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1. Introduction. A nice question in arithmetic geometry is whether
for a given abelian variety A over a number field K, relatively small
extensions LDK exist such that rank(A(L)) is “much” bigger than
rank(A(K)). Already in 1938, Billing (see [5; p. 157] for a reference)
showed that the elliptic curve E/Q given by the equation %* = 2* — z has
rank at least m over infinitely many fields of the form Q(Wd,, -+, vV d,).

Also Néron studied these matters; his result is (see [5; p. 157]):

FAcT. Given a hyperelliptic curve & over a number field K and a
point Pe &(K), there exist infinitely many extensions of K of the form
L = KWd,, -++,Vd,) such that rank(_# (&)(L)) = m.

Néron uses a specialization argument to prove this. Our aim in this
paper is to show that it is quite easy to construct such extensions ex-
plicitly without using any deep theory.

2. Statement of the result and preliminaries. We give a proof of
the following:

THEOREM. Let fe Z[X] be a separable polynomial of odd degree =3.
Let & be a smooth model of the curve given by y* = f(x) and let _F be
the jacobian of &. For every m =1 one can explicitly construct infinitely
many extensions of Q of the form K =Q(d,, - -,V'd,) for which
rank(_# (K)) = rank(_# (Q)) + m.

The proof (which in fact works with Q replaced by any number field)
is based on the simple observation that we have a degree two morphism
& — P' defined over Q. If xz¢c PYQ), then the fiber over x in general
consists of two points defined over a quadratic extension of @. The class
of one such point minus the point lying over infinity yields a point in
Z (&). The only thing we have to check is that we can choose the points
in P¥(Q) in such a way that the points in _# (%) we obtain are linearly
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independent of everything we already have. This will follow from the
such following fact:

There are infinitely many ways to choose points z, ---, x,, € P(Q)
that

1. the fields Q1 f(x,)) are linearly disjoint, and

2. the points in _#(&°)(Q) we construct are non-torsion.

To prove this fact we will use two lemmas.

LEMMA 1. Let A/Q be an abelian variety; suppose PEZ, p + 2 is a
prime number such that A has good reduction at p. Then reduction
modulo p defines an injection

p: A(Q)torsion - A(Fp) ’
with A denoting the reduction of A modulo p.

ProOF. If not, then there exists a point Pc A(Q) of prime order
g which reduces to zero. Extending A — Spec(®) to an abelian scheme
S — Spec(Z,,,), and using the fact that multiplication by ¢: &% — & is
flat, it follows that the closure of the subgroup in A(Q) generated by P
defines a finite flat group scheme of rank ¢, say .4~ — Spec(Z,,). The
specialization lemma [3; p. 135] now implies that ord(P) = ord(o(P)), a
contradiction. O

LEMMA 2. Let FeZ[X] be a mnon-constant separable polynomial.
There exist infinitely many prime numbers p € Z for which there is an
neZ with p|F(n) and p*) F(n).

PROOF. Let A €Z be the discriminant of F. By assumption, A # 0.
Suppose p is a prime such that p/A and p*|F(n) for some n. Since
F(n + p) = pF’'(n) mod p* and F'(n) # 0 mod p by the choice of p, we have
p|F(n + p) and p*YF(n + p) . Thus the lemma will follow once we know
that the set

{p € Z prime; p|F(n) for some n}
is infinite. This follows from [4; Appendix I, Lemma 5.5], or [6; pp.
2.7-2.8], or from the following counting argument: Suppose this set is

finite, say equal to {p,, ---, p,}. Then for N> 0:
#F(n); IF(m)| = N} = 1 + 2%{m = pfr - -« pfk; m < N}
=1+ 2¢{m = pi* -+ pi; 3, a;log p, < log N} < const- (log N)*,

while on the other hand
#{F(n); |[F(n)] < N} = const- NV¢
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for d = deg(F) and positive constants independent of N. This yields
a contradiction. O

3. The proof. We use the notation introduced at the beginning of
Section 2. Fix once and for all a prime number peZ, p > 2 for which
fmodp is separable, i.e., & (and _# = _# (%)) have good reduction
modulo p. Define F(X):= p**'f(X + 1/p) € Z[X] (d = deg(f)). Applying
Lemma 2, we can find n, :++-n, €Z such that for 1 <7< m the fields
K,:= Q(1/F(n) satisfy K,+ Q, and for every i there is a prime which
ramifies in K, but in none of the others. From this we deduce K,N K, =
Q if 1+ J.

The curve % is equipped with a K -rational point P, namely the
point corresponding to (n; + 1/p, V' f(n; + 1/p)) on %* = f(x). Letting O
denote the point in & (Q) corresponding to the point at infinity on the
plane model, we define

D,:= [P, — O]ePic"(¥)K) = _F(K) .

Let K:= K,-...-K,, and take a basis Q,, --+, @, of _#(Q) modulo torsion.
We claim that D, ---, D,, @, -+, @, are independent points in _£(Q).
Suppose not. Then there is a relation

)"1D1+”' +)"mD'm+4u1Q1+"° +”7Qr=0°

This implies that \,D,= —n,D,—«+ - —,Q, is rational over K,N K;-...-K,, =
Q.

Let _#*' denote “the” quadratic twist of _# over K; this is just the
jacobian of the curve F(n,)y* = f(x). From the commutative diagram

twist

/(Kl) — /1(K1)
(2] 1[11]

twist
L (E)=S _FHK)

it now follows that both A\,D, and its image under twisting are @-rational
(since the nontrivial element of Gal(K,/Q) acts on D, by multiplication
by —1). Hence \,D, is a torsion point (of order <2), so in particular
if A, # 0 then D, is a torsion point. This contradicts Lemma 1 if we
reduce modulo p. Hence we deduce A, =0, and by the same reasoning
M =Ny =¢**= A = 0, 50 by the choice of the @,’s, our relation is trivial.
This proves the theorem. O

REMARK 1. Recently Chahal [1] published a proof of the theorem

above in the case deg(f) =38, i.e., & is an elliptic curve. His proof
depends on a highly nontrivial result of Ribet, and also I cannot find
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an argument in his paper explaining why the points that are constructed
are actually independent.

REMARK 2. In concrete examples elementary abelian 2-extensions of
Q as above which are needed to increase the rank by a given amount
may have a much smaller degree. For example, let E/Q be the elliptic
curve given by y*=a*— 2. Take z,€Z, x,>1, 2, = 6 mod 8 in such a
way that for d,:= x? — x,, the fields Q1/d;) are linearly disjoint. Then
rank(F(Q(V'd;))) = 1. The conjecture of Birch and Swinnerton-Dyer pre-
dicts that this rank is even (compare [2; p. 84]). So one expects

rank E(Q(‘/HT’ % l/a:n)) =2m.
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