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1. Introduction. Let K be a field with characteristic not equal to two. Let ¥ be an
I-dimensional vector space over K. An invertible linear transformation g on V'is called a
reflection if ker(1—g) is of codimension one. In this note we study a finite subgroup
G <= GL(V) generated by reflections, which is called a finite reflection group. Throughout
this paper assume that the order of G is not divisible by the characteristic of K. The aim of
this paper is to do an algebraic study of the Jacobian J and the discriminant 6 of a finite
reflection group, especially of their relations with the detivations. When K has
characteristic zero, one of the most powerful techniques to study finite reflection groups
is the Molien series. Since the Molien series is not effective for positive characteristics,
we have to find another way to get results. Sometimes we can simplify the proofs for
characteristic zero by avoiding the Molien series as we will see in this paper.

Let S=S(V*) be the symmetric algebra of the dual space V* of V. Then S can be
regarded as the ring of polynomial functions on V. Identify S with K[x,, - - -, x;] using a
basis {x, - - -, x;} for V*. Agree that deg(x)=1 for all xe V*— {0}. Since the reflection
group G acts on V* contragrediently, it also acts on S=S(V*). Let R=S¢ be the
invariant subring of S under the action of G. By Chevalley’s theorem [4], [3: Ch. 5, Sect.
5.5, Th. 4], we know that the invariant subring R is a polynomial graded K-algebra,
in other words, there exist algebraically independent homogeneous polynomials
Jfi» -, f1€S such that R=K][f, - -, f]l. The polynomials f, - - -, f; are called basic
invariants of G. Although the choice of basic invariants is not unique, their Jacobian J =
det[df;/0x;]; <i j<n is unique up to a constant multiple. Let 6 R be a generator of the
ideal JS N R (JS stands for the principal ideal of S generated by J). This d is called the
discriminant of G. The discriminant d e R is also unique up to a constant multiple.

In general, let 4 be an arbitrary K-algebra. Let Der(4) be the module of K-
derivations of 4:

Der(A)={0: A — A|0 is K-linear and 0(fg)=/0(g)+g6(f) for all f, ge S} .
For fe A, an A-submodule D (f) of Der(A4) is defined by

DA(f)z{BeDer(A)IB(f)efA}.

This is an algebraic version of logarithmic vector fields along {f=0} (cf. [8], [9]). The
finite reflection group G naturally acts on Der(S). Let Der(S)¢ be the R-module of G-
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invariant derivations of Der(S). Our main result is the following:
(1.1) THEOREM. Der(S)% = Dg(d) (as R-modules).

Let us briefly explain the geometric meaning of this. Temporarily suppose K=C. It
is easy to show that the left hand-side Der(S)¢ is characterized as the set of K-
derivations whose restrictions on R are derivations to R:

Der(S)® = {f e Der(S) | O(R) = R} .

So, in analytic geometry, it corresponds with the set of holomorphic vector fields on C*
obtained by lifting holomorphic vector fields on the orbit space C'/G. In this case,
Theorem (1.1) asserts that a “liftable” vector field on C'/G is characterized by being
tangent to the discriminant variety {d=0}. In this context (1.1) was proved in [1] for
Weyl groups G. When G is a compact Lie group, a smooth analogue of (1.1) was proved
by [12]. Also the analytic method of [1] was used in [21] to prove a theorem of the same
type for a general finite map. Our proof for a general field K given here is purely
algebraic.

Let g be a reflection in a finite reflection group G. The hyperplane H =ker(1 —g) is
called a reflecting hyperplane of G. The family «/(G) of all reflecting hyperplanes of G is
called a reflection arrangement. In [9], [17] the class of free arrangements was studied (for
the definition see Section 4), and turned out to have several nice properties. An
important corollary of (1.1) is the following:

(1.2) COROLLARY. The reflection arrangement o/ (G) is a free arrangement.

This was proved for Weyl groups G in [1], [2], [8], [9]. For unitary reflection groups,
it was proved in [18], [21] by means of analytical method. It is also possible, when K has
characteristic zero, to prove (1.2) by using the Molien series (communicated by L.
Solomon).

For a free arrangement &/, there is a multi-set (d,, - - -, d)) of nonnegative integers
called the exponents of .. (For the definition see Section 4.) The following is another
corollary of (1.1).

(1.3) COROLLARY. Let K be a finite field with q elements. Then the cardinality of
the set of regular vectors (=vectors not on any reflecting hyperplane) is equal to
nf.:l (q—d,), where d,, - - -, d, are the exponents of the reflection arrangement £ (G).

In Section 2 we study the concept of relative invariants associated with a character
G—-K”*:=K\ {0}. The Jacobian J is an example of relative invariants. Stanley [14]
studied relative invariants of finite reflection groups over C. Here we prove Stanley’s
theorem [14; Th. 3.1] over a general field K. In Section 3 we review Steinberg’s theorem
[16], [3; Ch. 5, Sect. 5.5, Prop. 6] concerning the expression for the Jacobian J. We shall
give a new proof. The key for our proof is a theorem by Saito-Scheja-Storch [10], [11],
which replaces Molien’s formula used in Steinberg’s original proof. In Section 4, we
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shall prove our main result (1.1) and its corollaries.
The author would like to thank Louis Solomon with whom he discovered Lemma
(4.5) jointly.

2. Relative invariants. Adding to the terminology in the Introduction we adopt
the following terminology for the remainder of this paper. For an element g of a finite
reflection group G<= GL(V'), denote the contragredient action of g on V* by g*. Then
g*e GL(V*). Note that det(g*)=det(g)"!. For a reflecting hyperplane H (one-
codimensional subspace) of V, let ayeV* denote a linear form defining H, i.e.,
ker(o;)= H. The set of all elements of G fixing H pointwise is denoted by G,. Since G is
a subgroup of G, the characteristic of K does not divide |Gy|. By Maschke’s theorem
there exists a one-dimensional Gy-stable subspace Ly with V=H® Ly. Since the
representation Gy—~GL(Ly)~K™ :=K \ {0} is faithful, G4 is a cyclic group. Let ry=
|Gy| and denote by sy a fixed generator of Gy. Let x: G—>K™ be a linear character.
Define integers ay by the condition that ay is the least nonnegative integer satisfying
x(sy) =(det(s}))*s (clearly ay depends only on Gy, not on sy) for each H e &/(G). Define
d eS by

dx = nHeM(G) (7
Finally define S¢ ={feS|g(f)=1x(9)f for all geG}. Elements of S¢ are called relative
invariants.
The purpose of this section is to prove (2.5) which was proved by Stanley [14; 3.1],
by means of the Molien series, when K=C. The following lemma can be proved by the
same technique as in [14; 2.2]:

(2.1) LEMMA. IffeS¢, then f is divisible by d,.
(22) LEMMA. Ifg(H)=H’ for H H € o/(G) and ge G, then ay=ay.

PROOF. Since g 'Gy.g=Gy, we have |Gy.|=|Gy|=o0(sy). This shows that gs,g

is a generator of Gy.. We can choose sy =gsyg~'. Then det(s})=det(s}) and x(sy) =
x(sg). Thus ay=ay.. O

(23)  LEMMA. Fix He A(G). Let 4(G)={H,, H,, - -, H,} with H=H,, Then
[1iso i is Gy-invariant.

PROOF. For simplicity write ;= &y, and a;=ay . First note that we can replace o,
if necessary, by its constant multiple. By considering the Gy-orbit decomposition of
{H,,---, H}, we may assume that {H,, ---, H,} itself is a Gy-orbit without loss of
generality. Then the Gy-orbit of a; € V* is a set of linear forms defining H,, - - -, H,.
Therefore we may assume that {o,, - - -, ,} is a Gy-orbit. So the product [ [, ,a; is Gy4-
invariant. Since a;=a; (1=i<j<n) by (2.2), one completes the proof. O
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(2.4) PROPOSITION. d,eS}.
PROOF. It is enough to show that
sy(d,)=det(s})*=d,
for each He o/(G). Fix He o/(G). Simply write a=ay, s=sy, and a =ay. Then by (2.3)
what we should prove is that
s(a®)=det(s*)%”,
which is clear, because s(a)=det(s*)o. O
By (2.1) and (2.4) we obtain
(2.5) THEOREM. S¢=5%,.
The following three examples of the d, are particularly important:
(2.6) We have d, =1, when y is the trivial character. In this case S§=S%=R.

(2.7) We have ay=ry—1 (ry=|Gyl|), when x(g)=det(g) =det(g*)"'. Thus d,=
ag—1

H
I—[Hemc)“ﬂ

(2.8) We have ay=1, when x(g9) =det(g*)=det(g) " ". Thus d,=[[4. 4 *n

3. Jacobian and discriminant. = We shall use the terminology in the previous
sections. In this section we review explicit formulas for the Jacobian J and the
discriminant 6. Although the formulas are well-known, we shall give a new (and simpler)
proof of Steinberg’s formula (see [16] when K=C, see [3; Ch. 5, Sect. 5.5, Prop. 6] for a
general K):

(3:1) STEINBERG’S FORMULA. JeK ™[]y 0 ' (KX =K\{0}).

PROOF. Consider the linear character x(g)=det(g) in (2.7). Then d,=
[Tacwe o ' Itis easy to see g(J) =det(g)] = x(J). So Je RY. By (2.5) one has Je Rd,.
Note that J is homogeneous in S and that R=K[f, - - -, f)]. If J¢ K *d,, then J belongs
to the ideal (f}, - - -, f;)S. This contradicts the following (3.2). O

(3.2) LEMMA (Saito [10; 3.4], Scheja-Storch [11; 1.2]). Suppose hy, -, he
Klx,, - -, x]]=S form a homogeneous regular sequence. Assume that e;=deg(h;) is in-
vertible in K (i=1, - - -, ). Then the Jacobian d(h,, - - -, h)/0(x,, - - -, x;) does not belong
to the ideal of S generated by hy, - - -, h,.

PROOF. Induction on / When /=1, it is obvious. Assume />1. Since
height(h,, - - -, h))=/—1and S'is Cohen-Macaulay, each associated prime of (,, - - -, &)
is of height /— 1. Thus (x,, - - -, x;), whose height is /, is not contained in any associated
prime p of (h,, - - -, h;). By a well-known theorem (e.g., [5; p. 81, Prop. 5]) in ideal theory,
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one has (x,, -, x)¢ U p, where the union is over the set of associated primes of
(hy, - - -, h)). Thus we may assume that x, does not belong to any associated prime of
(hy, - - -, b). Therefore (hy, - -+, h): (x;)=(hy, -+, b)) and h,, - - -, h;, x, form a regular
sequence. Recall Euler’s formula

o=y Xi0hifox) (=1, 1).
Let A=det[0h;/0x;]. By Cramer’s rule, one has
ehy Ohy[0x, -+ 0Oh,/0x
x, 4= : : :

eh, Ohox, -+ Ohy/ox,

Let 4,=0(h,, - - -, h)/0(x,, - - -, x;). In the remainder of the proof, the congruence =
always is modulo the ideal (h,, - - -, h;). Thus x,4d=e h,4,. Suppose that Ae(hy, - - -, h)).
Then A=g,h, for some g, €S. Thus

X g:hy=eh4,.
Since Ay, - - -, h, form a regular sequence, one has
X9, =e4,.

Thus 4,e(x;, hy, -+, hy). In general for peS, let p denote p(0,x,, -, x)eS=
K[x,, - -+, x). Then Ay, - - -, h, form a regular sequence in S because so do x,, A, - - -, A,
in S. Note that (0p/0x;)=(0p/0x;) (i>1). Thus

a(EZ’ T, I:l-l)/a(xb Tt xl)zjze(;{% Tt ]:l-l) .
This contradicts the induction assumption, because 4,, - - -, &, form a regular sequence in
K[x25 “',xl]' D

Define the discriminant de R to be a generator of the ideal JSNR. Then 6/J is a
relative invariant in (2.8): g(6/J)=det(g) '(6/J) for geG. Thus 6/Je ([ |4 )R
and ¢ is a non-zero multiple of [ [, «H. Thus we may let

J=Thewerd ' and 0=[Tycycru™

from now on.

4. Derivations. We keep the terminology in the preceding sections. A finite
reflection group G acts on Der(S) by

g1 =9gl0(g™ " ()]

(9e@G, OeDer(S), feS). Then g[0(f)]=[g(®)l(g(f)). Let Der(S)¢ be the set of G-
invariant derivations of S. Note that it is an R-module (not an S-module). Recall
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Dy(f)={0eDer(S)|0(/)efS}
for feS.
(4.1) PROPOSITION. Let y: G—K* be a linear character. Then Der(S)€ < Dy(d).
PROOF. For 6eDer(S)¢ and geG,

g9l0(d )1 =[9(0))(9(d,)) = 0(x(9)d,) = x(9)0(d,) .
Thus 0(d,)e S§ = Rd,. O
The following lemma is well-known:

(42) LEMMA. Let A=K|z,, -, z] be a polynomial graded K-algebra. Assume
that hy,---,hjeA are homogeneous and algebraically independent. Define B=
K[h,, - - -, h)). Denote the quotient field of A and B by F(A) and F(B), respectively. Suppose
that F(A)/F(B) is a separable extension. Let A be the Jacobian 0(hy, - - -, h)[0(zy, - - -, Z)).
Then any element 0 of Der(B) is uniquely extended to a derivation 6 ,: A— F(A) such that
40 ,€ Der(S).

PROOF. Since F(A4)/F(B) is a finite separable extension, 6 is uniquely extendable to
a derivation Op,,: F(A)—>F(A4). Let 04 =9F‘A)|A. Because 9(hj)=Zf.=l (Oh;/0z;)0 4(z;), one
has 40 4(z;)e A by Cramer’s rule (j=1, - -, /). O

For example, the derivation 0/df; e Der(R), which is characterized by (0/0f)(f;) =
0yj, is extel}gfible to a derivation (0/9f;)s : S— F(S). For simplicity, let /0f; denote (0/0f;)s
also. Let Der(R) be the R-module of derivations of R extendable to a derivation S—S:

Der(R) = {0 e Der(R)| 05(S)= S} .
(4.3) LEMMA. The map 0+ 0g gives an R-isomorphism
Der(R) = Der(S)° .

PROOF. The correspondence is clearly injective and R-linear. Let us show the

surjectivity. For neDer(S)® and fe R=S€, yn(f) is G-invariant. Thus n(R)=R and
o~/

n|re Der(R). Then (1|g)s="n. O

We prove Theorem (1.1) in the following form:
(4.4) THEOREM. Iﬁ?r(R):DR(é).

The inclusion l,)\e/r(R)EDR(é) is not difficult: If Heli;r(R), then O5e Der(S)¢. Let
x(g) =det(g*) for ge G. Then J=d, by (2.7). By (4.1), we have %e Dy(J). Write 6= Jp.
Then 6(6) =0s(pJ) =p0s(J)+ JOg(p) e JSNR=0R. This proves Der(R) < Dg(9).

In (4.5) and (4.6) we shall give an interesting alternative proof for this inclusion:
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(4.5) LEMMA. For 0eDer(R), we have

05(J)=J[Y -, (DO0C/)/3f)— Yi -, (@05(x)/0x)]
PROOF. Both sides are additive with respect to 6. If 6 is replaced by p0 for pe S,
the left hand side is multiplied by p. The right hand side will be
JIXiy (POCS)/Of) =X -y (D(POs(x))/0x)]
=PI[Li_, (@OCH)I0f) —Yi_, (005(x)/0x)]
+ Ik, OU)@PIOf) = i, Os(x:)(@p/Ox)]
Note that Zfz L 0(f)(0p/of)=0s( p)=2i=1 0s(x;)(0p/0x;). Thus we know that both sides
are S-linear with respect to 0. Therefore one may assume 0 =0/0x,. Put p,=0f;/0x,. By
the chain rule we have
Opif0x;= Y-, @piffNAJOx)) (i, j=1,-+,1).

By Cramer’s rule one has

of,/0x, - -~ ('ﬂpi/.axl 6f1(6x,
J(@pi/of) = : : :
ofy/0x, -+ Opi/Ox; -+ 0Ofy/Ox,

0fy/0xy -+ 0]0x,(0fi/0x,) - -+ 0f1/0x,

ofy/ox, -+ 0/0x,(0f;/0x)) - -+ 0fy/0x,
for i=1, - -+, . By summing these, one obtains
JZ:=1 0p;/of;=0J)0x, .
This proves the lemma when 6=0/0x;. O
(4.6) PROPOSITION. Der(S)< Dg(d).

PROOF. For fe ﬁ?r(S), one has 04(J)eJS by (4.5). Write 6=Jp, and 0(5)=
POs(J)+J0s(p)e JSNR=0R. O

REMARK. (4.6) remains valid in the situation S=K[x,, - - -, x, ]2 R=K[f;, - - -, fi]
for a homogeneous regular sequence f, - - -, f; (we need not assume that R is the
invariant subring under some group), because Lemma (4.5) is valid in this more general
situation. Note that we did not use the existence of a group G in (4.5) or (4.6).

PROOF OF (4.4). Let us prove the inclusion I%Jr(R)QDR(é). Fix He &/(G) and
recall Gy ={geG|g fixes H pointwise}. Let R, =S. Since Gy is a finite reflection
group, by Chevalley’s theorem, R, is a polynomial graded K-algebra with S2 R, 2R.
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Let R, =K[h,(x), - - -, l(x)], where x=(x,, - - -, x). Put J; =0(hy, - - -, I)[0(xy, -, X))
There exist polynomials F,(y), - - -, F(y)e K[y, - - -, y/] satisfying
ﬁ(x):E(hl(x)’7hl(x)) (l=1’al)
Let
Ju=[0(Fy, - -, F)/o(yy, - -, y)lhy (%), - -, l(x)) € R, .
By the chain rule for Jacobians, one has
J= a(fl’ te '7ﬁ)/a(x1’ T Xl)=JHJ1 .

We may assume that ay=x; and that x,, - - -, x,e R,. Simply write r=ry=|Gy|.
Then by Steinberg’s formula (3.1) one may assume that J, =x; 1. Let 6 € Dg(9). It is not
difficult to see that F(S)/F(R) is a Galois extension with Galois group G (e.g., [3; Ch. 5,
Sect. 5.2]). So F(R,)/F(R) is finite separable. By (4.2), 0 is extendable to O : R, —F(R,)
in such a way that Y : =J,0z €Der(R,). Let d, be a discriminant of Gy, and 0, =x1. Let
0,=0/0,. Then one has

01Y(0,)+ 0,Y(0,)=Y(6)e SR, = 6,0, R, .
Since (9,, 6,)=1, one has Y(d,)ed, R,. Thus we have
rx;—l‘pS(xl):!p(al)ealRl =xiR,.

Since r is invertible in K, one has yg(x,) e x; R,. Since Yg(x;) =¥(x;) e R, (i>1), we have
Ju0s=¥seDer(S). This is the case for all He .«/(G). Since the polynomials Jy;=J/a; !
for all He o/(G) have no common factors, we obtain 65e Der(S). This completes the
proof of (4.4). O

(4.7) COROLLARY. (1) Dg(d) is a free R-module.

(2) Let {0, -, 0, be a free basis for Dg(5). Then det[0,(f;)]e K™ 0.
(3) The 0-th Fitting ideal of the R-module Der(R)/Der(R) is SR.

PROOF. (1) There exists a G-stable vector subspace U such that R®, Ux=S
(e.g., [3; Ch. §, Sect. 5.2, Th. 2]). Thus

Dy(3)=Der(S)’ = (RO U® V)°=R@x(U® V)° .

(2) Follows from (1) and Saito’s criterion [9; 3.3].
(3) Since the exact sequence

0 — Der(R) - Der(R) — Der(R)/Der(R) - 0

is an R-free resolution of Der(R)/]S\e/r(R), the 0-th Fitting ideal is the determinant of the
matrix [0,(f)]e K™ 4. O
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(4.8) COROLLARY. Define Q(A(G)=]lpcuctn Then Ds(Q(#(G))=
Der(S)¢ ®z S.

PROOF. By the chain rule we have
0N =211 @]0x)0(x) (feS).
Thus, for a basis {0,, - - -, 0,} for Der(S)¢,
det[0,(f;)] =det[df;/0x ;] det[0(x;)] .

Define a linear character x by x(g)=det(g*). By (2.8) d,=Q(#(G)). By 4.1) 0,, - - -, 6,
belong to Dy(Q(4(G))). By Saito’s criterion [9; 3.3] 8,, - - -, 6, also form a basis for
Dy(Q(4(G))). This shows (4.8). (]

Before stating further corollaries to (4.4), we need more terminology. In general, we
say that «/ is an arrangement (of hyperplanes) if o7 is a finite collection of one-
codimensional subspaces of V. Let & be an arrangement. Define

0=0()=]]ycsueSs.

Then Q(«/) is determined up to a constant multiple. We call Q(«/) a defining equation
for /. An arrangement &/ of hyperplanes is called a free arrangement if Dg(Q(&/)) is a
free S-module.

The following is obvious from (3.7):

(1.2) COROLLARY. The reflection arrangement o/ (G) is free.

Let o/ be an arrangement. An element 6 e Dg(Q(«)) is said to be homogeneous of
degree d if deg 0(x)=d for all xe *\ {0}. When .« is a free arrangement, it is easy to
see that there exists a homogeneous basis {0,, - - -, 6,}. The exponents of < is defined to
be (deg8,, - - -, deg,). Let L(=/) be the collection of all intersections of elements of <.
We agree that (1, ,H=VelL(«). Introduce a partial order < on L(&) by
X=Y< X2Y. Then L(«) is a geometric lattice. Write L=L(s/). Let u: Lx L—Z be
the Mébius function [7], which is characterized by

1 if W=X,
Y WY, X)= [ _
wé?’“g X 0 otherwise ,
for W, Xe L with W< X. The characteristic polynomial yx is defined by

Wty =Y wV, X)rdmx,
XelL
It is an important combinatorial invariant for /. If &/ is free with exponents
(e, - -+, ), then the Factorization Theorem in [19], [20] asserts x(s/; t)_—_]—['l.:1 (t—e).
Thus by (1.2) we have:
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1 (4.9) COROLLARY. Letd,,---,d, be the exponents of o4(G). Then y(#(G); t) =
Hi=1 (1—dy).

This was proved in [6] when G is a finite unitary reflection group.

Finally we consider the case where the field K is a finite field. Let M(/)={ve V| vis
not on any hyperplane belonging to .«/}. By using the Mébius inversion (e.g., [7], [15;
3.7.2)) it is not difficult to show:

(4.10) PROPOSITION. For an arrangement o/ in V over a finite field K with g
elements, we have |M()| = x(; q).

By (4.9) and (4.10), we have:

(1.3) COROLLARY. Let K be a finite field with q elements. Then the cardinality of
the set of regular vectors (i.e., vectors not on any reflecting hyperplane) is equal to
H:=1 (q—d,), where d,, - - -, d, are the exponents of the reflection arrangement o/ (G).
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