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1. Introduction. Let Kbe a field with characteristic not equal to two. Let Kbe an
/-dimensional vector space over K. An invertible linear transformation g on V is called a
reflection if ker(l— g) is of codimension one. In this note we study a finite subgroup
G^GL(V) generated by reflections, which is called a. finite reflection group. Throughout
this paper assume that the order ofG is not divisible by the characteristic ofK. The aim of
this paper is to do an algebraic study of the Jacobian /and the discriminant δ of a finite
reflection group, especially of their relations with the derivations. When K has
characteristic zero, one of the most powerful techniques to study finite reflection groups
is the Molien series. Since the Molien series is not effective for positive characteristics,
we have to find another way to get results. Sometimes we can simplify the proofs for
characteristic zero by avoiding the Molien series as we will see in this paper.

Let S=S(V*) be the symmetric algebra of the dual space V* of V. Then S can be
regarded as the ring of polynomial functions on V. Identify S with K[xu , x{\ using a
basis {xu •••,.*/} for V*. Agree that deg(x)= 1 for all xe F* — {0}. Since the reflection
group G acts on F* contragrediently, it also acts on S=S(V*). Let R = SG be the
invariant subring of S under the action of G. By Chevalley's theorem [4], [3: Ch. 5, Sect.
5.5, Th. 4], we know that the invariant subring R is a polynomial graded JΓ-algebra,
in other words, there exist algebraically independent homogeneous polynomials
/i> ' ">//€•£ such that R=K[fl9 — ,fi\. The polynomials / j , -,ft are called basic
invariants of G. Although the choice of basic invariants is not unique, their Jacobian J=
detldfi/dXj^zi jzn is unique up to a constant multiple. Let δeR be a generator of the
ideal JS f) R (JS stands for the principal ideal of S generated by </). This δ is called the
discriminant of G. The discriminant δeR is also unique up to a constant multiple.

In general, let A be an arbitrary ΛΓ-algebra. Let Der(A) be the module of K-
derivations of A:

Όcτ(A) = {θ: A -• A | θ is tf-linear and θ(fg) =fθ(g) + gθ(f) for all f,geS}.

For feA, an v4-submodule DA(f) of Der(̂ 4) is defined by

DA(f) = {θeΌer(A)\θ(f)εfA}.

This is an algebraic version of logarithmic vector fields along {/= 0} (cf. [8], [9]). The
finite reflection group G naturally acts on Der(*S). Let Der(5)G be the i^-module of G-
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invariant derivations of Der^) . Our main result is the following:

(1.1) THEOREM . Der(S)G ^ DR(δ) (as R-modules).

Let us briefly explain the geometric meaning of this. Temporarily suppose K=C. It

is easy to show that the left hand-side Der(*S)G is characterized as the set of K-

derivations whose restrictions on R are derivations to R:

Der(5)G = {θe Der(S) | Θ(R) c R}.

So, in analytic geometry, it corresponds with the set of holomorphic vector fields on Cι

obtained by lifting holomorphic vector fields on the orbit space Cι/G. In this case,

Theorem (1.1) asserts that a "liftable" vector field on Cι/G is characterized by being

tangent to the discriminant variety {<5 = 0}. In this context (1.1) was proved in [1] for

Weyl groups G. When G is a compact Lie group, a smooth analogue of (1.1) was proved

by [12]. Also the analytic method of [1] was used in [21] to prove a theorem of the same

type for a general finite map. Our proof for a general field K given here is purely

algebraic.

Let g be a reflection in a finite reflection group G. The hyperplane //=ker(l — g) is

called a reflecting hyperplane of G. The family stf(G) of all reflecting hyperplanes of G is

called a reflection arrangement. In [9], [17] the class of free arrangements was studied (for

the definition see Section 4), and turned out to have several nice properties. An

important corollary of (1.1) is the following:

(1.2) COROLLARY. The reflection arrangement srf(G) is a free arrangement.

This was proved for Weyl groups G in [1], [2], [8], [9]. For unitary reflection groups,

it was proved in [18], [21] by means of analytical method. It is also possible, when Λfhas

characteristic zero, to prove (1.2) by using the Molien series (communicated by L.

Solomon).

For a free arrangement sέ\ there is a multi-set (rfl5 , dt) of nonnegative integers

called the exponents of si. (For the definition see Section 4.) The following is another

corollary of (1.1).

(1.3) COROLLARY. Let K be a finite field with q elements. Then the cardinality of

the set of regular vectors ( = vectors not on any reflecting hyperplane) is equal to

Y[\ = ί (g — di), where dί9 , dt are the exponents of the reflection arrangement

In Section 2 we study the concept of relative invariants associated with a character

G^KX :=K\ {0}. The Jacobian / is an example of relative invariants. Stanley [14]

studied relative invariants of finite reflection groups over C Here we prove Stanley's

theorem [14; Th. 3.1] over a general field K. In Section 3 we review Steinberg's theorem

[16], [3; Ch. 5, Sect. 5.5, Prop. 6] concerning the expression for the Jacobian J. We shall

give a new proof. The key for our proof is a theorem by Saito-Scheja-Storch [10], [11],

which replaces Molien's formula used in Steinberg's original proof. In Section 4, we
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shall prove our main result (1.1) and its corollaries.

The author would like to thank Louis Solomon with whom he discovered Lemma

(4.5) jointly.

2. Relative invariants. Adding to the terminology in the Introduction we adopt

the following terminology for the remainder of this paper. For an element g of a finite

reflection group G^GL(V), denote the contragredient action of g on K* by g*. Then

g*eGL(V*). Note that det(#*)=det(#)~1. For a reflecting hyperplane H (one-

codimensional subspace) of V, let α f f e P denote a linear form defining H, i.e.,

ker(α#) = H. The set of all elements of G fixing //pointwise is denoted by GH. Since GH is

a subgroup of G, the characteristic of K does not divide \GH\. By Maschke's theorem

there exists a one-dimensional GH-stable subspace LH with V—H@LH. Since the

representation GH^>GL(LH)^K* :=K\ {0} is faithful, GH is a cyclic group. Let rH =

\GH\ and denote by sH a fixed generator of GH. Let χ: G^KX be a linear character.

Define integers aH by the condition that aH is the least nonnegative integer satisfying

χ(sH) = (det(s£))α/ί (clearly aH depends only on GH, not on sH) for each He s/(G). Define

dχeS by

Finally define S° = {fεS\g(f) = χ{g)f for all #eG}. Elements of SG

χ are called

invariants.

The purpose of this section is to prove (2.5) which was proved by Stanley [14; 3.1],

by means of the Molien series, when K=C. The following lemma can be proved by the

same technique as in [14; 2.2]:

(2.1) LEMMA. Iffe S°, then f is divisible by dχ.

(2.2) LEMMA. Ifg(H) = H'for H, H'est(G) andgeG, then aH = aH,.

PROOF. Since g~ιGH,g = G H , we have |GH,\ = \GH\ = o(sH). This shows that gsHg~x

is a generator of Gw. We can choose sH=gsHg~ι. Then det(s%)=det(s%) and χ(sH) =

χ(sH.). Thus aH = aH, •

(2.3) LEMMA. FixHes/(G). Let^(G) = {H0, Hί9 , Hn} withH=H0. Then

is G^invariant.

PROOF. For simplicity write αf = ocH. and at = aH.. First note that we can replace αf,

if necessary, by its constant multiple. By considering the GH-orbit decomposition of

{Hί9 , Hn}, we may assume that {Hu , Hn} itself is a GH-orbit without loss of

generality. Then the GH-orbit of ocί e V* is a set of linear forms defining Hί9 , Hn.

Therefore we may assume that {α1? , α j is a GH-orbit. So the product f]ί>o αΐ ^s ^H-

invariant. Since at = aj (\^ί<j^n) by (2.2), one completes the proof. •
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(2.4) PROPOSITION . dχeSG.

P R O O F . It is enough to show that

for each Hestf(G). Fix He<stf(G). Simply write a = aH, s=sH, and α = αH. Then by (2.3)

what we should prove is that

which is clear, because s(oc) = det(s*)α. •

By (2.1) and (2.4) we obtain

(2.5) T H E O R E M . S* = SGdχ.

The following three examples of the dχ are particularly important:

(2.6) We have dχ= 1, when χ is the trivial character. In this case S^ = SG = R.

(2.7) We have aH = rH-\ (rH=\GH\), when χ(g) = det(g)=det(g*yι. Thus dχ =

(2.8) We have aH=l, when χ(g)=det(g*)=det(gy\ Thus dχ = Y\He^{G)ccH.

3. Jacobian and discriminant. We shall use the terminology in the previous

sections. In this section we review explicit formulas for the Jacobian J and the

discriminant δ. Although the formulas are well-known, we shall give a new (and simpler)

proof of Steinberg's formula (see [16] when K=C, see [3; Ch. 5, Sect. 5.5, Prop. 6] for a

general K):

(3:1) STEINBERG'S FORMULA. JeKxγ\He^{G)ocr^~\(Kx=K\{O}).

PROOF. Consider the linear character χ(g) = det(g) in (2.7). Then dχ =

Π t f e ^ G ) 0 ^ 1 - l t i s e a s y t o s e e 9(J)=fet(g)J=χ(J). So JeR°. By (2.5) one has JeRdχ.

Note that / i s homogeneous in Sand that R = K[f1, ,/i]. If JφKxdχ, then /belongs

to the ideal (fu ,/ t)S. This contradicts the following (3.2). •

(3.2) LEMMA (Saito [10; 3.4], Scheja-Storch [11; 1.2]). Suppose hu ••-,hιe

K[xt, , x^S form a homogeneous regular sequence. Assume that ei = deg(hi) is in-

vertible in K (/= 1, , /). Then the Jacobian d(hx, , hι)/d(x1, , xt) does not belong

to the ideal of S generated by hu , hx.

PROOF. Induction on /. When / = 1 , it is obvious. Assume / > 1 . Since

height(/z2, , //z) = /— 1 and Sis Cohen-Macaulay, each associated prime of(h2, , ht)

is of height /— 1. Thus (xu , xt), whose height is /, is not contained in any associated

prime p of (h2, , ht). By a well-known theorem (e.g., [5; p. 81, Prop. 5]) in ideal theory,
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one has (xl9 , Xj)φ (J p, where the union is over the set of associated primes of

(A2, * ' ' , Λj). Thus we may assume that xγ does not belong to any associated prime of

(h2, ''', ht). Therefore (h2, , ht): (x1) = (h2, * * , ht) and /z2, , /*/? Λ^ form a regular

sequence. Recall Euler's formula

Let J = det[3Af/{bf;]. By Cramer's rule, one has

eίhi dh1/dx2 * dhi/dxι

X1Δ=

e ^ dhι/dx2 ' -' dhι/dxι

Let A2 = d(h2, , hι)/d(x2, , x;). In the remainder of the proof, the congruence =

always is modulo the ideal (h2, , ht). Thus x^Δ =eίhιA2. Suppose that Δe(hu , Λz).

Then Δ =gίh1 for some gx eS. Thus

Since hί9 , hx form a regular sequence, one has

Thus Δ2e(x1, h2, - - -, h^. In general for /?e»S, let p denote p(0, x2, - - , xι)eS

K[x2, , X/]. Then A2, , Az form a regular sequence in S because so do x l 9 Λ2, ,

in *S. Note that (dp/dx^^idp/dXi) (/> 1). Thus

This contradicts the induction assumption, because A2, , hx form a regular sequence in

K[x29 -,xιl Π

Define the discriminant δ e R to be a generator of the ideal JS Π i?. Then δ/J is a

relative invariant in (2.8): g(δ/J)=dQt(g)~1(δ/J) for geG. Thus (5//G(Π

and (5 is a non-zero multiple of Y[He^iG)ocr^. Thus we may let

from now on.

4. Derivations. We keep the terminology in the preceding sections. A finite

reflection group G acts on Der(S) by

(geG, θeDer(S), feS). Then g[θ(f)] = [g(θ)](g(f)). Let Der(5)G be the set of G-

invariant derivations of S. Note that it is an /^-module (not an ^-module). Recall
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Ds(f) = {θeΌεr(S)\θ(f)efS}

for/eS.

(4.1) PROPOSITION. Let χ: G-+K x be a linear character. Then Der(S)G c Ds(dχ).

PROOF . For 0 e Der(S)G and geG,

Q[θ(dχ)] = [g(θ)](g(dχ)) = θ(χ(g)dχ) = χ(g)θ(dχ).

Thus θ(dχ)eSG = Rdχ. •

The following lemma is well-known:

(4.2) LEMMA. Let A = K[zu , z,] be a polynomial graded K-algebra. Assume

that hx, -,hιeΛ are homogeneous and algebraically independent. Define B =

K[hu , ht]. Denote the quotient fie Id of A and B by F(A) and F(B), respectively. Suppose

that F(A)/F(B) is a separable extension. Let A be the Jacobian d(hx, , hι)/d(zί, , zt).

Then any element θ ofDer(B) is uniquely extended to a derivation ΘA : A->F(A) such that

AΘAeΌeτ(S).

PROOF. Since F(A)/F(B) is a finite separable extension, θ is uniquely extendable to

a derivation ΘF{A): F(A)-+F(A). Let ΘA = ΘF{A)\A. Because 0(Λ, ) = Σ ! = i (dhj/dzdθA(zd, one

h a s AΘA(Zj)eA b y C r a m e r ' s r u l e 0 = 1, • • • , / ) . •

For example, the derivation δ/3/J e Der(i?), which is characterized by

δij, is extendable to a derivation (δ/df^s: S-^F(S). For simplicity, let 3/3/j denote

also. Let Der(^) be the /^-module of derivations of R extendable to a derivation S-+S:

Όer(R) = {θe Όeτ(R) \ ΘS(S) c 5 } .

(4.3) LEMMA. The map θ i—>θs gives an R-isomorphism

Όer(R) ** Der(5) G .

PROOF. The correspondence is clearly injective and ̂ -linear. Let us show the

surjectivity. For ηeΌer(S)G and feR = SG, η(f) is G-invariant. Thus η(R)^R and

η\ReΌer(R). Then (η\R)s = η. D

We prove Theorem (1.1) in the following form:

(4.4) THEOREM . Der(Λ) = DR(δ).

The inclusion ΌQY(R)CDR(δ) is not difficult: If θeΏer(R\ then θseΌer(S)G. Let

X(g)=det(g*) for geG. Then J=rfz by (2.7). By (4.1), we have θseDs(J). Write (5 = //?.

Then Θ(δ) = θs(pJ)=pθs(J) + Jθs(p)eJSnR = δR. This proves Der(Λ)cZ)κ(δ).

In (4.5) and (4.6) we shall give an interesting alternative proof for this inclusion:
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(4.5) LEMMA. For θeDer(Λ), we have

PROOF. Both sides are additive with respect to θ. If θ is replaced by pθ for peS,
the left hand side is multiplied by p. The right hand side will be

+J[Σ\=i

Note that Σ\ = i θ(fd(dP/dfi) = θs(P) = Σli = i θs(xdiβpldxx). Thus we know that both sides
are 5-linear with respect to θ. Therefore one may assume θ = d/dxί. Put pi = Sfi/dxί. By
the chain rule we have

dfιjdxι

By Cramer's rule one has

dfjδx,

8/i/Sxi

dfjdx, d/dx

for /= 1, , /. By summing these, one obtains

This proves the lemma when θ = d/dx1.

(4.6) PROPOSITION. Der(S) c DR(δ).

D

PROOF. For θeΌer(S), one has θs(J)eJS by (4.5). Write δ = Jp, and θ(δ) =
pθs(J) + Jθs(

REMARK. (4.6) remains valid in the situation S = K[xu ,xl\^R =
for a homogeneous regular sequence / l 5 ,/z (we need not assume that Λ is the
invariant subring under some group), because Lemma (4.5) is valid in this more general
situation. Note that we did not use the existence of a group G in (4.5) or (4.6).

PROOF OF (4.4). Let us prove the inclusion Όev(R)^DR(δ). Fix Hes/(G) and
recall GH = {geG\g fixes H pointwise}. Let Rι = S°H. Since GH is a finite reflection
group, by Che valley's theorem, R1 is a polynomial graded ΛΓ-algebra with S^R^^^
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Let Rx =K[hx(x), • , ht(x)l where x = (xu- , *,). Put J, = d(hu , A,)/δ(xl9 , *,).

There exist polynomials Fγ(y\ , F ^ e f l ^ , , yt] satisfying

Let

By the chain rule for Jacobians, one has

We may assume that ccH = x1 and that x2, , Xjei^. Simply write r = rH = |GH |.

Then by Steinberg's formula (3.1) one may assume that Jί=xr

ί~
1. LetθeDR(δ). It is not

difficult to see that F(S)/F(R) is a Galois extension with Galois group G (e.g., [3; Ch. 5,

Sect. 5.2]). So FiRJ/FίR) is finite separable. By (4.2), θ is extendable to θRl: Rί-^F(Rί)

in such a way that φ : =JHθRi e D e r ^ ) . Let ^ be a discriminant of GH, and <5X =x\. Let

62 = 6/6^ Then one has

Since (δ l 9 ^ 2 ) = 1> o n e n a s ^(^i)^^i^i Thus we have

Since r is invertible in JSΓ, one has Φs(χι)^^ι^ι- Since Φs(χi) = Φ(χi)^^i 0 > 1)> we have

JHθs = φseΌcr(S). This is the case for all Hesrf(G). Since the polynomials Λ/ = ̂ /αH *

for all Hesrf{G) have no common factors, we obtain θseΌer(S). This completes the

proof of (4.4). •

(4.7) COROLLARY. (1) DR(δ) is a free R-module.

(2) Let {θί9 • , 0,} be a free basis for DR(δ). Then det[θi(fj)]eKxδ.

(3) The O-th Fitting ideal of the R-module Der(/?)/Der(i?) is δR.

PROOF. (1) There exists a G-stable vector subspace U such that R<g)κU^S

(e.g., [3; Ch. 5, Sect. 5.2, Th. 2]). Thus

K(U® V)G .

(2) Follows from (1) and Saito's criterion [9; 3.3].

(3) Since the exact sequence

0 -• Όeτ(R) -> Όer(R) -• Der(i?)/Der(/?) -• 0

is an /?-free resolution of Der(i^)/Der(Λ), the O-th Fitting ideal is the determinant of the

matrix [θi(fj)]eKxδ. •
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(4.8) COROLLARY. Define Q{^{G)) = ]\He^G)0LH. Then Ds(Q(si(G))) =

Der(S)G®ΛS.

PROOF. By the chain rule we have

θ(f)=Vi=i(dfidχiWχi) (/e5>

Thus, for a basis {θί, , θt} for Der(S)G,

Define a linear character χ by χ(#) = de%*). By (2.8) dχ = Q(s/(G)). By (4.1) 0 l5 • , θι

belong to DS(Q(^(G))). By Saito's criterion [9; 3.3] θί9 , θt also form a basis for
Ds(Q(s/(G))). This shows (4.8). Π

Before stating further corollaries to (4.4), we need more terminology. In general, we
say that si is an arrangement (of hyperplanes) if si is a finite collection of one-
codimensional subspaces of V. Let si be an arrangement. Define

Then Q(si) is determined up to a constant multiple. We call Q(s/) a defining equation
for si. An arrangement si of hyperplanes is called a free arrangement if Ds{Q{si)) is a
free S-module.

The following is obvious from (3.7):

(1.2) COROLLARY. The reflection arrangement si{G) is free.

Let si be an arrangement. An element θ e Ds{Q{si)) is said to be homogeneous of
degree d if deg θ(x) = d for all xe F*\{0}. When si is a free arrangement, it is easy to
see that there exists a homogeneous basis {θί, , fy}. The exponents of ,s/ is defined to
be (deg©!, , degfy). Let L(j<) be the collection of all intersections of elements of si.
We agree that Γ\He0H=VeL(sΐ). Introduce a partial order ^ on L(,s/) by
XS YoX=> Y. Then L{si) is a geometric lattice. Write L = L(si). Let μ: Lx L->Zbe
the Mόbius function [7], which is characterized by

l if W=X,

0 otherwise,

for W, XeL with W^X. The characteristic polynomial χ is defined by

XeL

It is an important combinatorial invariant for si. If si is free with exponents
(έ?l5 -,*,), then the Factorization Theorem in [19], [20] asserts χ(st\ 0 = Oί = i (r~~^)
Thus by (1.2) we have:
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(4.9) COROLLARY. Let du , dx be the exponents of sf(G). Then χ(jrf(G); t) =

This was proved in [6] when G is a finite unitary reflection group.

Finally we consider the case where the field Kis a finite field. Let M(sf) = {veV\vis

not on any hyperplane belonging to s/}. By using the Mobius inversion (e.g., [7], [15;

3.7.2]) it is not difficult to show:

(4.10) PROPOSITION. For an arrangement stf in V over a finite field K with q

elements, we have \M(s/)\ = χ(s/; q).

By (4.9) and (4.10), we have:

(1.3) COROLLARY. Let K be a finite field with q elements. Then the cardinality of

the set of regular vectors {i.e., vectors not on any reflecting hyperplane) is equal to

Πί = i (<l — ̂ Λ where dl9 , dι are the exponents of the reflection arrangement s/(G).
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