VRIND)| = 3kD .
—1)Ny,

Let v be the number of time points from the set {N;?, 2Nz, - - -, (N, —1)N;'}
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at which ||V&|* > 3kD. In view of (28) and (35), we must have
v2kDN;* < D, i.e., vy £ N,/2k. We choose R,(#) to consist of those sub-
intervals [IN3?, (I + 1)N;'] of [0, 1], such that ||V#(IN;Y)|* < 8kD. Clearly,
the number of subintervals not included in R, (%) is at most v + 1. Thus

(36) meas([0, 1} — R, (%)) = (v + DNy* < 1/2k + Ni* < 1/k .

This establishes (30, i). Clearly, (30, ii) follows from (33).

The numbers N, are now determined, and henceforth regarded as
fixed. We claim next that for every k e N, and every solution %" (defined
in £,), there exists a subcollection R,(%") of the intervals [0, N;'],
[N 2N3Y, - -, [(V, — 1)N3Y, 1], such that

(i) meas([0, 1] — R,(@") = 1/k ,

S (i) ||va @®)|* < 4kD, for teR,(@").

To see this, we fix a value of k, and of the particular solution %" under
consideration. The solution %" is the limit of a subsequence of Galerkin
approximations, chosen in Theorem 1. Any estimate, which is satisfied
by an infinite subsequence of this subsequence, is inherited by %#". This
is because any such subsequence must converge to some weak solution,
which can only be #". The Galerkin approximations which we used to
construct %" each satisfy (30), but with subcollections of intervals R, (%)
which may vary from one approximation to another. However, there
are only a finite number of ways to choose all but v + 1 of the N, sub-
intervals [IN;?, (I + 1)N;']. Therefore, there exists an infinite subsequence
of the Galerkin approximations which all satisfy (30) with a common
choice of R,(#). We take this common choice as R,(%"). Clearly, u"
inherits the estimate (37, ii), from the corresponding estimate (30, ii),
for this particular subsequence of the Galerkin approximations. We are
justified in claiming (30, ii) for every te R,(%@"), in virtue of the lemma
in the appendix.

Finally, we claim that for every k, there exists a subcollection R,(u)
of the same intervals [0, N3], - -+, [(N, — 1)N;%, 1], such that

(i) meas([0, 1] — Ry(w)) = 1/k ,

38 (i) [[Vu@®)|* £ 4kD, for teR,(u).

To see this, we fix k and consider the solutions #" used to construct u.
Arguing exactly as before, (87) implies (38).

This essentially completes the proof of Theorem 3. One may now
set R, equal to the interior of the union of the intervals R,(u), and R
equal to the union of the R,. We have focused only on obtaining an
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estimate for the Dirichlet norm ||Vu(t)]] on R, but when this is possible
the rest of the estimate (5) follows easily. In fact, in writing (29), we
could have retained a term ||A,%|]* on the left side, and thereby obtained

also an estimate for |\||A,#|*dt over R,(#). Then, (26) gives an estimate
for Sllﬁll%yg(g)dt over R (#). Finally, replacing a' by u} = %, in (6), leads
to an estimate for \||#,|’dt over R,(#); see [2]. These estimates are all
inherited by the final solution.

REMARK 3. One might think that the epochs of regularity property
obtained in Theorem 8 could be of use in proving the strong energy
inequality. If u is regular on some interval [t, t,], then we have the
energy equality

(39) Lt + {Ivular = Lol + s wt

obtained by multiplying the Navier-Stokes equations through by u,
integrating over 2 x[¢, t,], and using the inclusion u(t) € J,(2) to eliminate
the pressure term. Suppose now, for simplicity, that there is a singu-
larity at just one instant of time ¢t,. Let 0 < ¢, < t, <t,. Then, adding
the energy equality over [t, t] for ¢ € (¢, t.), to the energy equality over
[t, ¢,] for te(t,, t,), one obtains

Sl + 7 IVulPdt = L(im o) — lim Juco))

t—>t* tAt*

+ Tl + ' wit

Thus, to prove the energy inequality, we need merely show that
lim [Ju(®)|]* < lim |lu(®)|? ,
+

t—t t—»t;

E 3
i.e., that there is no jump up in the energy at the instant ¢,. It seems
surprising that this eludes us when one considers that the major problem
with the Navier-Stokes equations is really to control the rate of energy
decay; i.e., a smooth solution can be continued so long as its rate of
energy decay remains bounded. Here, the difficulty is that some of the
energy present in the approximations might disappear for a while from
the solution, and then reappear. As far as we know, it could happen
that

(40) @] < lim int |77

for a whole interval of values of ¢£. Indeed, one can imagine that some
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portion of the energy in the various approximating solutions #” might
move out with time toward spatial infinity, and more rapidly so, as
n — oo. This could result in the disappearance of this energy from the
solution, since it is obtained only as a weak limit, with the result that
(40) would hold. If so, this energy in the approximations might come
back and reappear in the solution, causing a jump up in its energy.

REMARK 4. Suppose a Hopf solution #, such as we have constructed
in Theorem 3, is regular on some interval I, the right end point of
which, t,, is a singularity. It would be very useful to know that

IVu(t)|| — « as t —t5. To try to prove this, let us suppose not; suppose
that

(41) liminf||Vul| = a < .

t-»t;

Then we can choose a point ¢, < t,, arbitrarily close to t,, at which
IVu(t)| < 2a. The local existence theorem we proved in [2] guarantees
the existence of a smooth solution #, on some interval [¢, ,), satisfy-
ing the initial condition %(t,) = u(t,). This smooth solution can be con-
tinued beyond any point at which its Dirichlet norm ||V#| is finite.
Moreover, the growth of its Dirichlet norm is restricted by the differential
inequality

(42) %nvanz < o, |Val* + e, Vi .

Thus, if ¢, is chosen close enough to t,, then certainly £, >t,. It is
clear that wu(t) = @) for te[t, t,], but since u lacks the strong energy
inequality, we have no way to identify u with 4, for ¢ > t,. Of course,
if w is a Leray solution, or if I=[0, £,), one can apply the Leray/Serrin
uniqueness theorem at this point of the argument, identifying w with the
smooth solution % on an interval extending beyond t,; a contradiction.

One might hope that by examining the construction of the solution,
one could show that a singularity cannot occur without ||Vu(t)|| — o as
t—t;. It is true that each Galerkin approximation # satisfies (42), and
that for so long as we have estimates for |Vii(t)|, we can obtain
estimates for all derivatives of the solution; this was shown in [2]. How-
ever, it might be, for a sequence of Galerkin approximations {#"} converging
to u, that lim, . ||V#"(t,)|| = o, so that these estimates for the deriva-
tives are lost, while yet the weak limit Vu(t) could remain bounded near
t.. The nature of the singularity at ¢, might be a right discontinuity
of w in J,(2), with
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tete . tete
| IRulpdt = oo, [t =

for every ¢ > 0. If such a situation occurs, the restriction of # to the
left of ¢, could certainly be continued as a smooth solution beyond the
point ¢,, but the continuation would differ from u.

5. Leray’s corollary on the Hausdorff dimension of the singular set.
In this section, as in Theorem 3, we assume that 2 is a three-dimensional
domain whose boundary (if nonempty) is uniformly C®. In addition, for
simplicity, we assume that f = 0.

The construction of the regular set R, given in Theorem 3, does not
ensure that it is maximal. In what follows, let &2 denote the largest
open subset of (0, ) on which u(t) is regular. Also, let & denote the
set of all nonzero singular points, & = (0, ) — . One has %€
C*(2x #), by our estimates in [2].

Being an open subset of real numbers, &2 can be written as a union
of disjoint open intervals,

#=Ul,.

Among these intervals there is one, we will denote it by I,, which is
semi-infinite. This can be proved, very briefly, as follows. Let ¢ be the
solution of

(43) ¢’ = c1¢2 + 02¢3 ’

which satisﬁe(a)s #(0) = 1. Noting that SO #(t)dt = o, let ¥ > 0 be chosen
to satisfy S T¢(t)dt = (1/2)|la||*. Then it is impossible for any of the

Galerkin approximations % to satisfy ||V#(¢)|* > 1, for any t =~. For
if it did, a comparison based on (29) implies that

| Iva@lde > | oz — iz = Ll

which is impossible, by (7). It follows that (v, «)C.&#, which implies
the result. To introduce a notation for the end points of the intervals,
we set I, = (a,, «), and I, = (a;, B;), for 7 # 0.

For his solutions in the domain 2 = R? Leray proved that

@ ESVE - a s,

where £ is a certain suitable constant. To begin our considerations, we
shall first prove a similar inequality for a Leray solution defined in a
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more general domain.

As shown in the final remark of the last section, at each right end

point B;, there holds |[Vu(t)|| — «, as ¢t — B;. Also, on any interval
where u is smooth, we know that

(45) %uwnz < ¢ ||Vl + e[Vl .

Therefore, by a comparison argument, we conclude that
(46) IVu@®I* = ¢(t) , for te(a, B),

where ¢ is the solution of (43) which blows up at ¢t = g,.

Clearly, 8, — a, = a, = ¥, where 7 is determined as above. Let ¢,
be the solution of (43) which blows up at «,. Then, obviously, the
solution ¢ of (43) which blows up at B, must satisfy ¢(¢) = ¢,(0), for
te(a, B;). Hence, (43) implies that

47 ¢ <o, for te(a, B), with ¢ = ¢/g,0) + ¢, .

Comparing ¢ with the solution 4 of 4" = ¢°* which blows up at B,, we
conclude that

(48) o = (“vwat = 05 =a,,

where £ =172/¢c,, Combined with (46) and the energy inequality, this
implies the desired result (44). It should be mentioned that our constant
£ is not independent of |ja||, as it depends on ¢,(0), and hence on 7.
However, if the sum in (44) is taken over only those intervals with g,
less than some prescribed bound 6 (or with B, — a; < 8), then £ can be
chosen to depend on §, rather than on |lal.

Continuing our consideration of Leray solutions, observe that for any
singularity &£€.%” (not only for right end points), there must hold

(49) estséi_anVu(t)]] = oo,
If not, there would be points to the left of &, arbitrarily close to ¢,

where w is smooth, and from which % could be continued smoothly past
g. Further, if ¢ is the solution of (43) which blows up at &, there holds

(50) ess itnf IVu(s)|| = 4(t) , for all te]0,¢).
For again, if not, there would be points to the left of ¢ from which »

could be continued smoothly past ¢&. Therefore, arguing as in the proof
of (48), we conclude that
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(51) S:_snvm]?dt >3,

for any number § < ¢. For numbers 6 < min{l, &}, the constant £ can be
chosen independently of ||a||. Henceforth we assume that ¢ < 1.

Now, for any given §, 0 <§ < 1, we can cover the set .&¥ of all nonzero
singularities in the following way. Let & be the greatest singularity.
Then let &,,,, for 1 =1,2, .-, be the greatest singularity less than or
equal to & — 6. This process terminates, of course, after a finite number
of steps; let us say that there are N(§) singularities so chosen. It is
evident that the set .&” is contained in the union of the closed intervals
[&; — 0, &), for t=1,2, --., N(d). Moreover, from (51) it follows that

(52) NG — 1)V F = | Ivulrat = ~la® -

In other words, for any 6 > 0, we are able to cover .&¥ by some number
N(5) of closed intervals, each of length 4, in such a way that

. N (%) —_— 1
(53) klim 316 < —2—]]0L||2 .

-0 i=1
This means that (1/2)k7'||a||* bounds the one-half dimensional Hausdorff
measure of the singular set &, So far, we have assumed u is a Leray
solution.

THEOREM 4. The estimates (44) and (63) remain valid for the solu-
tion u obtained in Theorem 3.

Proor. We will show that (44) and (53) hold for the regular set R
obtained in Theorem 3, and the corresponding quasi-singular set S =
(0, ) — R. Once shown, this implies the result, since RC . and ¥ CS.

In fact, the set B found in Theorem 3 is not quite satisfactory. We
will return to part of the proof of Theorem 3, and make a somewhat
more special choice of the sets R,(u) and thus R. As we do this, we
shall select a special subsequence of the solutions {#"}, which we again
denote by {#"}, with respect to which the set R is maximal. By this,
we mean that for every pair of numbers M, ¢ > 0, and every finite set

{&, ++-, &} from S, there should exist at least one solution %", for which
there is a corresponding set of points {{, ---, {;}, such that for each 7 =
1, ---, k, there holds
(54) &—e<Li<é& and esssup|[Var@)|*> M.

=%

Each %" is a Leray solution. Thus, it is easily seen that (54) implies
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what is claimed in Theorem 4. For if (44) is violated, it must be violated
by some finite sum of the terms x1/3;—a,. But, by taking ¢ small enough,
these terms can be arbitrarily closely approximated by terms of the
form £1V'C, — @;,. Then, by taking M large enough, the terms xV'C, — a,

can be arbitrarily closely approximated by the integrals Sciap(t)dt, where
4 is the solution of ' = ¢,¥* which satisfies ({,) = M. Fiinally,

S:HVW]th = §ii¢(t)dt > S:qp(t)dt ,

where ¢ is the solution of (43) which satisfies ¢({;) = M. Taken together
with the energy inequality, this implies that the amount by which the
finite sum of terms k13, — a; under consideration can exceed (1/2)|a|? is
arbitrarily small, contrary to supposition. The proof that (54) implies
(563) is virtually the same. It remains to prove (54).

Unlike the proof of Theorem 3, we must now determine the sets
R,(u) recursively, selecting at each stage a further subsequence {#}}, of
the solutions {#"} which were chosen to converge to # in Theorem 2.
Then the diagonal sequence {%?}, after relabelling as {#"} again, will be
the sequence referred to in (54).

At the k™ stage, the set of intervals R,(u) which is chosen must be
maximal, in that it should contain the greatest possible number of the
intervals I, ; = [(4 — 1)N;*, jN;'] for which there exists an infinite sub-
sequence {u%} of {u;_,} satisfying

(55) esslsup[]Vﬁ,;;(t)H2 <4kD, for I,;cR,(u).
te ks i

Of course, there may be more than one possible choice of the maximal
set R,(u). Also, of course, the argument of Theorem 3 guarantees that
R,, defined to be the interior of the union of the intervals belonging to
R, (u), will be at least large enough that meas([0, 1] — R,) < 1/k. But
now, since R,(u) is maximal, there can be at most a finite number of
the {#72} which satisfy the estimate (55), for any I, ; other than those in
R,(u). We discard such elements from the sequence {@;}. Denoting the
set of those intervals I, ; not contained in R,(u) by S,(u), we then have

(56) essIsup]]Vﬁ}:(t)ll2 > 4kD, for I,;€S,(u),
te ks 3

for all members of the sequence {#;}. For the diagonal sequence {#"} =
{uz}, we have

(567) esslsupllw‘u‘(t)ll2 > 4kD, for I,;e€S,(u),
te ky§

for all n = k. Setting S, equal to the union of the intervals belonging
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to S,(u), we have S = N, S, — {0}, and it is obvious that (54) holds.

6. Appendix.

LEMMA. Suppse {u"} is a sequence of functions which are measurable
wm 2 for each fixed t€[0, T], as well as in 2x[0, T] with respect to the
product measure. Suppose there is an integrable function G(t) such that

lu (-, )| < G(®),  for all m, and for all te[0, T].

Suppose @ is a function defined in 2x[0, T, such that u"(-, t) — u(-, t)
weakly in L*RQ), for each fixed t €[0, T]. Suppose % is a function defined
i 2X%[0, T], such that u" — % weakly in L*(Q2x[0, T]). Then, for almost
all t€]0, T)] there holds

(1) u(x, t) = ula, t), for almost all xe€Q.
Consequently the function
W, 1) = {?Z(x, t)y, +f t is such that (1) holds,
@z, t), 4f t is such that (1) does nmot hold ,

1s measurable in 2 X[0, T], as well as in 2 for every fixed t, and u™ — u
weakly in L*Q2x[0, T]), as well as in L¥Q) for each fixed t.

ProoF. Let {g/x)} be a countable dense subset of L*2), and let
h(t) be an arbitrary function in C=[0, T']. For fixed g,(x) and h(t), the
integrals S u™(x, t)g,(x)h(t)dx are measurable functions of ¢, which, for
each ¢, converge to Sgﬁ(x, £)g.@h()dz, as n — 0. Thus Sgﬁ(x, g @h(t)dz
is a measurable function of ¢. Since in addition

||, @ Da@hbds| < Gllal ko),

we can apply the Lebesgue convergence theorem to obtain
lim H w(w, g @)hE)dzdt = ST(S az, t)g,(x)h(t)dx)dt .
0J2 0 ]

n—oo

On the other hand, since u* — # weakly in L*Qx[0, T]), we have

lim STSQu”(x, g, @)h(t)dzdt = S:La(x, 9@t dzdt .

k—o Jo

It follows that
S: h(t)(sg(ﬁ - ﬁ)gz(w)dx>dt =0.

The expression in brackets is measurable in ¢, hence zero for almost all
tel0, T], since h(t) € C*[0, T] is arbitrary.

Let N be the set of all £€[0, T] such that Sa(ﬁ — W) g(x)dx = 0, for
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some [. Being a countable union of null sets, N itself has measure zero.
For t€[0, T] — N, we have # = % as an element of L*Q), which implies

1.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
(8]

[9]
[10]

[11]

This completes the proof.
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