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0. Introduction.

0.1. This paper is a continuation of [32] . Let (¥, H) be a positive definite
Hermitian space over an imaginary quadratic field K, and let . be a genus of O-lattices
in V with respect to the unitary group G :=U(V, H), where 0 is the ring of integers of
K. As we saw in [32], the class number k(%) of £ is expressed as a finite sum:

(0.1) WL)=3 Y h(gly 2,

JEF [q],

where in the first sum f runs through the set of characteristic polynomials of the torsion
elements of G; and the second sum is taken over the locally integral G-conjugacy classes
[9lp =[glc which belong to f, and the invariants h([gly; &) are given by
(0.2) hlg)g; £)= 3. MM ][] clg, U, V,),

ZV) p
with M(¥) the mass of an idélic arithmetic subgroup V of the centralizer G(g)a of g in

Gp. See [32] for a more precise definition. We note among others that the masses were
evaluated there.

In the present paper, we shall carry out the computations of the local factors
¢ (g, U,, V,), and derive from (0.1), (0.2) explicit formulas for the class numbers of
genera consisting of unimodular Hermitian lattices, of ranks twe and three.

0.2. To state our main results, let K=Q(,/—m) (m>0, square free) be an
imaginary quadratic field, and let @ be its ring of integers. Let ¥ be a vector space of
dimension n over K, which is equipped with a positive definite Hermitian form H:
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Vx V—>K. An 0O-lattice in V is said to be unimodular, if it coincides with its dual lattice.
We assume that (¥, H) contains a genus of unimodular lattices. Denote by ¢ the number
of distinct prime divisors of the discriminant d(K) of K. It is known that there exist
exactly 2'~! mutually nonisometric classes of such (¥, H), if n>1. They are param-
eterized by the local norm residues &:=(¢,=(d(V), K/Q),; p| d(K)) of the discriminant
d(V) of (V, H) at the places dividing d(K), which are subject to the condition:

0.3) [T e=1 (cf. [32, Proposition 6.4]).

pld(K)

Also, from a result of Jacobowitz [19], we know that the set of unimodular Q-lattices in
(V, H) is divided into at most two genera with respect to the unitary group G:=
U(¥, H). One, which always exists, is said to be normal and denoted by &,=Z (¢); and
the other, which occurs only if # is even and 2 | d(K), is subnormal or even, and denoted
by #,=%,(¢). On the other hand, with respect to the special unitary group GV :=
SU(V, H), ¥, and &, are divided into an infinite number of genera.

0.3. Suppose first that n (=dim V)=2. We shall prove:

THEOREM 0.1 (n=2). The class number k") of binary unimodular genus ¥ of
Hermitian O-lattices in (V, H), V=V(g), with respect to the special unitary group,
depends only on the G-genus &, or &, which contains ¥. Moreover, h'\") is given by

B = T\+T,+T5,
with
T,=(A/12)[] (p+(=1/p))
p
T,=B/4)[] (1+¢,)

T=(C/3) [T (1+ &~ 1/pX=3/p)),

where the products are all taken over the prime divisors p of d(K) such that p+#2, and the
constants A, B, C are given in the following table: (d=d(K))

& d=odd 4|d d=8 (mod 32) d= —8 (mod 32)
+1 A 1 3 6 6
Z o) +1 B 1 3 2 2
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& d=odd 4|d d=8 (mod 32) = —8 (mod 32)

e ;
2o B . | | :

< . :

0.4. Next we study the ternary case: n=3, where we assume that our Hermitian
space (V, H) is the standard one. Namely H(x, y) =Z?=1 x;y? (x, ye V:=K?3). Then the
(unique) genus £ =2, of unimodular lattices in (V, H) is represented by the standard
O-lattice @, and it is called the principal genus.

THEOREM 0.2 (n=3). The class number k™) of a genus ¥ with respect to the
special unitary group SU(V, H), which is contained in the principal genus &, is uniquely
determined by &, and it is given as follows:

V=1 (resp. 2) if K=0(/ = 1), Q(/=3) (resp. Q(\/ =2), Q(/—=T)), and otherwise,

hm:T1+ T2+ T3+ T41+ T42 ’
with
T, =B, /144
T, =(h(K)/48)[4|d(K)|—1-3x(2)]
Ty =(W(K)/B)[3+x(2)+ {1+ (2, K/Q),}{1+ (5, K/Q),}]
Ty, =(W(K)/12)[7 - x(3)]
Ty, =(h(K)/[12)[1+ x(3)].

Here y denotes the Dirichlet character attached to K, and B, , denotes the m-th
generalized Bernoulli number attached to y, h(K) is the class number of K, and (c, K/Q), is
the local norm residue symbol at p. '

0.5. Here we recall briefly the known results on class number formulas of definite
Hermitian forms. In [15]), Hayashida gave a formula for the class numbers of positive
unimodular Hermitian matrices of rank two, with coefficients in ¢, in connection with
his study of curves of genus two in the product of two elliptic curves having O as the ring
of complex multiplications. From [32, Theorem 2.14], we see that his result is the same
as our Theorem 0.1, in the case (¥, H) is the standard Hermitian space so that ¢=
(1, -+, 1),and £ =2, is the principal genus. As was shown in [15], the class number in
the binary case is reduced to that of certain orders in a quaternion algebra over Q,
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which are in general not maximal, but the calculation is much easier than that in higher
rank cases. Also we refer simply to an item [6] in Math. Reviews, where F. T. Chu
announced a result on class numbers of positive Hermitian unimodular matrices of
ranks two and three over some rings of imaginary quadratic fields of class number one,
which contains an error at K=0(,/—7).

0.6. This paper is organized as follows. In § 1, we give, without proofs, the lists of
characteristic polynomials of all torsion elements of our group G =U(V, H), in the cases
where the ranks are two and three. In §2, we shall give a proof of Theorem 0.1, for class
numbers of binary Hermitian forms. In §3 and §4, which are the most difficult and
laborious parts of this paper, we shall compute the contributions of each conjugacy
classes belonging to all possible characteristic polynomials f(X), in the case n=3. Here
the calculations are reduced to the classification of the conjugacy classes in the local unit
group U, of the given lattice L, over ¢/,, and the calculation of the masses of the
centralizers of each representatives of ‘locally integral’ conjugacy classes. In §5, we
resume the results obtained before, and state our first main result for »=3, in a slightly
more convenient way than Theorem 0.2. We also give a result on a relation between the
class numbers for U(V, H) and SU(V, H) in the ternary case, which is rather
remarkable compared with a general results which was given in [32]. In §6, we give
another application of our computation, which gives an explicit formula for the
dimension of automorphic forms on our special unitary groups (n=3).

NOTATION. As usual, @, R, C denote the fields of rational, real, and complex
numbers, respectively, and Z denotes the ring of rational integers. For an algebraic
object Bover Q or Z, we denote by B, the p-adic completion of B. Thus Q, (resp. Z,) is
as usual the field (resp. ring) of p-adic numbers (resp. integers). Also we denote by By the
idélization of B. If G is a group, and H is a subgroup of G, we denote the set of H-
conjugacy classes in G by G // H, and its element containing g by [g];. When H=G is a
Q-group, we put simply [gly : =[gls. [4],: =[g]Gp, where G =G, G, are the group of Q-
rational, Q@ -rational points of G, respectively. Also, we denote by G(g) the centralizer of
g in G. The cardinality of a finite set S is written as #(S). Throughout this paper, K
denotes an imaginary quadratic field, and p denotes the non-trivial automorphism of
K/Q. Force Q*,anda place v of Q, we denote by (¢, K/Q), the local norm residue symbol
of c,ie., (¢, K/Q),=1or —1 according as ¢ is a norm of an element of K, or not. Notice
that we have (¢/Q),=(c, m), (:=Hilbert symbol) if K =Q(\/E). Also we denote by
x(*)=(K/x)=(d(K)/*) the Dirichlet character attached to K, where d(K) is the
discriminant of K. And we denote by ¢ the number of distinct prime divisors of d(K).

The symbol (V, H) will denote a p-Hermitian space over K, i.e., V' is a vector space
over K which is equipped with a Hermitian form

H: VxV->K, (x,y)- H(x,y) (x,yeV),

which we always assume to be nondegenerate. We denote by U(V, H), SU(V, H) the
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unitary group, the special unitary group of (V, H), respectively, which are often
abbreviated as G, G", throughout this paper. Also we denote by G(f) the set of semi-
simple elements of G whose characteristic polynomials are f(x). We shall use some more
standard notation frequently.

1. Characteristic polynomials of torsion elements. Our first task is to make a list
of F, the set of all possible polynomials which can make in (0.1) a non-trivial
contribution.

LEMMA 1.1. Suppose n=2. Then F consists of the following polynomials:
(i) Generic case: d(K)+# —3, —4

[X:=X=-1)?,  fi(=X),
LX) =(X*+1),
L) =+ X+1), fi(=X),
So(X):=(X=1D)(X+1).
(ii)- Exceptional case. d(K)= —3
H(=0)X), fi(—o0)}X) (k=0,1,---,5), f£X),
[uX):i=(X=D)(X—0), fu(~o}X) (=015,
JoX):=(X=1)(X+0), fu((—o)X) (k=0,1,,5),
(iii) Exceptional case: d(K)= —4
KEX), 0K (k=0,1,2,3), f(+X),
JaO:=(X=1)(X-i), f,(X) (k=0,1,2,3).

Here, we put w:=(—1+./=3)/2, i:=</—1, and, by abuse of notation, we write f(cX)
instead of ¢~ *f(cX).

LEMMA 1.2. Suppose n=3. Then F consists of the following polynomials:
(1) Generic case: d(K)# —3, —4, —7, —8

LX) =(X=1), fi(=X),

LX) =X =DX+1), fi(=X),
L0 =X-D)X*+1), f(—=X),
JaX):=(X =X+ X+1), fu(=X),
Jo(X):=(X=D)(X* = X+1), fi(=X).
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(ii) Exceptional case: d(K)= —3
H(—w)'X),
Sa((=o)’X)  with fo,(X):=f(X),
(o)’ X), [5((—w)X) with f(X):=(X—1)(X—w)*,
fs(—0)'X), fo((—w)X) with fo3(X):=(X—1)(X+)*,
(o)’ X) with f3,(X):=f(X),
So((=0) X)), [H(—w)'X) with fi(X):=(X—o)X*+1),
Ju(@*X),  fi(—w)’X),
Ja(=0) X)), [hH(—0)’X) with fi3(X):=(X—= D)X+ 1)(X~-w),
AEX), LX) with fi(X):=(X’~w),

where @ :=(—1+./=3)/2,j=0,1, -+, 5, k=0,1,2.
(iii) Exceptional case: d(K)= —4

KXY, fou(X),

Frul*X) . [RGEX) with fo(X):=(X—1)(X—i)?,
KX u@X), (X)),

Juul*X) . [RX) with [ (X):=(X=D(C+ X+1),

where i:=\/—1, k=0, 1, 2, 3.
(iv) Exceptional case: d(K)=—17

[(£X), fH(2X), fA(2X), fu(£X), fi(£X),
fo(£X), fe+X) with fy(X):=X>+iX>—nX—1,

where n:=(—14./=T7)/2, 1:=(1—/=T7)/2.
(v) Exceptional case: d(K)= —8

MEX), LX), [((2X), fu(2X), fu(2X),
S(EX), [UEX), with fi(X):=(X—=1)(X*—=2X+1).
Here again, we write f(cX) instead of ¢ *f(cX).
We omit the proofs of these lemmas, since they are proved by quite elementary

computations.

2. Quaternion algebras and nonmaximal orders. Here we shall give a proof of
Theorem 0.1. Thus we assume, throughout this section, that n =dimg(V)=2.
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2.1. Let (¥, H) be a non-degenerate Hermitian space of rank two over K. Fixing
an orthogonal basis, we identify ¥ with K2, and write

10
H=<0 D) (D=d(V, H)).

Since any positive rational number can be represented by H, one can always find such a
basis. Then a direct computation shows that

2.1 SU(V, H)=BnSL,(K) (=B"Y,say)

a b
B:= — ;
K—Db d)’“’beK}

is a (definite) quaternion algebra over Q. The determinant det: B—Q(< K) coincides
with the reduced norm Nr of B. It follows that any element £ € B* defines a similitude
transformation on (V, H) such that H(x¢, y&) =Nr(¢)H(x, y) for all x, ye V.

where

LEMMA 2.1.  The following conditions are equivalent:
(i) B is ramified at p (i.e., B, is a division algebra).
(i) (V,, H) is anisotropic.

(i) (—=d(V), K/Q),=—1.

The proof is immediate.
Let L be an O-lattice in (V, H). We put

(2.2) R=R(L):={geB; Lg<L).

It is clear that R is a Z-order of B which contains @. From the above remark we have the
following:

LEMMA 2.2. (i) The class number of the genus of L with respect to the group
HU(V, H) (= B*) of direct similitudes is equal to the class number of R. (ii) If Nt(Rpy) =Z 7,
then the class number of the genus of L with respect to the group SU(V, H) (= B") is also
equal to that of R.

It is known by Shimura [26] that R is a maximal order if L is a maximal lattice in the
sense of [26]. However, this is not necessarily the case if L belongs to a genus £ of
unimodular lattices. So we shall first study the structure of R. According to [32,
Proposition 6.4], the isometry classes of positive Hermitian spaces (V, H) containing a
unimodular lattice are parametrized by the discriminant d(¥)e Q™ /Ny, (K™) which
satisfies the condition

@), K|Q),=1 forall p with (K/p)#0.
Putting ¢;:=(d(V), K/Q),, (1<i<?) for each prime p; 1 d(K), we then see that they are
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parametrized by the invariants &é=(¢;), .;.,, Where ¢;= +1 and they are subject to the
condition [] & =1. It follows immediately from Lemma 2.1 that the discriminant d(B)
of B is the product of p; (1<i<7) such that (-1, K/Q), = —¢. If we write d(K)=
d*(K)-d"(K) with d*(K)=][], _ ., pi. then we have

(2.3) d(B)=2"< [1 p)( [1 q) (0=0or 1),

pld*(K) qld-(K)
p=—1(4) q9=1(4)

where 0 =1 exactly in the cases where (K/2)=0 and either

(1) &?2):=d(V), K/Q),=1 and d(K)=12, —8 (mod 32), or

(ii) &)= —1 and d(K)=8 (mod 32).

2.2. Now let (V,H) be as above, with V'=V(g). Then from Lemmas 6.2, 6.3 of
[32], there are at most two genera of unimodular @-lattices in (¥, H) with respect to the
unitary group, which are distinguished by the property that one is normal and the other
is subnormal.

PROPOSITION 2.3. Let L be a unimodular O-lattice in (V, H), V=V{(e). Let B, R=
R(L) be as above. Then we have:
(i) If (p, d(K))=1, then B,~M,(Q,) and R,~M,(Z,).
(i) Ifp|d(K), (p,d(B))=1, and p#2, then

ZzZ, 7
Rp:< p P>,
rZ, Z,
and we have [GL,(Z,): R;]=p+1.

(i) Ifp | d(K), pld(B), and p+#2, then R, is the (unique) maximal order of B,

PROOF. Note that the assertions (i), (iii) are contained in Shimura [26], since L, is
a maximal O ,-lattice in those cases. Also they are easily proved in the same way as in the
following proof of (ii). So we omit the detail. Let us prove (ii). By [32, Lemma 6.2], L,
has an orthogonal basis so that we may assume

H_10>
“\o0 u)’

and L,=0,® 0,, where u=d(V)e Z,. Then we have

a b 0 1
(2.4) R":{(—uB d);a,be(‘,,](:@p—i—(pr, U::(_u 0).

We see that
1 0 w 0

form a Z,-basis of L,, and that
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2 0+ w’ 0 0
o+’ 20w’ 0 0
2.5) det(Tr(e;€;)) =det 0 0 2u _ (040
0 0 —(w+w”) 2wwu

=(w—wyu? =d(Kyu? .

Moreover, it is easy to see that R, contains a subring isomorphic to

Z,O)
0 Zz,)

It follows from Hijikata [16, §2.2], that R, is GL,(Q,)-conjugate to a split order

Z Z
R(m):=< oy ”).
"z, Z,

A direct computation similar to the above one shows that, for any Z-basis e; (1 <i<4)
of R(m), one has det(Tr(e;€)))Z, =p2"'Zp, from which follows m =1, as asserted. q.e.d.

PROPOSITION 2.4. Suppose p=2, p|d(K), and L, is a normal unimodular O,
lattice in V,. Assume further that e(p)=1 (p=2).
(1) If d(K)=8 (mod 32), then we have (p, d(B))=1 and

R ={< x+(ay—bz) w+(by+az)>

;' b b b Z b
—w+(by+az) x—(ay—bz) %5 We "}

(2.5)
where a, be Z, are fixed solutions of a*+b*=d(K)/4, and we have [Rg,: Ro1=3, where

ROp:MZ(Zp)'
(2) If d(K)=12 (mod 16), then we have p|d(B) and

b
(2.6) RP={< aE d);a,be@p}=(9p+7rRop,

Rop={< aE Z);a,ben“@o,a+b6(9p},

where R, is the (unique) maximal order of B,, and n is a prime element of R,,, and we
have [Rg,: R, ]1=3.
(3) If d(K)= —8 (mod 32), then we have p|d(K) and

2.7 RO={<_"5 Z);a,be@,,},
1< ~1 ’a+bﬁ>

PRo, =R, =Ro,=0,+0,U, U=—2_ —a+bﬁ -1
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where R,, is the maximal order of B, m=d(K)/4, and (a, b) is a fixed solution of
a@+b*m=3 (a,bel +pZ,). Moreover, we have [Rs;,: R]=6.

PROOF. All these assertions are checked by direct computations, together with a
well-known criterion that, R, is a maximal order of B, if and only if det(Tr(e;;))Z,=
d(B,)’Z, for a Z,-basis e; (1 <i<4) of R,. We omit the details. g.e.d.

We remark that the case treated in this proposition is the same as that in Hayashida
[15], although we employ different notation.

Next we suppose that ¢(p)=—1 (p=2). The explicit form of R, can be obtained
again by direct computations. In this case, however, it will be seen that we need only the
index [Rg,: R,;] for our class number calculation (see Remark 2.13).

PROPOSITION 2.5 (p=2). Let the assumptions be as in Proposition 2.4, with

gp)=—1
(1) If d(K)=8 (mod 32), then we have p|d(B) and [R{,: R]=6.

(2) Ifd(K)=12 (mod 16), then we have (p, d(B))=1 and [R;,: R ]
(3) If d(K)= —8 (mod 32), then we have (p, d(B))=1 and [Rg,: R ]=6.

Proof is omitted.

Now we study the case where L, is subnormal. According to [32, Lemma 6.3], we
may assume that
01 21
i H= H= ,
either <1 0) or (1 2)

LEMMA 2.6. Suppose that

01
H=<10>(p=ﬂ.

and L,= 0,® 0,

Then the group HU(V, H) of the direct similitudes is expressed as

BX={< a bV’");@b,adeQwad—bc¢0}.
c/\/m d

The proof is immediate. It follows that B,~ M,(Q,). We identify them by the

correspondence
< a bJE) <ab>
> .
o /m d c d

PROPOSITION 2.7 (p=2). Let the assumptions be as above.
(1) If d(K)=12 (mod 16), then we have &(p)=—1, and R,=My(Z,), so that
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[R(;p . Rp] =1.
(2) Ifd(K)= +8 (mod 32), then we have ¢(p)= +1, and

R= ZP ZP s
" \rZ, Z,

PROOF. This is an easy consequence from Lemma 2.2 and Lemma 2.6. q.e.d.

n=(13)

We can find Ue GL,(K,) such that

so that [Rg,: R ]=p+1.

Next suppose that

Then it is easy to see that we have

a b
B=UB,U !, ith By,= — s a, .
o wit 0 {<~Db d) a beK}
We identify B and B, by the inner automorphisms Int(U).

PROPOSITION 2.8 (p=2). Let the assumptions be as above. Then we have p|d(B),
and ¢(p)=(3, K/Q),=1, —1 according as d(K)= —8, 8 (mod 32). In both cases, R, is the
maximal order of the division algebra B,

PROOF. Put m=d(K)/4, my=m/2, and a= \/ﬁ Since the scaling of H by a scalar
in @, does not affect the conclusion, we may take

af 1 1
U—?<—1'1>'

Then a direct computation shows that, under the above identification, we have

1(a+b a->
R,={— ' 470),
’ {2 <3(d—b) d+b>’a’b€(9"}'

Now putting

we have
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2 0 -1 0

0 —-2m O m
det(Tr(e;g))=det | _| 5 0o |=— Im*e2*Z) .

It follows, by the criterion noted above, that R, is a maximal order of B, q.e.d.
From the results for R, above, we have:

COROLLARY 2.9. Let (V, H) be a binary positive definite Hermitian space over K,
and let L be a unimodular O-lattice in V. Then for the Z-order R=R(L) of B, we have
Nr(Ry)=Z 4 . Therefore the class number of the genus of L with respect to SU(V, H) is
equal to the class number of R.

2.3. Now we can apply Theorem 1.2 to obtain the class number of the genus £ =
&L (L) with respect to the group SU(V, H) or HU(V, H). As for the group HU(V, H) =
B*, the problem is reduced, by Corollary 2.9, to the class number calculation of the
order R in our definite quaternion algebra B, as has been done for the split orders by
Eichler [7] and others. Here we take this latter standpoint, rather than work with
SU(V, H), because we can make use of known results on the arithmetic of quaternion
algebras as developed in [7], [16].

By Lemma 1.1, the characteristic polynomials of HU(V, H)=B" are fi(X)=
X =12 f£,(X)=(X*+1), f(X)=(X*+X+1), and f(—X). We denote by T; the
contribution from the elements of B* to the formula (0.1), whose characteristic
polynomial is fi( + X), where we take HU(V, H)=B" in place of G =U(V, H). Since Bis
a simple division algebra over Q, we know that each of these elements are semi-simple
and they are conjugate in B* if and only if they have the same characteristic
polynomials. Hence we have T;=h([+g]; ¥), if g corresponds to f(X). We denote by
R,(f) the set of semi-simple elements of R, whose characteristic polynomials are f(X).

PROPOSITION 2.10 (f=f;). Let R, be a maximal order of B containing R=R(L).
Then we have

(238 MRe)=(1/24) [T (p=1),

pld(B)
M(R 2)=M(Rqa) [T [Ro, R, 1.
p
We have T, =2M(Ry).

PROPOSITION 2.11 (f=/,,/3). (1) Suppose that B,=M,(Q,), where p is any
prime number.
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(1) If R,=My(Z,), then we have c,(g, R, Z,[g]*)=1 for any ge R,(f).

@ I
(59)
" \rZ, Z,

then we have c,(g, R, Z[g]*)=1+(—1/p), or 1+(—=3/p) for ge R,(f), according as
f=1 orfs.

(i) Suppose that R, is the maximal order of the division quaternion algebra B, over
Q,. Then we have

cp(g’R;’ Zp[g]x):l—(—l/p)’ or 1_(_3/p)’

according as f=f, or f;.
These results are well-known (cf. [7], [16]).

PROPOSITION 2.12 (f=f;, f;). Suppose that p=2, p|d(K) and let L, be a normal
unimodular 0 ,-lattice.

(1) If d(K)=8 (mod 32), then we have c,(g, R, Z,[9]*)=2, or 0, according as
f=£for f.

(2) Ifd(K)=12 (mod 16), then we have c,(g, R, Z,[g]*)=3, or 0, according as
f=f2 or fs

(3) Ifd(K)= —8 (mod 32), then we have c(g, R, Z,[g]*)=2, or 0, according as
f=for f;.

PROOF. (1): By Proposition 2.4, we have

x+(ay—bz) w+(by+az)> }
= 7 9 Yo~y GZ ’
R, {(—w+(by+az) x—(ay—bz) 6P 5 WELy

and [GLy(Z,): R;]=6. It is easy to show that as representatives of GLy(Z,)/R,, we

can choose
1 0\ /1 O 1 1 1 0 1 0 1 -1
0o 1/’\1 1)\ 1)°\0 —-1)°\1 —-1)°\0 -1/’
._0—1
9=\1 o

be an element of R,(f;), and let x be one of the above representatives. Then an
immediate check shows that one has

_ x 1 0
x"'gx€R, only for x=<0 1), <i (1)>,

Let
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and that they belong to distinct double cosets in 0,91 \GL,(Q,)/R,. This proves
that c,(g, R, Z,[g])=2. We note that for any element x of ¢, one has Tr(x)epZ,, so
that R,(f;)=(. This is also the case for (2) and (3).

(2): We see by Proposition 2.4 that R,= 0,+nR,, with n=1+./(d(K)/4) (=a
prime element of R,,), and that nR,,NR,=nR, It follows that R, is a normal
subgroup of Ry, and the quotient is Ry,/R; ~F /F  (=cyclic group of order 3). It
follows that

x x 0 1
clg,R,, Z,[g]")=3 for g=(_1 0>6Rp(f2)'

(3): By Proposition 2.4, we see that R, ,/pR,,~F .+ nF,. (n*=0), where
< ' } >
n= .
0 —/m

Let g be as above, and put g=a+ BU (, Be 0,). Then we see that a§1+\/ﬁ, p=0
(mod p), and it follows that g=1+ 7 (mod p), and that

R, /PRy, =(0,/p O,)+(0O,/p O,) (x mod p)~F,+nF,.

X

Now a direct computation shows that, for xe R, one has x 'gxe R if and only if
(x mod p)e 1 +F,.n. Thus we get four representatives in Rg,/R,:

1, l+=n, 14+Ur, 14U?n (Observe U*=1 (mod p)).
Two elements 1+an, 14 fn are easily checked to belong to the same Q,[g]* — R,

double coset if and only if a—Be[F,. So we have c,(g, R, , Z,[g9]")=2. q.e.d.

Now we have all data that we need. Substituting them to our general formula (0.1),
(0.2), we get an explicit formula as stated in Theorem 0.1. We note, among others, that
the orders R(L) of B are all isomorphic when we let L vary in the G-genus £. Therefore
the class number A" depends only on #.

REMARK 2.13. In gathering these local data, we have to take into consideration
the condition from the product formula [, px, &(p) =1. Thus we see that 7, =0 except
in the case &(p)=1 for all p, i.e., the case of principal genus. Indeed, if &(p)=—1 for
some p#2, then

(—1/p)=1<(—1,K/Q),=1< B, is a division algebra .
Therefore, we have B,(f,)=(F in this case. On the other hand, if (—1/p)=—1, then

Proposition 2.3, (ii) implies that
R ~ ZP ZP)
" \rz, Z,)°

and it follows from Proposition 2.11 that R (f;)=F. Also we note that if 2 l d(K), then
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T, =0 for the genera of normal unimodular lattices.

3. n=23: Contribution from f,(X).

3.1. In this and the subsequent section, we calculate the contributions of non-
central elements of the unitary group to the class number formula for the principal
genus in the ternary case (n =3). To be more precise, let (V, H) be the p-Hermitian space
defined in (0.5):

V=K3, H(x,y):=x"'y* (x,yeV).

We denote by G the unitary group U(V, H), and by Z the principal genus represented
by the standard lattice L:= (*. We keep these notation in §§3, 4 and 5.

Throughout this section, we write f(X) for f(X)=(X —1)(X+ 1), and denote by 7,
the contribution from G(f) to the formula (0.1). First we investigate, for each finite
place p, the set G,(f)NU, and the U, -conjugacy classes in it. We follow the method of
Asai [2], which makes an essential use of the results of Jacobowitz [19] that we described
in [32, §6].

For any ge G,(f), we put

V17P=V(1g.)P:=VP.(g+1)7 VZ,p=V(29,)p:=Vp'(g—1)'
Thus we have V,=V, ,® V, ,. Further, we put

L,,=LY,:=L,nV, Ly y=LYy:=L,NV,,.

P

By an 0,-sublattice of L,, we understand a free O,-submodule of L, (whose rank may
be less than three). For any @,-sublattice A of L,, we say that A is optimally embedded
in L, if it satisfies A=(A ®o, K,)NL,. Clearly the above L, ,, L, , are optimally
embedded in L, Let n be a prime element of K,, When K,=0,® Q,, we put n=(p, p).

LEMMA 3.1 (cf. Asai [2]). (i) Suppose a, b are distinct elements of O, such that
Ng,j9,(@)=Ng o (b)=1. Put Yy(X)=(X—a)(X— by’ and l=ord (a—b). Let g be an
element of G,(Y)NU,, and put A, =V, (g—b)0L,, A,=V, (g—a)NL, Then the pair
(A, A,) satisfies the condition:

(3.1) (1) A, is an optimally embedded O ,-sublattice of L, of rank i (i=1, 2).

(i) H(A,, A,)=(0) (i.e., A, A, are orthogonal).

(i) A4, ® A,27'L,
Conversely, suppose that a pair (A, A,) satisfies the condition (3.1). Define an element g of
GLy (V,) by g |A,=a,g|A,=b. Then g belongs to G,(Y)NU,. Moreover, this cor-
respondence g —(A,, A,) induces the following bijection:

G,WnU,/ Up:{Up-equiualence classes of (A,, A,) satisfying (3.1)} .
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Here (A, A,) and (A{, A;) are said to be U ,-equivalent, if there exists he U, such that
Airh=A](i=1,2).
(ii) In particular, when \y = f, the value of the above | is equal to
I= {1 p=2,(Kp)#0
2. p=2,(K/p)=0.

PROOF. Here we prove only the surjectivity of the map in (i), since the other part
is proved quite easily. Suppose that (A;, A,) satisfies (3.1), and let g be defined as above.
Then since A, and A, are orthogonal, g belongs to G,. We show that ge U,=U(L,, H).
Let x be an arbitrary vector in L,. By (3.1), (iii), we can write x=7""'(x, + x,) with
x,€A;, x,€A,. Then we have

x-g=n"'x,"g+x,-9)=n"Yax, +bx,)=n"'a—b)x, +bx .
The definition of / shows that x-geL,. Thus L,-g< L, hence ge U, q.e.d.

3.2. From this lemma we see that there are at most two types of (L, ,, L, ,)
corresponding to an element of G,(f/)NU,:

(3.2) Lszl,p ® Ll‘p -+ (say) Type I
3.3) L,2L, ,®L, ,2pL, - (say) Type II.

Type I occurs in all cases, while type II appears only if p=2. We say that a U-
conjugacy class in G,(f)NU, is of type I or II, according as the corresponding pair

(Ly,p, L, ,) is of type I or IL. First we treat the case of type L

LEMMA 3.2. (i) If (K/p)#0, then G, (f)NU, contains a unique U ,-conjugacy
class of type I. It is characterized by

L, ,), KIQ),=+1, L, , is normal unimodular .

(i) Ifp#2 and (K|p)=0, then G ,(f)N U, contains two U -conjugacy classes. They
are classified by the corresponding lattices L, , with the conditions:

(L, ), KIQ),=+1, L, , is normal unimodular .

(i) If p=2 and 4|d(K), then G, (f)NU, contains three U, -conjugacy classes of
type 1. They are classified by the corresponding lattices L, , with the conditions:

(L, ), K/Q),=+1, L, , is normal unimodular , or
(d(L,, ), K/Q),=—1, L, , is subnormal unimodular .

(iv) If p=2 and 8||d(K), then G,(f)nU, contains four U -conjugacy classes of
type 1. They are classified by the corresponding lattices L, , with the conditions:
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d(L,,,), K/Q),=+1, L, , is normal unimodular , or
d(L,,,), K/Q),=+1, L, , is subnormal unimodular .
PROOF. Let p be any finite place of Q, and suppose that L, is written as L,=

L ,®L,,=L{,®L;, Then we have d(L;,), d(L{,)eZ,, hence L, L;, are
unimodular (i=1, 2) (see [32, Lemma 6.1]). Clearly, (L, ,, L, ,)and (L{ ,, L; ,)are U,-

1,p°
equivalent if any only if L; , and L , are isometric for i=1, 2. From (6.3) and (6.4) of

[32] we see that (L, ,, L, ,) and (L{ ,, L; ,) are U,equivalent if (K/p)= = + 1. Suppose
(K/p)# + 1. From [32, Lemmas 6.2, 6.3], we see that L, ,~L; , implies L; ,~L| ,.
Then [32, Lemma 6.3, (ii)] shows the assertions in this case. q.e.d.

3.3 Next we suppose p=2, and consider the case of type II. Suppose first that
(K/p)=+1. Using the identification V,=Q3 ® Q3, we put
LY,:=L,,n(Q;®{0}) (i=1,2),
and regard L{ , as a Z -module in @,

LEMMA 3.3.  Suppose that p=2 and (K/p)=+ 1. Then U ( f) contains a unique U -
conjugacy class of type 11. It is characterized by the following lattices:

(34) L?.p:prl ’ Lg,p=pr2 @ pr3 5
x=(1,0,0), x,=(0,1,0), x3=(1,0,p).

PROOF. Using (6.3) and (6.4) of [32], we see that it is enough to show that any pair
(LY, ,» L3, ) of type I1is transformed to the one given in (3.4) by an element h of GL;(Z,)
(~U,). An easy argument on elementary divisors show the existence of such 4.

q.e.d.

Suppose next that (K/p) # + 1. The following lemma, which is proved in Asai [2], is
essential in our calculation.

LEMMA 3.4. Suppose p=2 and (K/p)# +1. Let (L, ,, L, ,) be a pair satisfying
(3.3). Then the Jordan splitting of each L; , is written as

L, ,=L3,®LE,; rankLY),=1,
S(Ll,p)zs(L(ZZ)p)zp @p b S(l‘(Zl,)p)= (Op .
Using this, we can show:

LEMMA 3.5. Suppose that p=2.
(i) If (Klp)= —1, then U,(f) contains a unique U ,-conjugacy class of type 11, which
is characterized by
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(3.5) Ll,p= (prl P L(Zl,)p‘_‘ (Opxz s L(Zz,)p= (Dpx3 5
=(1,0,1), x=0,1,0, x,=(1,0,—1).

Here we have (d(L,, ,), K/Q),= —1.
(i) If (K/p)=0, U,(f) contains two U ,-conjugacy classes of type I1. Each class is
characterized by

(3.6) L ,=0,x,, LY),=0,x,, LY, = 0,x;;
x;=(1,0,¢), x,=(0,1,0), x3=(e,0, —1).
1+N@epZ; 0 NK;) s (L, ). KIQ)y=+1.
3.7 L, ,=0,x,, LY =0,x,, L%=0,xs;
x=(01,0,%), x,=(0,1,0), x3=(¢&°,0, —1).
1+ N(@)epZ, —N(K}) w(d(Ly, ), KIQ)y=—1.

Here we write N(x) for Ny o (¥).

PROOF. We prove (i). Suppose (K/p)=—1, and let (L, ,, L, ,) be an arbitrary
pair satisfying (3.3). It suffices to show that this is U,-equivalent to (0,x,, O,x, ® 0,x3)
given by (3.5). Using Lemma 3.4, we put L, ,=L{",®L¥),. Then [32, Lemma 6.2, (i)]
shows that U, acts transitively on the set of unimodular lines in V,, if (K/p)= —1. Thus
we can transform LY, to 0,x, by the U -action, so we may assume that LY) = 0 x,.
Then we can write L, ,= 0,(a, 0, b), and LE), = 0,(— b, 0, a) where a, b are elements of
O, satisfying N(a)+ N(b) =2. Then we can find ce ¢, such that

P
a—cb’=ca®+b=0 (mod2), N(c)=1.
Now put
a—cb? 0 ca’+b
0 2 0
a+cb? 0 —ca’+b

1

A straightforward calculation shows that he U, and L, ,h™'= O,x,, LY),h ™' = 0 ,x,,
L‘zz",,h'1 = 0,x;. This completes the proof of (i). The assertions (ii) is proved by a similar
argument, so we omit the details.

3.4. Now we collect the above local results to obtain the G-conjugacy classes in
G(f) which are locally integral. For ge G(f), we put

Vi=VP:=V-(g+1), Vo=V§:=V-(g—-1).
We abbreviate (V,, H| V;) as V,. Then we have
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3.8) G =UF)xU,).

By (32, Proposition 4.7], we see that the G-conjugacy class [g] is determined by {(d(V>, ),
K/Q),}, which can take arbitrary values subject to the following condition:

(3.9) [T @), K/Q),=+1.

p<ow

From Lemmas 3.2, 3.5, we get the following:

PROPOSITION 3.6. Let f(X)=(X—1)X+1)2. Then a G-conjugacy class [g] in
G(f) is locally integral, if and only if (d(V,), K/Q),=+1 at any p such that p+#2 and
(K/p)#0. Hence there exist exactly 2" or 2'™! such classes in G(f) /|G, according as
(K/2)=—1 or (K/2)# — 1.

In order to know the contribution of each G-conjugacy class to our formula (0.1),
we choose a representative g of each class, and calculate the mass M(G(g); V) for a fixed
V, and the indices Ind(, g). According to the results of [32,§5] and (3.8), the
calculation of M(G(g); V) is reduced to that of the local density a,(L, ,), where L, ,
corresponds to g as above. When L, , is isometric to (Of,, this was given in Lemmas 5.2,
5.3, 5.4, and 5.5 of [32].

LEMMA 3.7. Suppose p#2, and let L, , be as in Lemma 3.2, (ii) with
(d(L,, ), K/Q),=¢. Then we have ap(Lz,p)=2<1—e(:l>p_1>.
p

LEMMA 3.8. Suppose p=2. Then we have:

(i) If(Klp)=—1and L, ,is as in Lemma 3.5, (i), then we have a,(L, ,)=9/4.

(i) If (K/p)=0 and L, , is a normal unimodular lattice, then we have a (L, ,)=2.

(iii) If (K/p)=0and L, , is a subnormal unimodular lattice, then we have o.,(L, ,) =
3 if 4|d(K); and if 8| d(K) we have a,(L, ,)=4 or 12, according as

01 2 1
L, ~ .
(1 0) (1 2>

We omit the proofs of these results, since they are proved by the same method as in
[32, § 5] (see also Otremba [24]). We remark that they are also proved by the method of
§2.

LEMMA 3.9. Let p=2, and let ge U,(f) be such that the corresponding lattice L, ,
is normal unimodular. Suppose further that #([glnU,//U,)=2, and let g, 5, 'gd, be
representatives of the two U ,-conjugacy classes. Then:

() If (K/p)= + 1, then for the second class such that (d(L, ,), K/Q),=+ 1, we have
Ind(é,; g)=3.
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(i) If (K/p)=0, then we always have Ind(6,; g) =4.

PROOF. We first prove (i). As in Lemma 3.3, we can replace G,, U, by GL3(Q,),
GL,(Z,), respectively, and assume that g is the diagonal matrix diag(l, —1, —1). And
we may put

1 0 0
6,={ 0 1 0
1 0 D
Then a direct computation shows that
a 0
-1 a=e=1
G(g),n0,U,6, =1l 0 b a | eGLy(Z,); d=0 (mod p)
0 d e
It follows that
) zZ, Z
Ind(é,; g)=| GLAZ,):\ "2 _?|NGL = .
nd(3,: g) [ AZ) (,;z,, Z,,> G Z(Z,,)} p+1

Next we prove (ii). We may put

1 0 «
LZ,p=<O 8), SEZP .

Using Lemma 3.5, we see as in the case (i), that

() 0
Ind(d,; g)= [U(Lz,p) : (p(;p (9:) n lU(LZ,,,)] ,

where U(L,,,) denotes the group of isometries of L, ,. Denote by U, the subgroup of
U(L,,,) given by the right hand side above. It is easy to show that #(U, mod p) <2, and
the equality holds if and only if (9;,”, the norm one group of ¢, contains an element 7
such that n=1+ = (mod p), which is seen to be exactly the case 8| d(K). Now put

Uy :=U(L, )N(1+7My(0))), U, :=U(L,, ) N(1+pM,(0),)) .

Then we have [U(L,, ,): U;]=2. Also it is not difficult to show, by direct computation,
that [U, : U,]=4 or 2 according as 4|d(K) or 8|d(K). q.e.d.

3.5. Now we can calculate the contribution 7, of the locally integral G-conjugacy
classes in G(f;) to the formula (0.1). Let {p,, - - -, p,} be the set of distinct prime divisors
of d(K). For a t-ple e=(¢,, * - -, &) such that ¢; = + 1, we denote by G(f3; &) the locally
integral G-conjugacy class such that ¢;=d(d(V,), K/Q),, for i=1,2, ---, ¢.

PROPOSITION 3.10. Suppose (K/2)= + 1. Then we have
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_(B,)?

L=y

(1d(K)[-1).

t

PROOF. By Proposition 3.6, we have [];_,&=+1. Fix a representative g in
G(f,; €). We can assume that at each place p, the lattice L, ,correspondingto g (e U,)is
normal unimodular, and (d(L,, ,), K/Q@),=+1 at p=2. Then by Lemma 3.7 and [32,
Theorem 5.6], we have

! -1
M(G(g); ¥)=M,(L,) x My(L,) =(Bl,x/2r) X (Bl,sz/zhLz) x n <pi+8i <—>> .
i=1 i
On the other hand, from Lemma 3.9, we have

[T Ind,;9)=1+3=4.
5!’

p

Applying the following lemma, we get the assertion. q.e.d.
LEMMA 3.11. Let X;, Y; (1 <i<¥) be indeterminates. Then we have an equality

>l (X.-+s.-Y,-)=2"1<II'] Xo+e]] Y)

E1, 0,5 I=1 i=1

where the sum is extended over the t-ples (g,, - - -, €) such that

g=+1, []e=¢.

Proof is omitted.

Now suppose that (K/2)= —1. In this case (¢;) can take arbitrary values. Suppose
first that [ [,&;=+1. Then for any ge G(f; (&), we have (d(V,), K/Q),=+1 at p=2,
hence the U,-conjugacy class of g is of type I at p=2. Thus in this case we have, in the
same way as above

(3.10)  the sum of contributions of G(f; (¢;)) for all (¢;) such that [ ],&;= +1 is equal to

(B, )*(1d(K) |- 1)/3-27%.

Next suppose || ;&;= —1. Then for any ge G(f; (¢)), we have (d(V,), K/Q),= —1 at
P=2, hence it is of type II. By using Lemma 3.8, we have

(3.11)  the sum of contributions of G(f (&) for all (g;) such that [ |,&;= — 1 is equal to
(B )2 (d(K) |+ 1)2' "%
From (3.10) and (3.11), we get:

PROPOSITION 3.12.  Suppose (K/2)= —1. Then we have:
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B: 2
1= a1+,

Finally we suppose that (K/2) =0, and p, =2. In this case we always have [, &=
+ 1. Fix ge G(f; (¢)). As in the case (K/2)=+ 1, we may assume that the lattice L, , is
normal unimodular at each p. Then from Lemma 3.7, we can show

M(L,)=1B,,, |/2'

(3.12) et —1 3 -0 4ld(K)
w=8,,8.20 [ (nes(1)) e 81d(K).

On the other hand, from Lemma 3.9, we have

[=))

5 C 4)d(K), & =+1

o 4dK), e =1
G139 Uélnd(ap’g)_ 112 -+ 8ld(K), & =(—1, K/Q),
31/6 -+ 8|ld(K), & #(—1,K/Q), .

From (3.12), (3.13) and Lemma 3.11, we now get:
PROPOSITION 3.13.  Suppose (K/2)=0, p, =2. Then we have

B 2
T2=%%-(41d(1<)|—1).

4. n=13: Contributions from f;(X), f,,(X), and f,,(X). In this section we study the
contributions to the formula (0.1) of the conjugacy classes which belong to f3(X)=
(X=1D(X*+1), f;(X)=(X=1)(X*+X+1), and f3,(X)=(X—1)(X*— X+1). We some-
times denote these polynomials simply by f(X). Throughout this section we assume
that our base field K is not equal to Q(\/—1), Q(/—3).

4.1. We define the algebraic number 6 by
9={¢—_1 i fX)=£(X)
wi=(=14+=3)2 -+ if fX)=fu(X) or fi(X).

Put M =K(0). Since we have assumed that d(K)# —3, —4, M is a biquadratic field
containing K. Let N be the real quadratic subfield of M. We denote by R, S the rings of
integers of M, N, respectively, and by o the notrivial automorphism of M/N. Also we
denote by d(M/N), d(N) the relative discriminant of M/N, and the discriminant of N,
respectively.

We first note that some of the fundamental arithmetic properties of biquadratic
fields (containing an imaginary quadratic field), which we need in our study, are
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described, for example, in Hasse [14] or Fujisaki [8].

LEMMA 4.1. Let the notation be as above.

() I f(X)=f(X) we have
Nyio(d(M]N)) =d(K)d(Q(\/ — 1))/d(N)= —4d(K)/d(N) ,
and if f(X)=f,,(X) or fu,(X), we have
Ny,o(d(M|N))=d(K)d(Q(w))/d(N)= —3d(K)/d(N) .

(ii) Suppose that f(X)=f3(X). Then M|N is unramified outside the places lying
above 2 and the infinite places. More precisely:

(@) If (K/2)#0, M/N is unramified outside the infinite places.

(b) If d(K)=12 (mod 32), then 2 remains prime in N, and it ramifies at M|N.

(c) Ifd(K)= —4 (mod 32), then 2 decomposes in N: 2= P,P§, and P,,, P§ ramify at
M|N.

(d) If 8||d(K), then 2 ramifies in N: 2= P}, and P, ramifies at M/N.

(iii) Suppose that f(X)=f,(X) or f(X). Then M|N is unramified outside the
places lying above 3 and the infinite places. More precisely:

(@) If (K/3)#0, M/N is unramified outside the infinite places.

(b) Ifd(K)=3 (mod9), then 3 remains prime in N, and it ramifies at M/N.

(©) Ifd(K)=—3(mod?9), then 3 decomposes in N: 3=P,Pg, and P, P§ ramify at
M|N.

PROOF. The assertion (i) is shown in Fujisaki [8]. Assertions (i) and (iii) are

proved easily by (i). q.e.d.
Now let g be an element of G(f). We define the subspaces V,, V, of V=K3 by
V-(g>+1) o S(X)=f(X)
Vie={V-(@+g+1) - f(X)=f,(X)
Vi@ ~g+1) - fX)=f(X)
V,:=V-(g-1).

We often abbreviate the Hermitian space (V;, H| V;) as V. By the Hasse principle for
conjugacy classes in G (cf. [32, Proposition 4.8]), we see that the G-conjugacy class [glg is
determined by the system {[g],},<. of local conjugacy classes. Here each [g], is
parametrized as follows:

(4.1) The case f(X)=/f3(X).

(4.1.A) Suppose (K/p)# +1,and \/—1¢ K, This is easily seen to be equivalent to
either p=—1 (mod 4), (K/p)=0, or p=2, K,#Q,(/—1). Then G,(f)// G, contains
exactly two conjugacy classes. Namely, it is determined by the invariant (d(V,, ), K/Q),,
which can take both values + 1.
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(4.1.B) Suppose (K/p)# +1, and K,= Qp(\/—_l), which amounts to either p= — 1
(mod 4), (K/p)=—1, or p=2, K,=Q,(,/—1). Then G,(f)// G, contains exactly four
conjugacy classes described as follows: Put

VZ,pJ::VZ,p’(g—i_\/:—l—)’ Vz,p,23=V2,p'(g—\/‘_1)~
Then [g], is determined by the pair of invariants

((d( V2,p,1)7 K/Q)p B (d( V2,p,2)’ K/Q)p)

which can take any values among (+1, +1).

(4.1.C) Suppose (K/p)#+1 and \/TleQ,,; namely, p=1 (mod4) and
(K/p)# +1. Then G,(f)// G, contains a unique conjugacy class, for which we have
d(V,,,), KIQ@),=(—-1, K/Q),=+1.

(4.1.D) Suppose (K/p)=+1. Then G,(f)// G, contains a unique conjugacy class,
for which we have (d(V, ,), K/Q),=+1.

(4.2) The case f(X)=f,,(x) or f1,(X).

(4.2.A) Suppose (K/p)# +1, and w¢ K. This is easily seen to be equivalent to
either p= —1 (mod 3), (K/p)=0, or p=3, K,# Q,(w). Then G,(f)// G, contains exactly
two conjugacy classes. Namely, it is determined by the invariant (d(V, ,), K/Q),, which
can take both values +1.

(4.2.B) Suppose (K/p)# +1, and K,=Q,(w), which amounts to either p= —1
(mod 3), (K/p)=—1, or p=3, K,=Q,(w). Then G,(f)//G, contains exactly four
conjugacy classes described as follows: Put

Vi (g—?) Vap (@—) - f(X)=fa,(X)
Vip1= 5 5 Vip2=
Vo (g+0) Vap (g+®) - fO)=fulX).
Then [g], is determined by the pair of invariants

((d( Vz,p,1)’ K/Q)p k] (d( V2,p.2)’ K/Q)p)

which can take any values among (+1, +1).

(4.2.C) Suppose (K/p)# +1 and weQ,; namely, p=1 (mod 3) and (K/p)# + 1.
Then G,(f)// G, contains a unique conjugacy class, for which we have (d(V,_,), K/Q),=
(-1 K/Q)p:(l K/Q)p

(4.2.D) Suppose (K/p)=+1. Then G,(f)// G, contains a unique conjugacy class,
for which we have (d(V,, ,), K/Q),=+1.

These assertions are obtained directly from [32, Proposition 4.6]. Also, from [32,
Proposition 4.7], we see that the range of the system {[g],},<., is determined by the
following conditions:

d,.,), K/Q),=+1  for almost all p,
43) @d(V,,. ), K/Q),=+1 for almost all p (j=1,2) in the cases (4.1.B), (4.2.B),
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and
Hp<oo (d(VZ,p)’ K/Q)p= + 1 .

4.2. Now we consider the parametrization of the U ,-conjugacy classes. Let L, be
the standard lattice ¢, and put

L ,:=V,,NL,, L, ,.=V,,NL,.

Therefore, L, , (together with the restriction of H) is a p-Hermitian ¢ -lattice of rank
two. Moreover, it is an (,[0]-module contained in the M,-module V, ,, where the M-
module structure is defined via x-0=x-g (xe ¥, ,). Then there exists a unique O ,-order
R, of M, such that R,2 0,[0], and L, ,becomes a proper R -module. Recall that L, ,is
called a proper R,-module, if one has

R,={aeM L, ,,acl, ,}.

It is easy to see that if we replace g by u™'gu (ue U,), then we get L, , u instead of L, ,,
and an isomorphic proper R, -module structure on it. Thus, in order to know the U,-
conjugacy classes in U,(f) (:=G,(f)NU,), we may assume that L, (V) is a fixed
representative in a U -orbit. Then the U,-conjugacy class of g is completely determined
by the U ,-equivalence class of the proper R -module structure on L, ,.

However, in many cases it turns out to be enough to know the U(L, ,)-equivalence
class of it. The latter is described as follows. Suppose that a proper R -module structure
is given on the (fixed) L, ,. We always assume that the action of 6 belongs to U(L, ,).

LEMMA 4.2. Let R, bean O -order in M,. Then any proper R ,-ideal in M,, is a free
R -module of rank one.

When M, is a field, this result is well-known (cf. Thara [17]). When M, is not a field,
we can prove it by componentwise argument. The detail will be omitted. By this lemma,
we may write L, ,=x-R,, where xe L, , is uniquely determined modulo (R)*. Then
we see (cf. [32, §4]) that there exists a unique ze N, such that the equality

H(x-a,x b)= Try,x,(zab”)
holds for any a, be R, The class of z modulo Ny, x ((R;)™) is uniquely determined by
the proper R -module structure on L, ,.

LEMMA 4.3. The above correspondence induces the following canonical bijection:

U(L,, ,)-equivalence classes of
proper R -module structures ~{R,/L; p} [Ny v, (R))7) .
onL,,

Here {R/L, ,} denotes the set of all ze N, such that the O ,-lattice R, equipped with the
p-Hermitian form (a, b) +— Try k (2ab?)), is isometric to (L, ,, H | L, ,).



196 K. HASHIMOTO AND H. KOSEKI

Note that the set {R,/L, ,} is stable under the multiplication by any element of
Ny, n,(Rp)™). This lemma is verified easily and we omit the proof. The next lemma is
an integral version of [32, Lemma 4.3].

LEMMA 4.4. Let R, be an O ,-order of M, containing O ,[0]. For each O ,basis
{ala a2} OfR;” Put
AR;,[al, a,): =det(TrM,,/K‘,(a)ag)j, K -
Then A R;["n a,) belongs to @ NN, M, (M » ); and its class modulo N k,/0,(0 » ) does not
depend on the choice of a,, a,. Moreover, we have the following relation:
d(R;v TrMp/Kp(zab"))E AR;,[al, a] NNP/QP(Z) (mod NK‘,/Q,,( (9; ).
We shall abbreviate 4 R;’[al, a,]) as 4 R if there is no fear of confusion.

LEMMA 4.5. Suppose that either (i) p #2, (ii) p=2, (K/p) #0, or (iii) p =2, 4|d(K),
(d(L,, ), K/Q),=+1. Moreover, suppose that L, , is unimodular. Then the set {R /L, ,}
coincides with the set of all ze N, satisfying

TrMp/KP(zR;) c0,,
4.4)
NNP/QP(Z)E(AR;’)—ld(LZ’p) mod Ng o (0}).

PROOF. In the above three cases, the isometry class of a unimodular plane is
determined by its discriminant (see [32, § 6]). The assertion follows from this and Lemma
4.4, g.e.d.

From the above results we see that the ¢,-order R, which is attached to an element
of U,(f) plays an essential role in the description of U,(f)// U, Thus we need the
parametrization of all such orders. Calculating the discriminant of ¢,[0], one can easily
prove the following two lemmas.

LEMMA 4.6. Suppose f(X)=f5(X) and let p be a finite place of Q.
(i) If either p#2, or p=2, (K/p)#0, we have O,[0]=R, (=the maximal order of
M,). Moreover, we have

A, =4 (mod Ny o (0))).

(ii) Suppose that p=2, 4|d(K), and let & be a prime element of K,. Then the O,
orders of M, containing O [0] are ordered as

RP:RO,p;Rl,p;RZ,p= (Qp[G] s
where R; ,:= 0,+n'R,. Moreover, we have

ARO;pEI N AR‘»PE4/NKP/QP(TC)’ ARZ,pE4 (mod NKP/QP((O;))'
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(ili) Suppose that p=2, 8| d(K), and let 1t be as above. Then the O ,-orders of M,
containing O,[0] are ordered as

Rp:RO,p;Rl,p= (9()[6] ,
with R; ,:= 0,+ 'R, Moreover, we have
gy, =4/Ni o,(m),  Ag, =4 (mod Ny o (02).

LEMMA 4.7. Suppose that f(X)=f,,(X) or f1,(X), and let p be a finite place of Q.
(i) If either p#3, or p=3, (K/p)#0, we have 0 ,[0]=R, (=the maximal order of
‘M,). Moreover, we have

Ag,=3 (mod NK,,/Q,,( ;).

(i) Suppose that p=3, (K/p)=0, and let n be a prime element of K,. Then the O,
orders of M, containing O,[0] are ordered as

szRO,p;Rl,pz (Op[el s
with R; ,:= 0,+ 'R, Moreover, we have
Ago,,=3/Nk,0,(n),  4g, ,=3 (mod Ny o ().

4.3. We shall now determine the U,-conjugacy classes in U,(f). Firstly we see that
there are cases (Lemma 4.8, 4.9), which are settled quite easily.

LEMMA 4.8. Suppose f(X)=f,(X) and p+#2.

(i) Assume that[g],0U,# &, and define L, ,, L, ,as above. Then L, splits as L, =
L, ,® L, ,, hence each L, , is a unimodular O ,-lattice. Moreover, the unimodular plane
L, , becomes a proper R,module in the above manner.

(ii) The condition [g],NU,# (¥ is satisfied by a unique G ,-conjugacy class in G (f).
In the case (4.1.A), it is characterized by (d(V,, ), K/Q),=+1. In the case (4.1.B), it is
characterized by (d(V,,,, ), K/Q),=+1 (j=1, 2).

(iii) For the class [g], as in (ii), the set [g],N U, consists of a single U ,-conjugacy
class.

PROOF. First we prove (i). Suppose [g],NU,# . We may assume that ge U,
Note that g* belongs to U,(f;). By applying Lemma 3.1 to (L, ,, L, ,), we have L,=
L, ,®L,, Also, Lemma 4.6, (i) shows that ¢,[0]=R, so that L, ,is a proper R, -
module. Next we prove (ii). By Lemma 3.2, the U,-equivalence class of L, ,is determined
by (d(L,,,), K/Q),. Since L, ,admits a proper R,-module structure, we see from Lemma
4.3, 4.5 together with Lemma 4.6, (i), that there exists ze(1/2)S, such that
NN,,/Q,,(ZZ)Ed(Lz, ») mod Ng o (0 ;). Now suppose that the situation is as in (4.1.A).
Then M,/N, is unramified by Lemma 4.1, (ii), hence 2ze Ny /v (M ). Therefore we
have (d(L, ,), K/Q),=+ 1. Next suppose we are in (4.1.B). Then we can write M, =
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K,®K, N,=0,® Q, Here K,/Q, is unramified, since p#2. So again we have
2z Ny, v, (M ;). Writing 2z=(z;, z;), we have (z;, K/Q),=@d(V,,,). K/Q),=+1
(j=1,2). Finally we prove (iii). It suffices, by Lemmas 4.3, 4.5, to show that if
NN,,/Q,,(ZZ)GNK,,/Q,,( 0,) (2zeS}), then 2z should be an element of NMp/Np(R:)' Since
R, is the maximal order, this in fact follows from the translation theorem in local class
field theory. g.e.d.

By a similar argument, we have the following:

LEMMA 4.9. Suppose f(X)=f,(X) or f1,(X), and p+#3.

(i) Assume that [g],N U, # &, and define L, ,, L, , as above. Then L, splits as L,=
L, ,® L, , hence each L; , is a unimodular O ,-lattice. Moreover, the unimodular plane
L, , becomes a proper R,-module.

(i) The condition [g],NU,# (& is satisfied by a unique G ,-conjugacy class in G (f).
In the case (4.2.A), it is characterized by (d(V,, ), K|Q),=(3, K/Q),. In the case (4.2.B), it
is characterized by (d(V,,,, ), K/Q),=+1 (j=1, 2).

(iii) For the class [g], as in (ii), the set [g],N U, consists of a single U,-conjugacy
class.

Now we treat the remaining complicated cases. To avoid unnecessary work, we first
make the following observation, which follows from the condition (4.3), together with
the results in Lemmas 4.8, 4.9.

LEMMA 4.10. Let [g]y be a locally integral G-conjugacy classes in G(f). Then we
have:

(i) If f(X)=f3(X), then the corresponding subspace V, satisfies (d(V, ,), K/Q),=
+1 at p=2

(i) If f(X)=f4,(X) or f,5(X), then V, satisfies (d( V2.0, KIQ),=(3, K/Q), at p=3.

From now on, we treat only such G ,-conjugacy classes, at p=2 or 3, that appear in
the above lemma. It is easily seen from (4.1) and (4.2), that such a G -conjugacy class is
unique, except in the cases:

A) f(X)=fi(X), p=2, and d(K)= —4 (mod 32),

(B) f(X)=/f4;(X), f1,(X), p=3, and d(K)= —3 (mod 9).

Before we study these cases in detail, we fix notation. We denote by n a prime element of
K,, and by KV, M) the unitary group of one-dimensional Hermitian spaces over K/Q,
M/N:

K(“::KCI'(NK/Q), M(l):zKeI'(NM/N).
For any ge U,(f), we attach (L, ,, L, ,) as before, and define the types of them as
follows (cf. §3):

Typel : L,=L, ,®L,,
Type I: L,2L, ,® L, ,2pL,,
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with
X =f0), p=2

G, K/Q), - [(X)=fa(X), far(X), P=3.

If (K/p)= + 1, we substitute (L{ ,, L9 ,) for (LLP, L, ,) as in § 3; namely, writing V,=
Vo@ VS, V9=0;, LY=2Z;, we have LY ,;:=L, ,n(V9® {0}). We regard L{ , as a Z,-
module contamed in V° Then the type of (L L$ ) is defined in the same way as
above.

(d(LZ, p)a K/Q)p =

1,p

LEMMA 4.11.  For any ge U (f) which belongs to a G -conjugacy class satisfying
the conditions of Lemma 4.10, the corresponding pair (L, ,, L, ,) (or (LY ,, LS ) if
(K/p)=+1) belongs to one of the two types defined above.

PROOF. Consider the action of g* (resp. g*>+g) when f = f; (resp. f4; or f3,). Then
we get easily the assertion, as in the proof of Lemma 4.8, (i). q.e.d.

Let us assume that f/(X)=/;(X) and p=2. There are five cases (1)—(5) to be consid-
ered separately. '

Case (1): (K/p)=+1 (f =f3; p=2). In this case X*+1 is irreducible over @, and
G,(f) consists of a single conjugacy class. It satisfies (d(V,), K/Q),=+1

LEMMA 4.12.  Suppose f(X)=f3(X), p=2, and (K|p)=+1. Then L, , becomes a
proper R,-module and there is a unique U ,-conjugacy class of each type. Let [g]Up (resp.
[06” 1gcﬁ]u , 0€G)) be the U,-conjugacy class such that the correspondmg (LY ,, L3 ) isof
type 1 (resp type II). Then we have

[G(g),nU,: G(g),noU,0 ']=1.

PROOF. Let (LY , LY ,) be a fixed representative (cf. Lemmas 3.2, 3.3). By
Lemma 4.6, (i), we see that Z,,[H]:Zp[\/——l] is the maximal order of Qp(\/j), hence
L, ,is a proper R,-module. Therefore our U ,-conjugacy class of type I is unique. Sup-
pose that (L{ ,, LY ) is of type II. We may assume it to be as in (3.4). It is then easy to
see that L‘; is a free module with basis (0, 0, 1) over the ring Z,[(1, Jﬁ)]. It follows
from Lemma 4.3 that our U ,-conjugacy class of type II is also unique. Now these argu-
ments show that, if we identify G(g), with Q ;' x Qp(\/—_l)" we have

G(9),nU,=Z; xZ,[\/-1]
G(9),NdU,8 7 =Z,[(1, /= D))" .
Since the right hand sides are the same, we get the last assertion. q.e.d.

Case 2): (K/p)= —1 (f =f;; p=2). In this case X?+1 is irreducible over K, and
G,(f) consists of a unique G ,-conjugacy class such that (d(V),), K/Q),=+1. Suppose
that geU,(f). Lemma 3.5, (i) shows that for any geU,(f), the corresponding



200 K. HASHIMOTO AND H. KOSEKI

(Ly,p» Ly, ) is of type I, so that L,=L, ,® L, ,. Let L, , be fixed. Then an argument
similar to that in the proof of Lemma 4.8, (iii) gives the following result.

LEMMA 4.13.  Suppose f(X)=£,(X), p=2, (K|p)=—1, and (d(V,,,), K/Q),=+1.
Then (L, ,, L, ,) is of type 1, and L, , becomes a proper R,-module. Moreover, U (f)
contains a unique U -conjugacy class of this type.

(E? 3): d(K)E_12 (mod 32) (f=f;;p=2). In this case we may put K,=
0,(/=5), 0,=Z,[\/=5], and n=1+./=5. Here X>+1 is irreducible over K, and
G,(f) contains a unique conjugacy class such that (d(V,), K/Q),=+1.

LEMMA 4.14.  Suppose f(X)=f3(X), p=2, and d(K)=12 (mod 32). Then there is
no element of type 11 in U,(f).

PROOF. Suppose there exists an elment ge U,(f) of type II. By Lemma 3.5, (ii),
we may put

Ll,p= (prl ) Lz,p= (OPXZG-) @pX3;
x=(1,0,/=5), x=(0,1,0), x3=(—/=5,0,—1).

Put ‘h=('x,, 'x,, 'x3) and g, =hgh~'. Then we see that g, is written in the following form

1 0 0
go=\ O a b |; a,be 0,, Ny, o (a)+6Ng o (b)=1, Trg, o (0)=0.
0 —6b a°
Calculating the (1, 1)-entry of g=h""'g,he GLy(0,), we have 1+ 5a* =0 (mod 2). This is
a contradiction, because Trg o (@) =0. q.e.d.

Next we suppose that (L, ,, L, ,) is of type I. By Lemma 3.2, (ii), L, , is normal
unimodular, which we assume being fixed.

LEMMA 4.15. Suppose f(X)=f5(X),p=2, d(K)=12 (mod 32), and (d(V,,,),
K/Q),=+1. Then (L, ,, L, ,) is of type 1, and we have the following assertions.

(i) L, , is either a proper R, ,-module, or a proper R, ,-module.

(ii) There is a unique U ,-conjugacy class [gly, of this type such that the correspond-
ing L, , is a proper R, ,-module. Let 6 run through a complete set of representatives in
G(9),\G,/U, such that 6~'gde U, and L, , corresponding to 67'gd is a proper R, ,-
module. Then we have

Y [Glg),NU,:G(g),NdU,0"1=6.
o

PROOF. First we prove (i). By Lemma 4.3, it suffices to show that {R; ,/L, ,} # &
if and only if j=0 or 2. From Lemmas 4.5 and 4.6, (i), we have
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{Ro.po/L2,p} =(Nn,10,) " '(Nk,10,(O;)# D ,

(Ry.p/ L.y =5 (Ro.pl Lo, } £ D
and

2e{Ry /Ly p} = Ni o, (2)€(1/DZ, .

Since N/Q is unramified at p=2 (cf. Lemma 4.1), we see that {R, ,/L, ,} =J. Next
we prove (ii). The above expression and the translation theorem in local class field
theory show that {R, ,/L, o =Num,n,(Rq, ;). This, together with Lemma 4.3, shows
the uniqueness of [g]up. Similarly, we see that the number of &’s is equal to
[NMP/NP(R;)(,p): NM,,/N,,(R;, 2l

Now put R{"):=M{'nR, Then it is easy to see that, for any 6 as above, one has
[G(g),nU,: G(g),ndU,6~'1=[R),: RS ]. We thus have

;[G(g)pn Up3 G(g)pnaup5_1]=[NMP/NP(R(;(,p): NMP/NP(RZX,p)]'[Rg,)p: R(Zl)p]

=[Rg ,: Ry J=p(p+1)=6. q.e.d.

Case (4): d(K)=—4 (mod 32) (f=f5;p=2). In this case we may put K,=
Q,(—1), 0,=Z,[\/-1], and n=14./—1. Here X*+1 is decomposed over K, as
X+J/-DX —\/ —1), hence G,(f)//G, contains exactly two conjugacy classes such
that (d(V,,,), K/Q),=+ 1. They are distinguished by the invariant

(d(VZ,p,1)7 K/Q)p=(d(V2,p,2)s K/Q)p (= i l) 3

where V, , ; is as in (4.1.B).
By an argument similar to that in Case (3), we see that there is no such element of

type Il in U,(f).
Let (L, ,, L, ,) be a pair of type I, where L, , is assumed to be fixed.

LEMMA 4.16. Suppose f(X)=f;(X), p=2, d(K)=—4 (mod 32), and (d(V,,,),
K/Q),=+1. Then (L, ,, L, ,) is of type 1, and we have the following assertions:

) L, , is either a proper R, ,<-module, or a proper R, ,-module.

(i) There are exactly two U ,-conjugacy classes [91]11,,, [gz]u,, of this type such that
the corresponding L, , are proper R, ,modules. They belong to distinct G ,-conjugacy
classes: [g,],#g,],. Fori=1, 2, let 5 =4(i) run through a complete set of representatives in
G(9:),\G,/U, such that 6"'g;6e U, and L, ,, which corresponds to 3~ 'g;0, is a proper
R, ,-module.

Then we have

; [G(g),NU,:G(g),N6U 6~ 1]=2.
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PROOF We have Mszﬂ@ Kp7 Np:Qp@ Qp’ Rp:RO.p= @I’@ (9?’ and Sp:
Z,® Z, These expressions, together with Lemmas 4.5, 4.6, (ii), show that

{Ro,p/L2.p} =S, N(Ny,10,)" 1(NK,,/Q,,( O N#T,

1
{Rz,p/LZ,p}Z?{RO,p/LZ,p}9&@ ’ {Rl.p/LZ.p}=®'

(i) follows from this. We also see that {Ry ,/L, ,}/Ny, v, (R,) is represented by two
elements (1,1) and (e, ¢), where eeZ,, (¢, K/Q),=—1. They correspond to [g,ly,,
[9:]y, Finally using the argument in the proof of Lemma 4.15, (ii), we have

Y [G(9),nU,: G(g),NoU,0 "1=[Ry ,: RS ,].
s

Now it is easy to see that [Rg,: R ]=2. q.e.d.

Case (5): 8||d(X) (f=fy;p=2). In this case X*+1 is irreducible over K, and
G,(f)// G, contains a unique conjugacy class such that (d(V; ,), K/Q),=+1. As in
Cases (3), (4), we see that there is no element of type II in U,(f). But in the present case,
the U,-conjugacy classes of type I are divided into two subtypes, which we have to treat
separately:

type I'l: Lp:LI,p®L2.p’ (d(Lz,p)a K/Qp):+1 5

L, , is normal unimodular,
type I-2: LP= Ll‘p @ Lz,p B (d(LZ,p)a K/Qp)= + 1 s
L, , is subnormal unimodular .
Let (L, ,, L, ,) be of type I-k (k=1, 2), with L, , being fixed.

LEMMA 4.17.  Suppose f(X)=f;(X), p=2, 8|d(K), and (d(V, ,), K/Q),=+1.
Then (L, ,, L, ,) is of type I-1 or 1-2. Moreover, we have the following assertions:

(i) L, ,is aproper R, , (resp. R, ,)-module, if it is of type I-1 (resp. I-2).

(ii) There is a unique U ,-conjugacy class [g]Up such that the corresponding L, ,is a
proper R, -module. Let & run through all representatives of G(g),\G,/U, such that 5~ "gd
is an element of U, and of type 1-1. Then we have

Y[G(9),nU,: G(g),ndU,8 ']=2.
)
PROOF. Let L, ,be a unimodular plane such that (d(L, ,), K/Q),= + 1. Then, by

Lemma 4.4, {R; ,/L, ,} is contained in the set of all ze NV, satisfying (4.4), with R; ,
instead of R,. From this fact and Lemma 4.6, (iii), we have

) B
(*)o {RO»p/LZ,p} g(NNp/Qp)_ 1<NKP/QP< r )>;é 7

T
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1
(%) {Rl,p/LZ,p} g?(NNp/QP)_ I(IVK,,/Q,,(@;))?'é .

Now, let w be a prime element of N,. Since 8||d(K), we see that the different of V,/Q,, is
2w-S,, hence we have

Try, ik, (zaa’)eTry o (2 S,)=2Z, (aeR, )

for any ze {R, ,/L, ,}. Therefore L, , is a subnormal lattice if it is a proper R, ,-
module. Thus we have shown (i). It follows that the equality holds in the inclusion (*);
above, if either

j=0, L, ,=subnormal, or j=1, L, ,=normal.

Then the assertion (ii) can be proved by an argument similar to those in the proof of the
preceding lemmas, with the fact that [Rg ,: R ]=2. g.e.d.

Now let f(X)=f;,(X) or f,,(X), and p=3. There are four cases (6)—(9) to be
considered separately. However, in some cases the arguments are quite parallel to those
in the above. So we shall omit the proof in such cases. We first note that to study
Uy(/42)// U, is simpler than U,(f,,)// U,, because of the following:

LEMMA 4.18.  Suppose f(X)=f,,(X) and p=3. Then, for any element of U,(f)
which satisfies the condition of Lemma 4.10, (ii), the corresponding (L, ,, L, ,) is of type 1.

This is proved easily by Lemma 3.1 (cf. Proof of Lemma 4.8, (i) or Lemma 4.11).

Case (6): (K/p)=+1. (f =f11,f12;P=3). In this case X>+ X+1 are irreducible
over @, and G ,(f) consists of a single G ,-conjugacy class. It satisfies (d(V, ,), K/Q),=
(3, K/Q),.

LEMMA 4.19. Suppose that {(X)=f,,(X) or f,(X), p=3, and (K/p)=+1.

() If f(X)=fa2(X), then (L, ,, L, ,) is of type 1, L, , is a proper R,-module, and
U,(f) consists of a unique U -conjugacy class.

(i) If f(X)=/f4,(X), then for each type, L, , is a proper R -module and there is a
unique Up-éonjugacy class of that type. Let lgly, (resp. [6*‘g5]yp, 6eG,) be the U,-
conjugacy class of type 1 (resp. type 11). Then we have

([G(9),NU,: G(g),NU,6 1]=2.
Proof is omitted (see the proof of Lemma 4.12).

Case (7): (K/p)=—1 (f =fa1, faz; p=3). In this case, X>*+ X+ 1 are irreducible
over K,, and G,(f)// G, contains a unique class such that (d(V, ,), K/Q),=(3, K/Q),
(=-1).

LEMMA 4.20. Suppose that f(X)=f.,(X) or f1,(X), p=3, and (K/p)= —1.
(@) IS (X)=far(X), then [g],NU, = .
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(i) If f(X)=/fs:(X), then (L, ,, L, ,) is of type 11, and L, , is a proper R, -module.
There is a unique U ,-conjugacy class in [g],nU,. Moreover, we have

[G(9),: G(g),NU,1=4.

PROOF. We first prove (i). Suppose that [g],NU,# &, and let (L, ,, L, ,) be the
pair corresponding to an element of this set. By Lemma 4.18, this is of type I, hence L, ,
is unimodular. Then we have (d(L, ,), K/Q),=+1 (note that (K/p)#0), which is a
contradiction. Next we prove (ii). From the above we see that (L, ,, L, ,) is of type II,
and by Lemma 4.7, (i), L, ,is a proper R,-module. Here an argument similar to that in
the proof of Lemma 3.5, (i) shows that any (L, ,, L, ,) of type II can be transformed by
the U,-action to the following:

Ll.p= (9pxl s L2,p= @pxz @ (Opx3 5

x1=(19 17 1)’ X2=(0, la _1): X3=(—2, la 1)
So we assume that (L, ,, L, ,) is this standard one. Then it is easy to see that {R,/L, ,}
coincides with the set of all ze N satisfying (4.4), with R, instead of R . It follows from
this and Lemma 4.3, that there is a unique U(L, ,)-equivalence class of proper R,-
module structures on L, ,. This means that, for any g,, g, € U, corresponding to the
above (L, ,, L, ,), there exists he G, such that h™'g,h=g,, L, ,-h=L, ,,and L, ,-h=
L, ,. Now we put ‘x:=("x;, x;, 'x3)(eGL3(K})), 9, f—‘x—lulx, gy =x""uyx (uy, € Uy),
and h=x"'vx. Then we have v 'u,v=u,, and we may write

u=10 u_lO (¢ O
7o s,)0 T\ s,)0 o 1)

Then T is seen to have the form
a b
= (— 3eb w”)

with a, b, ee 0,, N(a)+3N(b)=1, N(e)=1 (N(*)=Ng,jp,(*)). Then, a straightforward
calculation shows that we have

heGLy(0,)<>c 'ea’ =1 (mod p) .

Therefore, replacing ¢ by —c if necessary, we can find 4 in U,. It follows that [g],n U,
consists of a single U,-conjugacy class. By a similar argument, we have

[G(9),: G(g),nU,|=4. .
q.e.d.

REMARK. In the assertion (ii) above, [g],NU,# & is easily seen. Indeed the
element
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0 0
0 0
1 0 O

belongs to this set.

Case (8): d(K)E3 (mod 9) (f =f41,fa2; 2=3). In this case we may put K=
0,3), 0,=Z,/3], and n=,/3. Here X>*+X+1 are irreducible over K, and
G,(f)//G, contains a unique conjugacy class such that (d(V, ), K/Q,) =
G, KIQ),(=—1).

LEMMA 4.21. Suppose that f(X)=f,,(X) or f1,(X), p=3, and d(K)=3 (mod 9),
and (d(V,,,), K/Q),=—1.

(1) If f(X)=f42(X), then (L, ,, L, ,) is of type 1, L, , is a proper R,-module, and
U,(f) contains a unique U ,-conjugacy class of this type.

(i) Iff(X)=f4,(X), then L, ,is a proper R, , (resp. R, ,)-module if (L, ,, L, ,) is
of type 1 (resp. type 11). There is a unique U ,-conjugacy class [9lu, of type 1. Let 6 run
through all representatives of G(g),\G,/U, such that 6~ 'gé belongs to U, and is of type 1I.
Then we have

Y [G(@),nU,: Gg),néU,67']=6.
3

Proof is omitted (see the proof of Lemma 4.20).

Case (9): d(K)=—3 (mod9) (f =fu1,fa2; =3). In this case we may put K,=
0,(v=3), 0,=Z,[\/-3], and n=,/—3. Here X2+ X+1 (resp. X*—X+1) is decom-
posed over K, as (X—w)(X— @?) (resp. (X+ w)(X+w?), hence G,(f)//G, contains
exactly two conjugacy classes such that (d(V, ,), K/Q),=(3, K/Q), (= +1). They are
determined by the invariant (d(V; ,,), K/Q),=(d(V,,,,), K/Q), (= +1).

LEMMA 4.22. Suppose that f(X)=f4,(X) or f1,(X), p=3, and d(K)= — 3 (mod 9),
and (d(V, ), K|Q,)=+1.

0 If f(X)=far(X), then (L, ,, L, ,) is of type 1, L, , is a proper R, -module.
Moreover, U,(f) contains two U ,-conjugacy classes [.‘h]vp and [92]u, of this type. They
belong to distinct G -conjugacy classes: [g,],#9,],.

(i) If f(X)=/f4,(X), then L, ,is a proper R, , (resp. R, ,)-module if (L, ,, L, ,) is
of type 1 (resp. type I1). There are exactly two U -conjugacy classes [g,]u,, (92w, in U ( 1a)
which are of type 1; and they belong to distinct G ,-conjugacy classes. Let 6 run through all
representatives of G(g),\G,/U, such that 6~ 'gé belongs to U, and is of type 11. Then we
have

12 (d(V2,p.) K/@)p=+1

Y.[G(9),nU,: G(g),ndU,0"']= {
s 0 - @V, ) KIQ),=—1.
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Proof is again omitted (see the proof of Lemma 4.20).

4.4. We now summarize the results obtained above, and calculate the contri-
butions T3, T,,, and T}, to the formula (0.1), from the conjugacy classes belonging to

S3(X), f2,(X), and f4,(X) respectively.
We first describe the locally integral conjugacy classes in G(f) for each f(X).

PROPOSITION 4.23. Suppose f(X)=1f3(X).
(i) If d(K)# —4 (mod 32), then there exists a unique locally integral conjugacy

class in G(f) ]/ G. It is characterized by
@), K/Q),=+1 atall p<o,
A", KIQ),=+1(j=1,2) at any p in the case (4.1B).

(ii) If d(K)= —4 (mod 32), then there are exactly two locally integral conjugacy
classes in G(f) /| G. They are characterized by

d@,,,), KjQ),=+1 atall p<oo,
@20 KIQ),=+1(j=1,2) atany p#2 in the case (4.1.B).
Ad(V2,p.1), K|Q)p=(d(V2,5,2), K|Q),= £1  at p=2.

PROPOSITION 4.24. Suppose f(X)=f,,(X).
(1) Ifd(K)# —3 (mod9), then there exists a unique locally integral conjugacy class
in G(f)//G. It is characterized by

d(,,), KIQ),=(3, K/Q), atall p<owo,
A2, KIQ),=+1(j=1,2) atany p in the case (4.2.B).
(ii)) If d(K)= —3 (mod9), then there are exactly two locally integral conjugacy
classes in G(f) [/ G. They are characterized by
@(V3,,). K|Q),= (. K/Q),  atall p<co,
A2, ) KIQ),=+1(j=1,2) atany p#3 in the case (4.2.B).

Ad(V3,p.1), K|Q@)p=(d(V3,,,2), K/Q),=+1  at p=3.

PROPOSITION 4.25.  Suppose f(X)=f,,(X).

@) If (Klp)=+1 or d(K)=3 (mod 9), then there exists a unique locally integral
conjugacy class in G(f)//G. It is characterized by the same condition as in Proposition
4.24, (i).

@ii) If (K/p)= —1, then there is no locally integral conjugacy class in G(f)//G.

(iii) If d(K)= —3 (mod 9), then there are exactly two locally integral conjugacy
classes in G(f) /] G. They are characterized by the same condition as in Propostion 4.24,

(ii).
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Now, let [g] =[g], be a locally integral conjugacy class in G(f)// G. Once an idélic
arithmetic subgroup ¥ of G(g), is fixed, we may consider each factor of A([g]; £) in
(0.2). In order to apply the results in [32, § 5], we choose V as follows: Firstly we identify
G(g) with K®'x MV, and define V=[] ,V, by

V,i=0%"x R} (for each p<o0)
Voi=KDxM}.

Therefore, the first factor M(¥) of h([g]; &) is nothing but M, (K/Q) x M, (M/N), where
each factor is the standard mass in the (one-dimensional) principal genus. By [32,
Theorems 5.6, 5.7], we have

MI(K/Q);_Z_tIBI,lI s
MI(M/N)=2“‘TBLI-BL,,, R

with T being the number of distinct prime divisors of the relative discriminant d(M/N),
and

x(p)=(d(K)/p)
(—=1/p) -+ [(X)=f3(X)
(=3/p) - f(X)=fa1(X) or fi(X).

We note that, by Dirichlet’s formula for the class numbers of imaginary quadratic fields,
we have B, , = —h(K) (note that we are assuming K # Q(/ — 1), Q(;/ — 3)). Also we have
B, ,=—1/2 or —1/3, according as f'=f; or f'=/,;, f4,. Thus we have

27K S0 =£(X)

27T T MK - f(X)=fu(X), f(X).

v(p)= (

4.5) M(V)={

By Lemma 4.1, we have:
(4.6) If f(X)=f3(X),
0---(K2)#0
T=11---dK)=12 (mod 32) or 8|d(K)
2 ---d(D)=—4 (mod 32).

@7 Iff(X)=[:(X), fe2(X)

0---(K/3)#0
T={ 1---d(K)=3 (mod 9)
2:--d(D)y=—-3 (mod9).
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As for the second factor [] ,Q ;Ind,(3; g)) of h(g]; &), it is easy to show that
Ind,(J; g)=1 if and only if the pair (L, ,, L, ,) corresponding to é ~'gd is of type I, and
L, ,is a proper R,-module. Therefore, Lemmas 4.8, 4.9, 4.12, 4.13, 4.15, 4.16, 4.17, 4.19,
4.20, 4.21 and 4.22 together imply the following results:

4.8) If f(X)=f3(X), and p#2, then
Y Ind,(d: g)=1.
L)

(4.9) If f(X)=/f5(X), and p=2, then

“(Kip)=+1

e (Kip=—1

- d(K)=12 (mod 32)
- d(K)= —4 (mod 32)
- 8)|d(K).

(4.10) If £(X)=f,,(X), fir(X); and p#3, then

Y Ind,(d: g)=1.
3
4.11) If f(X)=f4,(X), and p=3, then
Y Ind,(d: g)=1.
4.12) If f(X)=f3,(X), and p=3, (tshen
3. (Kp=+1
4 (Kp=-1
Y Ind,(6: g)={ 7 - d(K)=3 (mod 9)
3

13 -+ d(K)=—3 (mod 9), (d(V,.,.)), K/Q);= +]1
1 d(K)=—3 (mod 9), (d(V,.,.,). K/Q);=—1.

; Ind,(d: g)=

W W 3 - N

5. n=3: Explicit formulas (main results).

5.1. We collect all data that we obtained in §§3, 4, and putting them into the
general formula (0.1), we get an explicit formula for the class number A(Z) of the
principal genus Z of the ternary positive definite Hermitian space (V, H).

Let K=Q(,/ —m) be an imaginary quadratic field with discriminant d(K), where m
is a positive square-free integer. For each polynomial f;(X) listed in Lemma 1.2, we put

(5.1 T,-:=[Zh([g]; Z),
gl

where the sum is extended over the locally integral G-conjugacy classes [g] in G(f;). Thus
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T, is the contribution to our class number formula from the conjugacy classes belonging

to G(f).

MAIN THOEREM 5.1.  The class number h; of the principal genus in the ternary
positive definite Hermitian space, with respect to the unitary group, is given as follows:
hy=1 if d(K)= —3, or —4; and in the other cases,

(5.2) h;=2T,+2T,+2T;+2T,, +2T,,+4T+4T,

where the contribution T; from G(f}) is given by
Tl = h(K)B3,1/2‘ +432 s

4dK)|—4 -+ —m=1
T,=(h(K)*2""*3)x {4|dK)|+2 -+ —m=5 (mod 8)
4d(K)|—1 --- otherwise
4 —m=1
7 —m=3
Ty=(h(K?2"%)x 1, Cmes (mod 8)
L 3 —m=+2,7
6 —m=
T, =(W(K)*/2'*23)x {8 —m=2 (mod 3)
7 —m=0
2 —m=1
T,,=h(K)*/2'*?3)x 10 —m=2 (mod 3)
1 —m=0
1/16 -+ if d(K)=-8
Tsz[
0 -+ otherwise
/14 --- if dK)=-17
T6={
0 -+ otherwise

where t is the number of distinct prime divisors of d(K), x is the Dirichlet character
attached to K, and B, , is the third generalized Bernoulli number attached to .

PROOF. The fact that h; =1 for d(K)=—3, —4 was proved in [32, Proposition
5.13]. So we assume, in the following, that d(K)# —3, —4. Recall that T, was already
given in [32, Theorem 5.6]. The evaluation for T, was carried out in Propositions 3.10,
3.12 and 3.13. In the same way as for 7, we can get easily the above expressions for 75,
T,,, T,, from the results in §4. Thus it remains to evaluate T5 and Tg. Let {,, be a



210 K. HASHIMOTO AND H. KOSEKI

primitive m-th root of unity. The point here is that the order O[(s] (resp. O[(,]) is the
maximal order of K({g) (resp. K({,)), in the unique case K=0(,/—2) (resp. O/ —7))
where we have non-trivial contribution. Using this fact, one can easily show that the
locally integral G-conjugacy class, or the U,-conjugacy class corresponding to the
characteristic polynomial in question, is unique. Thus we see that the contribution T; =
h([g]; &) (i=S5, 6) is nothing but the mass of the centralizer Q({z)"’ (resp. @({,)"), which
we evaluated in [32, Theorem 5.7]. q.e.d.

5.2 Class numbers for SU(3). As in §1, we regard G"':=SU(V, H) as an
algebraic group over Q. Let £’ be any G"-genus contained in the principal genus £,
with respect to G. Then we consider the class number A" : =h"(Z ), i.e., the number
of GM-orbits in £ . Our second main result is concerned, as well as its evaluation, with
the relation between AY’ and the unitary class number h;.

MAIN THEOREM 5.2. (1) The two class numbers h'’ and h, are related by
(5.3) hy=hh§

where h, =h(K)/2' "' is the one-dimensional unitary class number. In particular, h$’
depends only on the G-genus %,

(ii) More precisely, suppose that d(K)# —3, —4, —7, —8, and let f,(X) be as in the
list of Lemma 1.2. Then the contribution TV of the G'V-conjugacy classes in GV(f;) to the
general formula, which is similar to (0.1), is related to T; by

(5.4) T,=(hK)2YT"  (for each i).
(i) An explicit formula for h is given as follows:
B =1 (resp. 2) if K=0(/—1), Q(/=3) (resp. Q(\/ =2), O(\/ 7)), and otherwise,
B =T+ T+ T+ T4+ T4,

with
T{"'=B, /144
Ty =(h(K)/48)[4 | d(K)| -1 —31(2)]
T3 = (h(K)/B)[3+ x(2)+ {1+ (2, K/@),}{1+ (5, K/Q),}]
T4 = (h(K)/12)[7 - x(3)]
T35 =h(K)/12)[1+x(3)] -

We shall give a table for A"’ below. Here we note that our result for the relation
between h, and hY", which holds without any condition, is rather remarkable since in
general this kind of relation can be shown only under some conditions. See [32, §2].
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PrROOF. If K is one of the exceptional fields, it is easy to check the assertion, since
we know that A; =1 or 2. So we assume that d(K)# —3, —4, —7, —8, and prove (ii),
from which (i) and (iii) follow immediately. First note that our general formula (0.1)
remains valid, if we replace G by G*. However, we have to notice that, in general, the
Hasse principle (see [32, Proposition 4.8)), fails to hold for the G'*-conjugacy classes.
But for certain types of conjugacy classes in G'*), we still have the Hasse principle:

LEMMA 5.3. Let g be an element of GV, and suppose that the determinant det:
G— K" maps the centralizer G(g) onto K. Then the GV-conjugacy class [g]'" is uniquely
determined by its image in the set of G&)-conjugacy classes.

This lemma is easily proved. Now we note that, under the above assumption on
d(K), the condition of Lemma 5.3 is satisfied for any element g in G")(f}), since f;(X) has
a linear factor (X—1). Also it is easy to see that the U,-conjugacy class [g]up is
decomposed into [det U,: det(U,(g))] U-conjugacy classes [6 ~'gd] v". On the other
hand, one has the equality

[det U,: det(U,(g9)]-ind /(8 g)=1Ind,(1; g) .

where Ind (8 ; g) is defined similarly as Ind,(J; g) with G'* instead of G (cf. [32, §3)).
Now the contribution T{" is calculated in exactly the same way as 7. Noting the above
equality and the relation between the two masses M(G(g)), M(G"*(g)), which is
analogous to that given in [32, Proposition 5.8], we get the assertion of Theorem 5.2.

q.e.d.

TABLE OF CLASS NUMBERS OF THE PRINCIPAL GENERA (n=1,2,3). In the
following table, we give, for each imaginary quadratic field K with discriminant
|d(K)| <250, the class numbers A" of the principal genera, in the positive definite
standard Hermitian spaces (K", H), for n=2, and 3, with respect to the special unitary
group. Note that A{" =1, and h, =h(K)/2' "', and that hy=h,-h{".

%) d(K) ramified primes h, Y A
(1) -3 3 1 1 1
2) —4 2 1 1 1
3) -7 7 1 1 2
4) -8 2 1 1 2
©) —11 1 1 2 2
(6) —15 3x5 1 2 5
(@) —19 19 1 2 3
8) -20 2%5 1 3 7
) -23 23 3 3 10
(10) —24 2x3 1 2 7
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%)) d(K) ramified primes h, A A
(1) -31 31 3 3 13
(12) -35 5%7 1 4 10
(13) ~39 3413 2 4 21
(14) —40 245 1 4 12
(15) —43 43 1 4 8
(16) —47 47 5 5 31
a7n _s1 3%17 1 4 16
(18) —-52 2%13 1 5 18
(19) —55 S5x11 2 6 31
(20) —56 2x%7 2 4 31
@ —59 59 3 6 26
22) —67 67 1 6 17
23) —68 2x17 2 6 40
(24) -7 71 7 7 66
25) -79 79 5 7 59
(26) —83 83 3 8 43
@7 —84 24347 1 6 56
(28) —87 3%29 3 6 77
(29) —88 2x11 1 6 40
(30) -91 7%13 1 8 40
(€3] —-95 5%19 4 10 107
(32) ~103 103 5 9 88
(33) — 104 2+13 3 8 97
(34) —107 107 3 10 66
(35) —11n 3437 4 8 133
(36) —115 5%23 1 12 62
37) —116 229 3 9 118
(38) —119 7417 5 10 172
(39) ~120 24345 1 8 97
(40) —123 3441 1 8 72
(1) 127 127 5 1 125
(42) —131 131 5 12 121
43) 132 243411 1 8 115
(44) —136 2417 2 10 120
45) —139 139 3 12 104
(46) —143 11513 5 14 227
@7 —148 2437 1 11 113
(48) —151 151 7 13 200
(49) ~152 2419 3 10 181
(50) —155 5#31 2 16 148
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) d(K) ramified primes h, A Ay
51 —159 3x53 5 10 267
(52) —163 163 1 14 111
(53) — 164 2441 4 12 239
(54) —167 167 11 15 308
(55) —168 24347 1 8 182
(56) —179 179 5 16 213
(57) —183 3x61 4 12 303
(58) —184 2%23 2 12 215
(59) —187 1117 1 16 170
(60) —191 191 13 17 423
61 —195 3+5+13 ] 16 228
(62) —199 199 9 17 368
(63) —203 7%29 2 16 252
(64) —211 211 3 18 243
(65) -212 2453 3 15 341
(66) —215 5%43 7 22 537
(67) —219 373 2 14 290
(68) —223 223 7 19 411
(69) —227 227 5 20 339
(70) —228 243%19 1 12 341
71 —231 357x11 3 12 558
(72) —232 2429 1 16 303
(73) —235 5%47 1 24 284
(74) —239 239 15 21 669
(75) —244 2461 3 17 436
(76) —247 1319 3 22 481
an —248 2431 4 16 510

6. Dimension of automorphic forms. We give here an explicit formula for the
dimension of automorphic forms of *“‘weight p”’ on G{', where (p, &) is any irreducible
continuous representation of the compact group

GYV~SUQR) or SUQB) (n=2or3).

6.1. Let (p, #) be as above and extend it to a representation of G4’ through the
projection G{'—~G'}). Denote by M (£) the space over C consisting of the F-valued
functions f on G4’ satisfying f(uxa)=p(u)f(x) for any ue U=U(L), xe G}’ and
ae G, where we fix an (-lattice L in a given genus %£.

PROPOSITION 6.1.  The dimension of M (Z) is given by

dim M,,(f):fz te(p(f) Y. K9 &)
eF g
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where the sums are the same as in the formula (0.1), and tr(p(f)) is the character of p at
any element of G_(f).

PROOF. Let I'; (1<i<h=h") be the finite group given by [32, (3.2)], and put
F..={meZF; p(yym=m for any yerl;}. Then it is easy to see that the mapping
M (L)@ . F i [ —(p(&)” 'f(&)) is an isomorphism. It follows that

dim M(£)=F. dim #=F. g 5 wto) =3 GO 5 wtrin.
feF
Now the assertion follows from [32, Proposmon 3.1].

Thus, to know the dimension of M (Z), we have only to compute the character
tr(p(f)) for each polynomial f e F listed in Lemmas 1.1, 1.2.

6.2. First suppose that n=2. Then the irreducible representations of SU(2) is

parametrized by a non-negative integer k, to which corresponds the k-th symmetric
tensor representation p,. As is well known, we have

6.1) tr(p(D))=tr(p(f))=k+1,  tr(p(f) = =Y =(Y,
where in the second formula, f# f; and {, { ! are the roots of f(X). It follows that
(6.2) tr(p(f2))=[1,0, —1,0; 4], tr(p(f3))=[1, —1,0;3],

where t=[t,, t,;, -+, 1,;; q] means that we have t=¢; if k=i (mod q).

Next suppose that n=3. Then the irreducible representations are parametrized by
the pairs (k,, k,) of non-negative integers such that k, >k,>0. The corresponding
representation p =p, i, has the degree

(6.3) tr(p(f1)) = (ky —k, + D)(ky + 2)(k, 4+ 1)/2,
and the character
& eb—ef

3
(6.4) tr(p(f)= Z -

& (e e)ei—e) (- )

({i’j’ k}={1a 2, 3}) P

where &, &, & (§¢¢8=1) are the distinct roots of f(X), and we put a:=k;+2,
b:=k,+1.

It follows that, explicitly we have
(ki +2)/2 o (ky, k) =(0,0)
0 o (ky, kp)=(0,1)
(=ky+ky—=1)2- - (ky, ky)=(1,0)
=kt D2 - (ky k)=(1, 1)

6.5  tr(p(f)= (mod 2)
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1 s (kg ky)=(0,0), (1,0), (1, 1)
tr(p(f3)= | =1 - (k,k)=(0,2),(3,1),(3,2)  (mod 3)
0 <+ otherwise
1 e (kla kZ)E(O’ O)
tr(p(fa))=1 =1 -+ (k, kp)=(2,1)  (mod 3)
0 <+ otherwise
3 (kL ky)=(2,1)

(kl’ kZ)E(l’ 0)5 (1’ 1)» (2’ O)’ (29 2), (39 l)a (3’ 2)
(kh kZ)E(Os 0)’ (3’ O)’ (3’ 3)

rp(f2)= 1 =1 -+ (k. k) =(2,4), 5, 1), (5, 4) (mod 6) .
-2 T (kl’ kZ)E(O’ 2)5 (2a 4), (la 3)’ (]a 4)’ (Sa 2)9 (S’ 3)
=3 o (ky ky)=(0,3)
<0 -+ otherwise .

CORRECTION TO [31], [32]:

[31]: Page 324, line 5 (in the table). Read “(mod 32)” for “(mod 22)”.

[31]: Page 324, line 7 from bottom. Read “odd (resp. even)” for “1 (resp. 2)”.
[31]: Page 325, line 13 from bottom. Read “1 (resp. 2)”’ for “odd (resp. even)”.
[32): Page 20, line 15 from bottom. Read “2’ for “2'~!”,
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