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0. Introduction.

0.1. This paper is a continuation of [32] . Let (V, H) be a positive definite
Hermitian space over an imaginary quadratic field K, and let if be a genus of ^-lattices
in V with respect to the unitary group G : = U(F, //), where Θ is the ring of integers of
K. As we saw in [32], the class number h{J£) of if is expressed as a finite sum:

(o.i)

where in the first sum/runs through the set of characteristic polynomials of the torsion
elements of G; and the second sum is taken over the locally integral G-conjugacy classes

= MG which belong to/, and the invariants h([g]Q; if) are given by

(0.2) H[g)Q; JSf)= Σ M( V) Π φ, Up, Vp),

with M(V) the mass of an idelic arithmetic subgroup V of the centralizer G(g)A of g in
GA. See [32] for a more precise definition. We note among others that the masses were
evaluated there.

In the present paper, we shall carry out the computations of the local factors
c

P(g, Up, Vp), and derive from (0.1), (0.2) explicit formulas for the class numbers of
genera consisting of unimodular Hermitian lattices, of ranks two and three.

0.2. To state our main results, let K=Q{^j—m) (m>0, square free) be an
imaginary quadratic field, and let Θ be its ring of integers. Let V be a vector space of
dimension n over K, which is equipped with a positive definite Hermitian form H\
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Vx V-^K. An ^-lattice in Fis said to be unimodular, if it coincides with its dual lattice.

We assume that (V, H) contains a genus of unimodular lattices. Denote by / the number

of distinct prime divisors of the discriminant d(K) of K. It is known that there exist

exactly 2 ' " 1 mutually nonisometric classes of such (V, H), if n> 1. They are param-

eterized by the local norm residues ε :=(sp = (d(V), K/Q)p; p | d(K)) of the discriminant

d(V) of (V, H) at the places dividing d{K), which are subject to the condition:

(0.3) Π £P=1 ( c f C32> Proposition 6.4]).
p\d(K)

Also, from a result of Jacobowitz [19], we know that the set of unimodular (Matrices in

(V, H) is divided into at most two genera with respect to the unitary group G: =

U(F, H). One, which always exists, is said to be normal and denoted by J£?o = J£?o(ε); and

the other, which occurs only if n is even and 21 d(K), is subnormal or even, and denoted

by £}

e = £?

e(ε). On the other hand, with respect to the special unitary group G{1): =

§U(F, //), <£\ and ££e are divided into an infinite number of genera.

0.3. Suppose first that n ( = dim V) = 2. We shall prove:

THEOREM 0.1 (n = 2). The class number A(1) of binary unimodular genus J£?(1) of

Hermitian Θ-lattices in (V, //), V=V(ε), with respect to the special unitary group,

depends only on the G-genus <£0 or <£e which contains 1£(1). Moreover, Λ(1) is given by

with

T3 = (C/3) Π (1 + εp( - 1/pX - 3/p)),
P

where the products are all taken over the prime divisors p ofd(K) such that pφ2, and the

constants A, B, C are given in the following table: (d=d(K))

d=oάά 4\\d d~S (mod32) d= - 8 (mod32)

±1

+ 1

A

B

1

1

3

3

6

2

6

2

±1
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d=oάά 4\\d </=8(mod32) d= - 8 (mod32)

1

^ A *

+ B *

*
1

*
1

3
1

1
1

1
3

1
1

0 2
2 0

0.4. Next we study the ternary case: « = 3, where we assume that our Hermitian

space (F, H) is the standard one. Namely H(x, >>)=Σ?=i Wΐ (x^e V-^K3). Then the

(unique) genus ^ = ^ 0 of unimodular lattices in (F, H) is represented by the standard

^-lattice Θ3, and it is called the principal genus.

THEOREM 0.2 (« = 3). The class number h{1) of a genus-£?{ί) with respect to the

special unitary group §V(V,H), which is contained in the principal genus JSf0, is uniquely

determined by S£\ and it is given as follows:

= l (resp. 2) ifK=Q(j^\\ β(V^3) (resp. Q(yf=2\ β(V^7)), and otherwise,

with

Ά =B3Jl44

T2 =

T3 =(A(A0/8)[3 + χ(2)+{ l+(2, K/Q)2}{\+(5, K/Q)2}]

T41=(h(K)/l2)[7-χ(3)]

Here χ denotes the Dirichlet character attached to K, and Bmχ denotes the m-th
generalized Bernoulli number attached to χ, h(K) is the class number ofK, and (c, K/Q)p is
the local norm residue symbol at p.

0.5. Here we recall briefly the known results on class number formulas of definite

Hermitian forms. In [15], Hayashida gave a formula for the class numbers of positive

unimodular Hermitian matrices of rank two, with coefficients in Θ, in connection with

his study of curves of genus two in the product of two elliptic curves having 0 as the ring

of complex multiplications. From [32, Theorem 2.14], we see that his result is the same

as our Theorem 0.1, in the case (F, H) is the standard Hermitian space so that ε =

(1, , 1), and <Sf = <Sfo is the principal genus. As was shown in [15], the class number in

the binary case is reduced to that of certain orders in a quaternion algebra over Q,
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which are in general not maximal, but the calculation is much easier than that in higher
rank cases. Also we refer simply to an item [6] in Math. Reviews, where F. T. Chu
announced a result on class numbers of positive Hermitian unimodular matrices of
ranks two and three over some rings of imaginary quadratic fields of class number one,
which contains an error at K=Q(J — 7).

0.6. This paper is organized as follows. In § 1, we give, without proofs, the lists of
characteristic polynomials of all torsion elements of our group G = U(F, //), in the cases
where the ranks are two and three. In §2, we shall give a proof of Theorem 0.1, for class
numbers of binary Hermitian forms. In §3 and §4, which are the most difficult and
laborious parts of this paper, we shall compute the contributions of each conjugacy
classes belonging to all possible characteristic polynomials/(X), in the case n = 3. Here
the calculations are reduced to the classification of the conjugacy classes in the local unit
group Up of the given lattice Lp over Θp, and the calculation of the masses of the
centralizers of each representatives of 'locally integral' conjugacy classes. In § 5, we
resume the results obtained before, and state our first main result for n = 3, in a slightly
more convenient way than Theorem 0.2. We also give a result on a relation between the
class numbers for U(F, H) and §U(K, H) in the ternary case, which is rather
remarkable compared with a general results which was given in [32]. In §6, we give
another application of our computation, which gives an explicit formula for the
dimension of automorphic forms on our special unitary groups (n = 3).

NOTATION. AS usual, (?, /?, C denote the fields of rational, real, and complex
numbers, respectively, and Z denotes the ring of rational integers. For an algebraic
object B over Q or Z, we denote by Bp the p-aάic completion of B. Thus Qp (resp. Zp) is
as usual the field (resp. ring) of /?-adic numbers (resp. integers). Also we denote by 2?A the
idelization of B. If G is a group, and H is a subgroup of G, we denote the set of H-
conjugacy classes in G by G // H, and its element containing g by [g]H. When H=G is a
β-group, we put simply [g]Q : = \g]G, [g]p: = [g]Gp, where G = GQ, Gp are the group of Q-
rational, <2p-rational points of G, respectively. Also, we denote by G(g) the centralizer of
g in G. The cardinality of a finite set S is written as #(£). Throughout this paper, K
denotes an imaginary quadratic field, and p denotes the non-trivial automorphism of
K/Q. For c e Qx, and a place v of Q, we denote by (c, K/Q)v the local norm residue symbol
of c, i.e., (c, K/Q)v = 1 or — 1 according as c is a norm of an element of K* or not. Notice
that we have (c/Q)v = (c, m)v (: = Hilbert symbol) if K=Q(ΛJm). Also we denote by
χ(*) = (K/*) = (d(K)/*) the Dirichlet character attached to K, where d(K) is the
discriminant of K. And we denote by t the number of distinct prime divisors of d(K).

The symbol (F, H) will denote a p-Hermitian space over K, i.e., Kis a vector space
over K which is equipped with a Hermitian form

H VxV^K, (x,y)^H(x9y) (x9yeV),

which we always assume to be nondegenerate. We denote by U(F, //), SU(F, H) the
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unitary group, the special unitary group of (V, //), respectively, which are often

abbreviated as G, G ( 1 ), throughout this paper. Also we denote by G(f) the set of semi-

simple elements of G whose characteristic polynomials are/(x). We shall use some more

standard notation frequently.

1. Characteristic polynomials of torsion elements. Our first task is to make a list

of F, the set of all possible polynomials which can make in (0.1) a non-trivial

contribution.

LEMMA 1.1. Suppose n = 2. Then F consists of the following polynomials:
(i) Generic case: d(K)Φ — 3 , - 4

, f3(-X),

(ii) Exceptional case: d(K) = — 3

M(-ωfX), M-ωfX) (k = 0,l, ;5), f2(X),

-ω), f3l((-ωfX) (k = 0, 1, , 5),

) , f32((-ώfX) (k = 0, 1, , 5),

(iii) Exceptional case: d{K) = — 4

MikX), MikX) (A: = 0,1,2,3), f3(±X),

f4l(X):=(X-l)(X-i), f4l(ikX) (k = 0,1,2,3).

Here, we put ω: = (— 1 + J — 3)/2, /: = ̂ J — 1, and, by abuse of notation, we write f{cX)
instead of c~2f(cX).

LEMMA 1.2. Suppose « = 3. Then F consists of the following polynomials:

(i) Generic case: d{K)Φ - 3 , - 4 , - 7 , - 8

MX) : = (X-l)3, A(-X),

f2(X) :=(X-l)(X+l)2, M-X),

f4l(X):=(X-l)(X2 + X+l), f41(-X),

f42(X):=(X-l)(X2-X+\), f42(-X).
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(ii) Exceptional case: d(K) = — 3

f21({-coyX) with f2ι(X):=f2(X),

f22((-ωyX), fU{-a>yX) with f22(X):=(X-l)(X-ωf ,

f23((-ωyX), fp

23((-ω)JX) with f23(X):=(X-l)(X+ω)2 ,

f31((-ωyX) with f31(X):=f3(X),

f32((-ωyX), fU(-co)JX) with f32(X):=(X-ω)(X2+l),

fA3((-ωyX), fZ3((-ωyX) with fι3(X):=(X-l)(X+l)(X-ω),

M±X), fp

Ί(±X) with fΊ(X): = (X3~ω),

where ω: = (-ϊ+J-3)/2J=0, 1, , 5, k = 0, 1, 2.
(iii) Exceptional case: d(K) = — 4

fiA<JkX), /Lit"*) with f2ι{X):=(X-\){X-ΐ)2,

, fU(ikX)

where i:=y/—l9 k = 0, 1, 2, 3.
(iv) Exceptional case: d(K) = — 7

(v) Exceptional case: d(K) = — 8

Here again, we write f(cX) instead of c~3f(cX).

We omit the proofs of these lemmas, since they are proved by quite elementary
computations.

2. Quaternion algebras and nonmaximal orders. Here we shall give a proof of
Theorem 0.1. Thus we assume, throughout this section, that n=άimκ(V) = 2.
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2.1. Let (V, H) be a non-degenerate Hermitian space of rank two over K. Fixing

an orthogonal basis, we identify V with Λ̂ 2, and write

Since any positive rational number can be represented by H, one can always find such a

basis. Then a direct computation shows that

(2.1) SU(K, H) = B(]SL2(K) ( =

where

is a (definite) quaternion algebra over β. The determinant det: B^Q(aK) coincides

with the reduced norm Nr of B. It follows that any element ξeBx defines a similitude

transformation on (F, H) such that H(xξ, yξ)=Nτ(ξ)H(x, y) for all x,yeV.

LEMMA 2.1. The following conditions are equivalent:

(i) i? w ramified at p (i.e., Bp is a division algebra).

(ii) (Vp, H) is anisotropic.

(iii) (-d(V%K/Q)p=-\.

The proof is immediate.

Let L be an ©-lattice in (F, H). We put

(2.2) R = R(L): = {geB,LgczL}.

It is clear that /? is a Z-order of 5 which contains Θ. From the above remark we have the
following:

LEMMA 2.2. (i) The class number of the genus of L with respect to the group

H L) (V, H) (= B x ) of direct similitudes is equal to the class number ofR. (ii) IfNΐ(R £) = Z\,

?/ze« ί/ze c/αss number of the genus of L with respect to the group SLI(K, //) ( = B{1)) is also

equal to that of R.

It is known by Shimura [26] that R is a maximal order if L is a maximal lattice in the

sense of [26]. However, this is not necessarily the case if L belongs to a genus if of

unimodular lattices. So we shall first study the structure of R. According to [32,

Proposition 6.4], the isometry classes of positive Hermitian spaces (V, H) containing a

unimodular lattice are parametrized by the discriminant d(V)εQx/NK/Q(KX) which

satisfies the condition

(d(V),K/Q)p=l for all p with

Putting Ei : = (d(V), K/Q)Pi (1 <i<t) for each prime pi| d(K), we then see that they are
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parametrized by the invariants β = (ε i)1^ i< ί, where ε f = ± 1 and they are subject to the

condition Γ L ε * = l I* follows immediately from Lemma 2.1 that the discriminant d(B)

of B is the product of pt (\<i<t) such that ( - 1 , K/Q)p. = -εi. If we write d(K) =

d+(K)- d~ (K) with d± (K) = Π Cί = ± i Pn then we have

(2.3) d(B) = 2δ( Π p)( Π If (5 = 0 or 1),
\p\d + (K) /\q\d-(K) /

p=-l(4) q=U4-)

where δ = 1 exactly in the cases where (K/2) = 0 and either

(i) ε(2): - (d( V), K/Q)2 = 1 and d(K) =12, - 8 (mod 32), or

(ii) ε(2) = - 1 and d(K) = 8 (mod 32).

2.2. Now let (V,H) be as above, with V= V(ε). Then from Lemmas 6.2, 6.3 of

[32], there are at most two genera of unimodular 0-lattices in (V, H) with respect to the

unitary group, which are distinguished by the property that one is normal and the other

is subnormal.

PROPOSITION 2.3. Let Lbe a unimodular Θ-lattice in (V, //), V= F(ε). Let B, R =

R(L) be as above. Then we have:

(i) If(p, d(K))=l, then Bp~M2(Qp) and Rp~M2(Zp).

(ii) IfpI d(K), (/?, d(B)) =\,andpφ2, then

Zn Z,

and we have [GL2(Zp): R£]=p+ 1.

(iii) If p\ d(K\p\ d(B), andpφl, then Rp is the {unique) maximal order of Bp.

PROOF. Note that the assertions (i), (iii) are contained in Shimura [26], since Lp is

a maximal (Pp-lattice in those cases. Also they are easily proved in the same way as in the

following proof of (ii). So we omit the detail. Let us prove (ii). By [32, Lemma 6.2], Lp

has an orthogonal basis so that we may assume

1

and Lp=Θp® Θp, where u = d(V)eZp. Then we have

a b\ , ) , _ / 0 1
\ Z.4j * ^ p -- i ^ j - _ ^ , v», ̂  v_ v. p ^ v . p , ^ p ^ , ~ . χ

We see that

0

form a Zp-basis of L and that

) e2=(°
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(2.5)

2

+ c

0

I o

ω + ωp

2ωωp

0

0

0

0

2w

0

0

2ωωpu

Moreover, it is easy to see that Rp contains a subring isomorphic to

0 Zt

It follows from Hijikata [16, §2.2], that Rp is GL2(Q )-conjugate to a split order

A direct computation similar to the above one shows that, for any Zp-basis ei (1 </<4)

of R(m), one has det(Ύv(eiej))Zp=p2mZp, from which follows m = l, as asserted, q.e.d.

PROPOSITION 2.4. Suppose p=2, p\d(K), and Lp is a normal unimodular Θp-
lattice in Vp. Assume further that ε(p) = \ (p = 2).

(1) Ifd(K) = 8 (mod 32), then we have (p, d(B)) = 1 and

(2.5)
x + (ay — bz)

x-(ay-bz)J'Λ'y^'

vv/zere a, beZp are fixed solutions ofa2 + b2 = d(K)/4, and we have [RQP' RO] = 3, where

(2) // d(K) Ξ 12 (mod 16), then we have p\ d(B) and

-b b

ά)'a'beΘp}=βp+πRoP,(2.6)

where ROp is the (unique) maximal order of Bp, and π is a prime element of RQP, and we

have[R*p:R;] = 3.

(3) // d(K) = - 8 (mod 32), then we have p \ d{K) and

(2.7)
a b

— b a
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where RQP is the maximal order of Bp, m = d(K)/4, and (a, b) is a fixed solution ofQP is the maximal order of Bp,
e have [RQP:

2rn = 3 (a, bel+pZp). Moreover, we have [RQP: Rp]=6.

PROOF. All these assertions are checked by direct computations, together with a

well-known criterion that, Rp is a maximal order of Bp if and only if det(Tr(eiey))Zp =

3p)
2Zp for a Zp-basis et (1 < ι < 4 ) of Rp.d(B)2Zp for a Zp-basis et (1 <i<4) of Rp. We omit the details. q.e.d.

We remark that the case treated in this proposition is the same as that in Hayashida

[15], although we employ different notation.

Next we suppose that ε(p) = — 1 (p = 2). The explicit form of Rp can be obtained

again by direct computations. In this case, however, it will be seen that we need only the

index [RQP'- Rp] for our class number calculation (see Remark 2.13).

PROPOSITION 2.5 (p = 2). Let the assumptions* be as in Proposition 2.4, with

s(p)=-L
(1) Ifd(K) = S (mod 32), then we havep\d(B) and [R*p: Λp

x] =6.

(2) // d(K) = 12 (mod 16), then we have (p, d{B)) = 1 and [R*p: R; ] = 3.

(3) // d(K) = - 8 (mod 32), then we have (/?, d(B)) = 1 and [R*p: R; ] = 6.

Proof is omitted.

Now we study the case where Lp is subnormal. According to [32, Lemma 6.3], we

may assume that

andLp=Θp® &p.

LEMMA 2.6. Suppose that

Then the group HU(F, H) of the direct similitudes is expressed as

β X = ί f ar-b^");a,b,c,deQp,ad-bcΦθ\.
l\cU/m a ) )

The proof is immediate. It follows that Bp~M2(Qp). We identify them by the

correspondence

/ a by/~m\ (a

PROPOSITION 2.7 (p = 2). Let the assumptions be as above.

(1) If d(K)= 12 (mod 16), then we have ε (/?)=-l , and Rp = M2(Zp\ so that
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(2) Ifd(K) = ±8 (mod 32), then we have ε(p) =±\,and

/ Z p Zι

\pZp Zp

so that [RQP: Rp]=p+l.

PROOF. This is an easy consequence from Lemma 2.2 and Lemma 2.6. q.e.d.

Next suppose that

'2 1

We can find UeGL2(Kp) such that

"=\12

Then it is easy to see that we have

B=UB0U~\ with B0

We identify B and i?0 by the inner automorphisms lnt(U).

PROPOSITION 2.8 (p =2). Let the assumptions be as above. Then we have p | d(B),

andε(p) = (3, K/Q)p=l, - 1 according as d(K)= - 8 , 8 (mod 32). In both cases, Rp is the

maximal order of the division algebra Bp.

PROOF. Put m = d(K)/4, m0 = m/2, and oc = yJm. Since the scaling of H by a scalar

in Qp does not affect the conclusion, we may take

2 \-}

Then a direct computation shows that, under the above identification, we have

/a+b a-ί

2\}{ά-b)ά+b)^u^"p\

Now putting

_ 1 I 1 1 \ 1 (\ -Γ

we have
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2 0 - 1 0

0 -2m 0 m

- 1 0 2 0

0 m 0 -2m

= -9m2e22-z:

It follows, by the criterion noted above, that Rp is a maximal order of Bp. q.e.d.

From the results for Rp above, we have:

COROLLARY 2.9. Let (V, H) be a binary positive definite Hermitian space over K,

and let L be a unimodular ΘΊattίce in V. Then for the Z-order R = R(L) of B, we have

Nr(jR A

x ) = Z A

X . Therefore the class number of the genus of L with respect to SD(K, H) is

equal to the class number of R.

2.3. Now we can apply Theorem 1.2 to obtain the class number of the genus 5£ =

&(L) with respect to the group §U(F, H) or HU(F, H). As for the group HU(K, H) =

Bx, the problem is reduced, by Corollary 2.9, to the class number calculation of the

order R in our definite quaternion algebra B, as has been done for the split orders by

Eichler [7] and others. Here we take this latter standpoint, rather than work with

SQJ(K, i/), because we can make use of known results on the arithmetic of quaternion

algebras as developed in [7], [16].

By Lemma 1.1, the characteristic polynomials of HU(V, H) = BX are f(X) =

(X-l)\ f2(X) = (X2+l), / 3 (J0 = (J!f2 + Λr+l), and M-X). We denote by Tt the

contribution from the elements of Bx to the formula (0.1), whose characteristic

polynomial i s / ( ± Z ) , where we take HU(F, H) = BX in place of G = V(V, H). Since B is

a simple division algebra over Q, we know that each of these elements are semi-simple

and they are conjugate in Bx if and only if they have the same characteristic

polynomials. Hence we have Ti=h([±g]; if), if g corresponds to f{X). We denote by

Rp(f) the set of semi-simple elements of Rp whose characteristic polynomials are f(X).

PROPOSITION 2.10 (f=fί).
Then we have

(2.8)

Let RQ be a maximal order of B containing R = R(L).

Π
p\d(B)

We have Ti=

PROPOSITION 2.11 (/ = / 2 , / 3 ) . (i) Suppose that

prime number.

= M2(Qp), where p is any
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(1) // Rp = M2(Zp), then we have cp(g, R;, Zp[g\x) = 1 for any ge Rp(f).

(2) //

Zp

then we have cp(g, R;, Zp[g]x) = l+(-l/p), or l+(-3/p)for geRp(f), according as

f=fi orf3.

(ii) Suppose that Rp is the maximal order of the division quaternion algebra Bp over

Qp. Then we have

or !-(-'.

according as f=f2 or f3.

These results are well-known (cf. [7], [16]).

PROPOSITION 2.12 (f=f2, f3). Suppose that p = 2,p\ d(K) and let Lp be a normal

unimodular Θp-lattice.

(1) If d(K) = % (mod 32), then we have cp(g, Rp, Zp[g]x) = 2, or 0, according as

f=fi or U

(2) If d(K)= 12 (mod 16), then we have cp(g, Rp , Zp[g]x) = 3, or 0, according as

f=f2 or U
(3) Ifd(K)= - 8 (mod 32), then we have cp(g, Rp, Zp[g]x) = 2, or 0, according as

f=f2 or f3.

PROOF. (1): By Proposition 2.4, we have

x + (ay — bz) w + (by + <
/i \ / i \ / ' " ^ ' Ĵ ' ^ '

— w + (by + az) x — (ay — bz)J

and [GL2(ZP): Rp]=6. It is easy to show that as representatives of GL2(ZP)/RX, we

can choose

ίθ l/'Vl l / ' \ 0 1/ \0 - l / ' V l - 1 / \0 - 1

Let

/0 - 1
g:={i o

be an element of Rp(f2), and let x be one of the above representatives. Then an

immediate check shows that one has

x'ιgχeR; only for x = [^ J , ^ J ,
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and that they belong to distinct double cosets in Qp[g]x \GL2(Qp)/Rp . This proves

that cp(g, Rp , Zp[g]x)=2. We note that for any element x of Θp9 one has Tr(x)epZp, so

that Rp(f3) = 0. This is also the case for (2) and (3).

(2): We see by Proposition 2.4 that Rp= ®p + πROp with π = 1 + yJ(d(K)/4) ( = a

prime element of RQP), and that πROpΓ\Rp = πRp. It follows that Rp is a normal

subgroup of RQP, and the quotient is Rop/Rp ^F p

x

2 /F p

x ( = cyclic group of order 3). It

follows that

for 9 = (^

(3): By Proposition 2.4, we see that i?0/,//λR0p~Fp2 + πF;,2 (π2 = 0), where

0

Let g be as above, and put g=oc + βU (α, βe Θp). Then we see that α ^ l + ̂ m , β = 0

(mod/?), and it follows that g= 1 + π (mod/?), and that

Now a direct computation shows that, for xeRop, one has x~ιgxeRp if and only if

(x mod/?)e 1 + Fp2π. Thus we get four representatives in RoJRp :

1, 1 + π , 1 + t/π, 1 + t ^ π (Observe U3 = 1 (mod/?)).

Two elements 1+απ, 1-Hj8π are easily checked to belong to the same Qp[g]x — Rp

double coset if and only if α — β e F p . So we have cp(^, Rp , Zp[g]x)=2. q.e.d.

Now we have all data that we need. Substituting them to our general formula (0.1),

(0.2), we get an explicit formula as stated in Theorem 0.1. We note, among others, that

the orders R(L) of B are all isomorphic when we let L vary in the G-genus ϊ£. Therefore

the class number Λ(1) depends only on <£.

REMARK 2.13. In gathering these local data, we have to take into consideration

the condition from the product formula \\ P\D(K) ε(p) = l Thus we see that T2 =0 except

in the case s(p) = 1 for all p, i.e., the case of principal genus. Indeed, if ε(p)=- 1 for

some p φ 2, then

(— 1 IP) = 1 <=>(— 1, K/Q)p =\oBp is a division algebra .

Therefore, we have Bp(f2) = 0 in this case. On the other hand, if (— l/p)= — 1, then

Proposition 2.3, (ii) implies that

R^\ _ zj,

and it follows from Proposition 2.11 that Rp(f2) = 0 . Also we note that if 21 d(K), then
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T3 =0 for the genera of normal unimodular lattices.

3. n = 3: Contribution from f2(X).

3.1. In this and the subsequent section, we calculate the contributions of non-

central elements of the unitary group to the class number formula for the principal

genus in the ternary case (n = 3). To be more precise, let (F, H) be the p-Hermitian space

defined in (0.5):

V=K3, H(x,y):=x ty<> (x9yeV).

We denote by G the unitary group U(K, H), and by !£ the principal genus represented

by the standard lattice L: = (93. We keep these notation in §§3, 4 and 5.

Throughout this section, we write/(Z) ϊorf2(X) = (X- l)(X+ I)2, and denote by T2

the contribution from G(f) to the formula (0.1). First we investigate, for each finite

place p, the set Gp(f) Π Up and the t/p-conjugacy classes in it. We follow the method of

Asai [2], which makes an essential use of the results of Jacobowitz [19] that we described

in [32, §6].

For any g e Gp(f)9 we put

Thus we have Vp=V1,p® V2p. Further, we put

By an Θp-sublattίce of Lp, we understand a free tf^-submodule of Lp (whose rank may

be less than three). For any 0p-sublattice A of Lp, we say that A is optimally embedded

in Lp if it satisfies Λ=(A®Θ Kp)Γ\Lp. Clearly the above LXp,L2p are optimally

embedded in Lp. Let π be a prime element of Kp. When Kp=QP Θ Qp, we put π=(p, p).

LEMMA 3.1 (cf. Asai [2]). (i) Suppose a, b are distinct elements of Θp such that
Nκp,Qp{a) = NKplQp(b) = \. Put φ(X) = (X-a)(X-b)2 and l=ovdπ(a-b). Let g be an

element of Gp(φ) Π ί/p, and put Aί = Vp(g- 6)"Π Lp, A2 = Vp'(g-a)Π Lp. Then the pair

{Au A2) satisfies the condition:

(3.1) (i) Ai is an optimally embedded Θp-sublattίce of Lp of rank i (i= 1, 2).

(ii) H(Al9 A2) = (0) (i.e., Λu A2 are orthogonal).

(iii) Λx ®A2^πιLp.

Conversely, suppose that a pair (Aί9 A2) satisfies the condition (3.1). Define an element g of

GLKp(Vp) by g\At=a, g\A2=b. Then g belongs to Gp(φ)ΐ)Upm Moreover, this cor-

respondence g i—>(Al9 A2) induces the following bijection:

Gp(φ) f\U // U ~{Up-equivalence classes of(Av A2) satisfying (3.1)} m
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Here (Λ1, Λ2) and (Λ[, A2) are said to be V^equivalent, if there exists heUp such that

(ii) In particular, when φ =f, the value of the above I is equal to

( 0 - pφ2

1= 1 ••• p = 2,

2 •• p = 2,(K/p)M

P R O O F . Here we prove only the surjectivity of the map in (i), since the other part

is proved quite easily. Suppose that (Λ l5 Λ2) satisfies (3.1), and let g be defined as above.

Then since Ax and A2 are orthogonal, g belongs to Gp. We show that geUp = V(Lp, H).

Let x be an arbitrary vector in Lp. By (3.1), (iii), we can write x~π~\x1^-x2) with

xίeΛί, x2eΛ2. Then we have

The definition of / shows that x geLp. Thus Lpg^Lp, hence ge Up. q.e.d.

3.2. From this lemma we see that there are at most two types of (Lί p, L2 p)

corresponding to an element of Gp{f) Π Up;

(3.2) Lp = LUp®L2,p (say) Type I

(3.3) Lp*Kp® L2,P^PLP ' (say) Type II.

Type I occurs in all cases, while type II appears only if /?=2. We say that a Up-

conjugacy class in Gp(f) Π Up is of type I or II, according as the corresponding pair

(Lx p, L2p) is of type I or II. First we treat the case of type I.

LEMMA 3.2. (i) If (K/p)^0, then Gp(f)ΠUp contains a unique Up-conjugacy

class of type I. It is characterized by

(d(L2 p), K/Q)p= + 1 , L2 p is normal unimodular .

(ii) If p φ2 and (K/p)=0, then Gp(f) Π Up contains two Up-conjugacy classes. They

are classified by the corresponding lattices L2 p with the conditions:

(d(L2 p), K/Q)p= ± 1 , L2 p is normal unimodular .

(iii) If p=2 and 4\\d(K), then Gp(f)ΓϊUp contains three Up-conjugacy classes of

type I. They are classified by the corresponding lattices L2 p with the conditions:

(d(L2 p), K/Q)p= ± 1 , L2 p is normal unimodular , or

(d(L2 p), K/Q)p= — 1 , L2 p is subnormal unimodular .

(iv) If p = 2 and 8\\d(K), then Gp(f)f)Up contains four Up~conjugacy classes of

type I. They are classified by the corresponding lattices L2 p with the conditions:
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(d(L2 p), K/Q)p= ± 1 , L2 p is normal unίmodular , or

(d(L2 p), K/Q)p= ± 1 , L2 p is subnormal unimodular .

PROOF. Let p be any finite place of Q, and suppose that Lp is written as Lp =
LI,P®L2,P = LLP®L2,P Then we have d(Lip), d(L'ip)eZp , hence LitP, L'ip are

unimodular (/= 1, 2) (see [32, Lemma 6.1]). Clearly, (LUp, L2 p) and (L'ltP, L2 p) are Up-

equivalent if any only if LUp and L[ p are isometric for i= 1, 2. From (6.3) and (6.4) of

[32] we see that (Lx p, L2 p) and (L[p, L2 p) are ί/p-equivalent if(K/p)= = + 1. Suppose

(K/p)^ + \. From [32, Lemmas 6.2, 6.3], we see that L2 p~L2 p implies Lx p~L[ p.

Then [32, Lemma 6.3, (ii)] shows the assertions in this case. q.e.d.

3.3 Next we suppose p = 2, and consider the case of type II. Suppose first that

(K/p) = + 1. Using the identification Vp = Q3

p® Q3

p, we put

(1 = 1,2),

and regard L® p as a Z -module in Qρ.

LEMMA 3.3. Suppose thatp =2 and (K/p) = + 1. Then Up(f) contains a unique Up-

conjugacy class of type II. It is characterized by the following lattices:

(3.4) L°,p = ZpXi , L°2,P = Zpx2 ® Zpx3

xx = ( 1 , 0 , 0 ) , x2 = (0,1,0), x3 = (l,0,/7).

P R O O F . Using (6.3) and (6.4) of [32], we see that it is enough to show that any pair

(L°tP, L2p) of type II is transformed to the one given in (3.4) by an element h of GL3(ZP)

( ^ Up). An easy argument on elementary divisors show the existence of such h.

q.e.d.

Suppose next that {K\p)Φ + 1. The following lemma, which is proved in Asai [2], is

essential in our calculation.

LEMMA 3.4. Suppose p = 2 and {K\p)Φ + 1. Let (Lγ p, L2 p) be a pair satisfying

(3.3). Then the Jordan splitting of each Li p is written as

rank

= Θp .

Using this, we can show:

LEMMA 3.5. Suppose that p = 2.

(i) If (K/p) = — 1, then Up(f) contains a unique Up-conjugacy class of type II, which

is characterized by
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(3.5) LUp=ΘpXl, L2»p=Gpx2, L2»p=Θpx3;

x , = ( 1 , 0 , 1 ) , JC2 = ( 0 , 1 , 0 ) , x 3 = ( l , 0 , - 1 ) .

Here we have (d(L2ιP), K/Q)p = - 1 .
(ii) If(K/p) = 0, Up(f) contains two Up-conjugacy classes of type II. Each class is

characterized by

(3.6)

(3.7)

KP= <VI .

Xl=(l,O,ε),

l+N(ε)epZp

Llp= &pXl ,

Xl=(l,O,ξ),

l + N(ξ)epZ;

Mυ

P= V 2 ,
x2 =(0,1,0),

x2 = (0,1,0),

-N(κ;)

L?P=&px3

x3 = (ε",0,

• • • (d(L2,t

*3=(£",0,

• (d(L2,

- i )

,),Λ7β),= + i

- i ) .

%K/Q)=-l.

(*) for NKp/Q (*).

PROOF. We prove (i). Suppose (K/p)= — 1, and let (Llp, L2 p) be an arbitrary
pair satisfying (3.3). It suffices to show that this is t/^-equivalent to (ΘpXί9 Θpx2 Θ ^ P ^ )
given by (3.5). Using Lemma 3.4, we put L2,p = L2\

)

p@L%)

p. Then [32, Lemma 6.2, (i)]
shows that Up acts transitively on the set of unimodular lines in Vp, if(K/p)= — 1. Thus
we can transform L{

2^p to Θpx2 by the ί/p-action, so we may assume that L{

2^p= Θpx2.
Then we can write LUp= Θp{a, 0, b), and L2

2)

p= Θp( — bp, 0, a) where a, b are elements of
Θp satisfying N(a) + N(b)=2. Then we can find ceΘp such that

?Ξθ(mod2), N(c)=l.

Now put

0

2

0

A straightforward calculation shows that he Up and Lx ph~ι = Θpxx, L{

2\h~ι = Θpx2,
L2

2)

ph~1= Θpx3. This completes the proof of (i). The assertions (ii) is proved by a similar
argument, so we omit the details.

3.4. Now we collect the above local results to obtain the G-conjugacy classes in
G(f) which are locally integral. For geG(f), we put

We abbreviate (Vi9 H\ Vt) as V{. Then we have
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(3.8) G(g) = V(V1)xV(V2).

By [32, Proposition 4.7], we see that the G-conjugacy class [g] is determined by {{d(V2 p),

K/Q)p}p which can take arbitrary values subject to the following condition:

(3.9) Π Jp
p< oo

From Lemmas 3.2, 3.5, we get the following:

PROPOSITION 3.6. Let f(X) = (X-l)(X+l)2. Then a G-conjugacy class [g] in

G(f) is locally integral if and only if (d(V2), K/Q)p= + 1 at any p such that pφ2 and

(K/p)Φθ. Hence there exist exactly 2ι or 2t~1 such classes in G(f)//G, according as

(K/2)=-\ or(K/2)Φ-l.

In order to know the contribution of each G-conjugacy class to our formula (0.1),

we choose a representative g of each class, and calculate the mass M(G(gr); V) for a fixed

V, and the indices Ind(<5p; g). According to the results of [32, §5] and (3.8), the

calculation of M(G(g); V) is reduced to that of the local density ocp(L2 p), where L2 p

corresponds to g as above. When L2 p is isometric to Θ2

P, this was given in Lemmas 5.2,

5.3, 5.4, and 5.5 of [32].

LEMMA 3.7. Suppose pφl, and let L2 p be as in Lemma 3.2, (ii) with

(d(L2,p), K/Q)p = ε. Then we have ̂ L2J = l(\-J—V1

LEMMA 3.8. Suppose p =2. Then we have:

(i) If(K/p)= — 1 and L2 p is as in Lemma 3.5, (i), then we have ocp(L2 p) = 9/4.

(ii) If(K/p) = 0 and L2 p is a normal unimodular lattice, then we have ocp(L2 p) = 2.

(iii) If(K/p) =0 and L2 p is a subnormal unimodular lattice, then we have (xp(L2 p) =

3 if4\\d(K); and ifS\\d(K) we have otp(L2p)=4 or 12, according as

°
l

We omit the proofs of these results, since they are proved by the same method as in

[32, § 5] (see also Otremba [24]). We remark that they are also proved by the method of

§2.

LEMMA 3.9. Let p=2, and let g e Up(f) be such that the corresponding lattice L2 p

is normal unimodular. Suppose further that #([g]0 Up// Up)=2, and let g, δ~ιgδp be

representatives of the two Up-conjugacy classes. Then:

(i) If (K/p) = + 1, then for the second class such that (d(L2 p), K/Q)p = + 1, we have

lnά(δp,g) = 3.
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(ii) If(K/p) = 0, then we always have lnd(δp,g)=4.

PROOF. We first prove (i). As in Lemma 3.3, we can replace Gp, Up by GL3(Qp),

GL3(ZP), respectively, and assume that g is the diagonal matrix diag(l, — 1 , —1). And

we may put

I 0

Then a direct computation shows that

0

b

d

It follows that

\nά{δp-g) = \

Next we prove (ii). We may put

Using Lemma 3.5, we see as in the case (i), that

ΠGL2(Zp)J = p + 1 .

1 0

where V(L2tP) denotes the group of isometries of L2 p. Denote by Uo the subgroup of

V(L2tP) given by the right hand side above. It is easy to show that #(ί/0 mod/?)<2, and

the equality holds if and only if Θ{

p\ the norm one group of Θp , contains an element η

such that η = 1 + π (mod/?), which is seen to be exactly the case %\\d(K). Now put

£/i: = U ( L 2 t P ) Π ( l + π M 2 ( Φ p ) ) , U2 : = V(L2,p) Π ( l + p M 2 ( Φ p ) ) .

Then we have [U(L2 p): C/J = 2 . Also it is not difficult to show, by direct computation,

that [Ux: U2]=4 or 2 according as 4\\d(K) or 8||έ/(A). q.e.d.

3.5. Now we can calculate the contribution T2 of the locally integral G-conjugacy

classes in G{f2) to the formula (0.1). Let {pl9 , pt} be the set of distinct prime divisors

of d(K). For a /-pie 8 = (ε l 5 , ε,) such that ε f = ± 1 , we denote by G(/ 2 ; ε) the locally

integral G-conjugacy class such that εi = d(d(V2), K/Q)Pi for / = 1 , 2, •••,/.

PROPOSITION 3.10. Suppose (K/2)= + 1.
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2 2 ί + 2 3

P R O O F . By Proposition 3.6, we have Π ί = i ε i = + 1 ^ x a representative g in

2; ε). We can assume that at each place p, the lattice L2 p corresponding to g ( e Up) is

normal unimodular, and (d(L2 p), K/Q)p= + l ai p = 2. Then by Lemma 3.7 and [32,

Theorem 5.6], we have

t

M(G(g); V)=M1(L1)xM2(L2) =(BUχ/2t)x(BUχB2/2t + 2)x Π

On the other hand, from Lemma 3.9, we have

Applying the following lemma, we get the assertion. q.e.d.

LEMMA 3.11. Let Xi9 Yt ( ! < / < / ) be indeterminates. Then we have an equality

is extended over the t-ples (εu , εt)

F h 1 Π F — F
i

Proof is omitted.

Now suppose that (K/2)= — 1. In this case (ε̂ ) can take arbitrary values. Suppose

first that Π i ε ί = + !• τ h e n for a n y αeG(f> <A))> w e n a v e W ^ X KIQ)P= + ! at /? = 2,

hence the ί/p-conjugacy class of g is of type I at p = 2. Thus in this case we have, in the

same way as above

(3.10) the sum of contributions of G(f; (εf)) for all (εf) such that f ] . εt = + 1 is equal to

(BUχ)\\d(K)\-l)/3 2t+\

Next suppose Π . ε / = - 1 - τ h e n f o r a n y aeG(f'-> (£dX we have (d(V2\ K/Q)p=-\ at
p = 2, hence it is of type II. By using Lemma 3.8, we have

(3.11) the sum of contributions of G(f; (ε )) for all (εf) such that Π i εf = " " 1 i s e c l u a l t o

(BUχ)\\d(K)\+l)/2t+\

From (3.10) and (3.11), we get:

PROPOSITION 3.12. Suppose (K/2)=—\. Then we have:
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Finally we suppose that (K/2) =0, and px = 2. In this case we always have f ] . εt =

+ 1. Fix geG(f; (εf)). As in the case (K/2)= +1, we may assume that the lattice L2 p is

normal unimodular at each p. Then from Lemma 3.7, we can show

(3.12)
= (|B. χ\BJ2' + 2)

On the other hand, from Lemma 3.9, we have

5 ••• 4||rf(K),ε1 = + l

17/3 ••• 4 | | r f ( K ) , β 1 = - l
(3.13)

P »„ 11/2 ••• 8\\d(K),Sl=(-l,K/Q)2

31/6 ••• 8\\d(K),El*(-l,K/Q)2.

From (3.12), (3.13) and Lemma 3.11, we now get:

PROPOSITION 3.13. Suppose (K/2) = 0, pί=2. Then we have

4. n = 3: Contributions from f3(X), f4i(X), and / 4 2 W In this section we study the

contributions to the formula (0.1) of the conjugacy classes which belong to f3(X) =

(X~\)(X2+\),f4l(X) = (X-\)(X2 + X+\% anάf42(X) = (X-\)(X2-X+\). We some-

times denote these polynomials simply by f(X). Throughout this section we assume

that our base field K is not equal to Q(yj — 1), β ( V ~ 3 )

4.1. We define the algebraic number θ by

••• i f

••• if f(X)=f4ί(X) or

Put M=K(Θ). Since we have assumed that d(K)Φ —3, — 4, M is a biquadratic field

containing K. Let TV be the real quadratic subfield of M. We denote by R, S the rings of

integers of A/, N, respectively, and by σ the notrivial automorphism of M/N. Also we

denote by d(M/N), d(N) the relative discriminant of M/N, and the discriminant of TV,

respectively.

We first note that some of the fundamental arithmetic properties of biquadratic

fields (containing an imaginary quadratic field), which we need in our study, are
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described, for example, in Hasse [14] or Fujisaki [8].

LEMMA 4.1. Let the notation be as above.

(i) Iff(X)=f3(X)wehave

) = - 4d(K)/d(N),

and iff{X)=f^(X) or &2(X), we have

= d(K)d(Q(ω))/d(N) = -3d(K)/d(N).

(ii) Suppose that f(X)=f3(X). Then M/N is unramified outside the places lying

above 2 and the infinite places. More precisely.

(a) If (K/2) φ 0, M/N is unramified outside the infinite places.

(b) If d(K)= 12 (mod 32), then 2 remains prime in TV, and it ramifies at M/N

(c) Ifd(K) = - 4 (mod 32), then 2 decomposes in N:2 = P0PQ, and Po, Pζ ramify at

M/N

(d) IfS\\d(K\ then 2 ramifies in N:2 = Pl, and Po ramifies at M/N

(iii) Suppose that f(X)=f41(X) or f4(X). Then M/N is unramified outside the

places lying above 3 and the infinite places. More precisely.

(a) If (K/3) Φ 0, M/N is unramified outside the infinite places.

(b) If d{K) = 3 (mod 9), then 3 remains prime in N, and it ramifies at M/N.

(c) Ifd(K) ΞΞ - 3 (mod 9), then 3 decomposes in N: 3=P0Pζ, and Po, Pζ ramify at

M/N

PROOF. The assertion (i) is shown in Fujisaki [8]. Assertions (ii) and (iii) are

proved easily by (i). q.e.d.

Now let g be an element of G(f). We define the subspaces Vu V2 of V=K3 by

V (g2+1) . . . f(X)=f3(X)

v-(g2-g+i) ••• f(X)=f42(X)

V2:=V.{g-\).

We often abbreviate the Hermitian space (Vh H\ Vt) as V{. By the Hasse principle for

conjugacy classes in G (cf. [32, Proposition 4.8]), we see that the G-conjugacy class [g]Q is

determined by the system {[g]p}p<oo of local conjugacy classes. Here each [g]p is

parametrized as follows:

(4.1) The case f(X)=f3(X).

(4.1 .A) Suppose (K/p) Φ + 1, and y/ — 1 φ Kp. This is easily seen to be equivalent to

either p=-l (mod 4), (K/p)=09 or p=29 KpΦQp(y]~^\). Then Gp(f)//Gp contains

exactly two conjugacy classes. Namely, it is determined by the invariant (d(V2p), K/Q)p,

which can take both values + 1.
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(4.1 .B) Suppose (K/p)# + 1, and Kp = Qp(^J- 1), which amounts to either p=-\
(mod 4), (K/p)=-l, or p = 2, Kp = Qp(yJ~^ϊ). Then Gp(f)//Gp contains exactly four
conjugacy classes described as follows: Put

Then [g]p is determined by the pair of invariants

((d(V2tPΛ), K/Q)p , (d(F 2 i P i 2 ) , K/Q)p)

which can take any values among (± 1, ± 1).
(4.1.C) Suppose (K/p)# + 1 and yJ~^ϊeQp; namely, p=\ (mod 4) and

(K/p)Φ + l. Then Gp(f)//Gp contains a unique conjugacy class, for which we have

(4.1 .D) Suppose (K/p) = + 1. Then Gp(/) // Gp contains a unique conjugacy class,
for which we have (d(V2p\ K/Q)p= + 1.

(4.2) 77* casef(X)=f41(χ) or fA2(X).
(4.2.A) Suppose (K/p)Φ + 1 , and ωφKp. This is easily seen to be equivalent to

either p = - 1 (mod 3), (K/p)=0, orp = 3,KpΦQp{ω). Then Gp(f)// Gp contains exactly
two conjugacy classes. Namely, it is determined by the invariant (d(V2 p), K/Q)p, which
can take both values ± 1.

(4.2.B) Suppose (K/p)^ + \, and Kp = Qp(ω), which amounts to either p=—\
(mod 3), (K/p)=-l9 or p = 3, Kp = Qp(ω). Then Gp(f)//Gp contains exactly four
conjugacy classes described as follows: Put

f V2y{g-ω2) Γ V2y(g-ω) f(X)=f4l(X)

\

Then [gf]p is determined by the pair of invariants

((^2,p,lX K/Q)p , (rf(̂ 2,p,2

which can take any values among ( ± 1 , ±1).
(4.2.C) Suppose (K/p)Φ + 1 and ωeQp; namely, p=\ (mod 3) and (K/p)Φ + 1.

Then Gp(f) // Gp contains a unique conjugacy class, for which we have (d( K2 p), K/Q)p =

(4.2.D) Suppose (K/p) = + 1. Then Gp(f) // Gp contains a unique conjugacy class,
for which we have (d( F2 p), A/β)p = -h 1.

These assertions are obtained directly from [32, Proposition 4.6]. Also, from [32,
Proposition 4.7], we see that the range of the system {[^]ί7}p<o0 is determined by the
following conditions:

(d(V2tP),K/Q)p= + l for almost all p,

(4.3) (d(V2pj), K/Q)p= + 1 for almost all p (j= 1, 2) in the cases (4.1.B), (4.2.B),
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and

4.2. Now we consider the parametrization of the £/p-conjugacy classes. Let Lp be

the standard lattice Θρ, and put

Therefore, L2 p (together with the restriction of//) is a p-Hermitian 0p-lattice of rank

two. Moreover, it is an 0p[0]-module contained in the Mp-module V2p, where the Mp~

module structure is defined via x-θ=x g (xe V2p). Then there exists a unique 0p-order

R'p of Mp such that Rp=> Θp[θ], and L2 p becomes a proper /? ̂ -module. Recall that L2 p is

called a proper /?p-module, if one has

It is easy to see that if we replace g by u~ιgu (we Up), then we get L2 p u instead of L2 p,

and an isomorphic proper /?p-module structure on it. Thus, in order to know the Up-

conjugacy classes in Up(f) (: = Gp(f)nUp), we may assume that £ 2 , P ( ^ V

P)
 i s a fixed

representative in a Up-oτbit. Then the £/p-conjugacy class of g is completely determined

by the ί/p-equivalence class of the proper R^-module structure on L2p.

However, in many cases it turns out to be enough to know the U(£2,p)-equivalence

class of it. The latter is described as follows. Suppose that a proper R ^-module structure

is given on the (fixed) L2 p. We always assume that the action of θ belongs to U(L2>JI).

LEMMA 4.2. Let Rpbean Θp-order in Mp. Then any proper Rp-ideal in Mp is a free

Rp-module of rank one.

When Mp is a field, this result is well-known (cf. Ihara [17]). When Mp is not a field,

we can prove it by componentwise argument. The detail will be omitted. By this lemma,

we may write L2 p = xRp, where xeL2 p is uniquely determined modulo (R'p)
x. Then

we see (cf. [32, § 4]) that there exists a unique z e Np such that the equality

holds for any a, beRp. The class of z modulo NM /κ ((Rp)
x) is uniquely determined by

the proper /?p-module structure on L2 p.

LEMMA 4.3. The above correspondence induces the following canonical bijection:

V(L2 p)-equivalence classes of

proper Rp-module structures

on L2p

«R'PY).
I N«RP

Here {Rp/L2 p} denotes the set ofallzeNp such that the Θp-lattice R'p, equipped with the

p-Hermitian form (a, b) i—>TrM /κ (zabσ)), is isometric to {L2 p, H\L2p).
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Note that the set {Rp/L2p} is stable under the multiplication by any element of

NM IN ((Rp)
x). This lemma is verified easily and we omit the proof. The next lemma is

an integral version of [32, Lemma 4.3].

LEMMA 4.4. Let Rp be an Θp-order of Mp containing Θp[θ]. For each Θp-basis

{aua2} ofRp,put

ARp[au a2]: =άe\(ΊτMplKp(aflΐ)hk).

Then ΔR [ax, a2] belongs to Qp Γ\NM /N (Mp); and its class modulo Nκ /Q (Θp) does not

depend on the choice of ax, a2. Moreover, we have the following relation:

d(R'p, ΊrMplKp{zab°)) = ΔRp[aι, a2]-NNplQp(z) (mod NKplQr(β;)) .

We shall abbreviate ΔR [ax, a2] as Δκ , if there is no fear of confusion.

LEMMA 4.5. Suppose that either (i) p#2, (ii) p = 2, (K/p) # 0 , or (iii) p=2,4\\d(K),

(d(L2 p), K/Q)p= + 1. Moreover, suppose that L2 p is unimodular. Then the set {R'p/L2 p}

coincides with the set of all zeN* satisfying

(4.4)
NKplQp(

PROOF. In the above three cases, the isometry class of a unimodular plane is

determined by its discriminant (see [32, § 6]). The assertion follows from this and Lemma

4.4. qe.d.

From the above results we see that the 0p-order Rp which is attached to an element

of Up(f) plays an essential role in the description of Up(f) // Up. Thus we need the

parametrization of all such orders. Calculating the discriminant of Θp[θ], one can easily

prove the following two lemmas.

LEMMA 4.6. Suppose f(X)=f3(X) and let p be a finite place of Q.

(i) If either p Φ 2, or p = 2, (K/p) φ 0, we have Θp[θ] = Rp( = the maximal order of

Mp). Moreover, we have

(ii) Suppose that p~2, 4\\d(K), and let π be a prime element of Kp. Then the Θp-

orders of Mp containing Θp[θ] are ordered as

where RjtP:= (9p-\-πjRp. Moreover, we have
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(iii) Suppose that p = 2, S\\d(K), and let π be as above. Then the (9p-orders of Mp

containing Θp[θ] are ordered as

with Rj,p'.= Θp + πjRp. Moreover, we have

e p (π) , ARlp^4 (mod

LEMMA 4.7. Suppose thatf(X) =fA1(X) orf42(X), and let p be a finite place of Q.

(i) If either pφ3, or p = 3, (K/p) φ 0, we have Θp[θ] = Rp( = the maximal order of

Mp). Moreover, we have

(ii) Suppose that p = 3, (K/p)=0, and let π be a prime element of Kp. Then the

orders of Mp containing Θp[θ] are ordered as

with Rj,p:= Θp + πJRp. Moreover, we have

p(π), ΛRlιp = 3 (mod

4.3. We shall now determine the ί/p-conjugacy classes in Up(f). Firstly we see that

there are cases (Lemma 4.8, 4.9), which are settled quite easily.

LEMMA 4.8. Suppose f(X) =f3(X) andpφl.

(i) Assume that [g]p C\UpΦ0, and define Lx p,L2 p as above. Then Lp splits as Lp =

Llpφ L2 p, hence each Lt p is a unimodular Θ^lattice. Moreover, the unimodular plane

L2 p becomes a proper Rp-module in the above manner.

(ii) The condition [g]p f]UpΦ0 is satisfied by a unique Gp-conjugacy class in Gp(f).

In the case (4.1.A), it is characterized by (d(V2 p), K/Q)p= + 1 . In the case (4.1.B), it is

characterized by (d(V2ψPJ, K/Q)p= + 1 (/= 1, 2).

(iii) For the class [g]p as in (ii), the set [g]p Π Up consists of a single Up~conjugacy

class.

PROOF. First we prove (i). Suppose [g]pftUpΦ0. We may assume that ge Up.

Note that g2 belongs to Up(f2). By applying Lemma 3.1 to (Llp, L2 p), we have Lp =

I 1 ) P 0 L2 p. Also, Lemma 4.6, (i) shows that Θp[Θ] = Rp so that L2p is a proper Rp-

module. Next we prove (ii). By Lemma 3.2, the ^-equivalence class of L2 p is determined

by (d(L2 p), K/Q)p. Since L2 p admits a proper /^-module structure, we see from Lemma

4.3, 4.5 together with Lemma 4.6, (i), that there exists ze(l/2)Sp such that

NNp/Qp(2z)==d(L2p) modNKp/Qp(Θp). Now suppose that the situation is as in (4.1.A).

Then Mp/Np is unramified by Lemma 4.1, (ii), hence 2zeNM /N (Mp). Therefore we

have (d(L2 p), KjQ)p=-\-\. Next suppose we are in (4.1.B). Then we can write Mp =
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Kp@Kp, Np=Qp®Qp. Here Kp/Qp is unramified, since pφl. So again we have

2zεNMp/Np(M;). Writing 2z = (z1,z2), we have (Zj9K/Q)p = (d(V2tPj)9 K/Q)p= + \

(7 = 1,2). Finally we prove (iii). It suffices, by Lemmas 4.3, 4.5, to show that if
NNP/QP(

2Z)ENKP/QP(®P*) {^z^sp\ then 2z should be an element of NMp/Np(Rp). Since
P Q P P P

Rp is the maximal order, this in fact follows from the translation theorem in local class

field theory. q.e.d.

By a similar argument, we have the following:

LEMMA 4.9. Suppose f(X) =/ 4 1(JQ or fA2(X), andpφ3.

(i) Assume that [g]p0 UpΦ0, and define LίfP, L2 p as above. Then Lp splits as Lp =

Llp® L2 p, hence each Lt p is a unimodular Θp-lattice. Moreover, the unimodularplane

L2 p becomes a proper Rp-module.

(ii) The condition [g]p Γ\UpΦ0 is satisfied by a unique Gp-conjugacy class in Gp(f).

In the case (4.2. A), it is characterized by (d(V2 p ), K/Q)p = (3, K/Q)p. In the case (4.2.B), it

is characterized by (d(V2tPtj)9 K/Q)p= + 1 (j= 1, 2).

(iii) For the class [g]p as in (ii), the set [g]p Π Up consists of a single Up-conjugacy

class.

Now we treat the remaining complicated cases. To avoid unnecessary work, we first

make the following observation, which follows from the condition (4.3), together with

the results in Lemmas 4.8, 4.9.

LEMMA 4.10. Let [g]Q be a locally integral G-conjugacy classes in G(f). Then we

have:

(i) / / / ( I ) = / 3 ( I ) , then the corresponding subspace V2 satisfies (d(V2 p), K/Q)p =

+ 1 at p=2.

(ii) Iff(X)=f4i(X) orf42(X), then V2 satisfies (d(V2tP), K/Q)p = (3, K/Q)p atp = 3.

From now on, we treat only such Gp-conjugacy classes, at/? = 2 or 3, that appear in

the above lemma. It is easily seen from (4.1) and (4.2), that such a Gp-conjugacy class is

unique, except in the cases:

(A) f{X) =/3(JT), p = 2, and d(K) = - 4 (mod 32),

(B) f{X)=U{X)JA2{X\p = 3, and d(K)~ - 3 (mod 9).

Before we study these cases in detail, we fix notation. We denote by π a prime element of

Kp, and by &ι\ M ( 1 ) the unitary group of one-dimensional Hermitian spaces over K/Q,

M/N:

For any geUp(f), we attach (Lx p, L 2 > p )as before, and define the types of them as

follows (cf. §3):

Type I :Lp = LUp®L2^p

Type I I : Lp^Llp® L2
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with

f(X)=f3(X), p = 2
(d(L2,p),K/Q)p =

If (Kjp)= + 1 , we substitute (£?,p, L2p) for (Lγ p, L2 p) as in §3; namely, writing Vp —

yl®V°p, V°p = Q3

p, L°p = Z% we have LlP:=LUpO(V°p® {0}). We regard L\p as a Z p-

module contained in V°p. Then the type of (L° p, L^ p) is defined in the same way as

above.

LEMMA 4.11. For any ge Up(f) which belongs to a Gp-conjugacy class satisfying

the conditions of Lemma 4.10, the corresponding pair (Lx p, L2 p) (or (L^p,L2p) if

(K/p) = -h 1) belongs to one of the two types defined above.

PROOF. Consider the action of g2 (resp. g2-\-g) when f=f3 (resp./u or/^)- Then

we get easily the assertion, as in the proof of Lemma 4.8, (i). q.e.d.

Let us assume Uiditf(X)=f3(X) and/?=2. There are five cases (\)-(S) to be consid-
ered separately.

Case (1): (K/p)= + 1 (f=f3lP=2). In this case X2+l is irreducible over Qp and

Gp(f) consists of a single conjugacy class. It satisfies (d(V2), K/Q)p= + 1 .

LEMMA 4.12. Suppose f(X)=f3(X\ p = 2, and (K/p)= + 1. Then L2 p becomes a

proper Rp-module and there is a unique Up-conjugacy class of each type. Let [g]v (resp.

[δ~ιgδ]v , δsGp) be the Up-conjugacy class such that the corresponding (L°lp, L2p) is of

type I (resp. type II). Then we have

PROOF. Let (L°lp,L°2p) be a fixed representative (cf. Lemmas 3.2, 3.3). By

Lemma 4.6, (i), we see that Zp[Θ]=Zp[j^l] is the maximal order of QP(ΛJ-1), hence

L2 p is a proper i^-module. Therefore our ί/p-conjugacy class of type I is unique. Sup-

pose that (£?,p, L2p) is of type II. We may assume it to be as in (3.4). It is then easy to

see that L6

p is a free module with basis (0, 0, 1) over the ring Zp[(l, y/— 1)]. It follows

from Lemma 4.3 that our t/p-conjugacy class of type II is also unique. Now these argu-

ments show that, if we identify G(g)p with Qp x Qp(-sJ — l ) x we have

Since the right hand sides are the same, we get the last assertion. q.e.d.

Case (2): (Kjp)= -1 (f=f3;p = 2). In this case X2+ 1 is irreducible over Kp and

Gp(f) consists of a unique Gyconjugacy class such that (d(Vp), K/Q)p= + 1. Suppose

that geUp(f). Lemma 3.5, (i) shows that for any geUp(f), the corresponding
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(LίtP, L2 p) is of type I, so that Lp = Llp@L2p. Let L2 p be fixed. Then an argument

similar to that in the proof of Lemma 4.8, (iii) gives the following result.

LEMMA 4.13. Suppose f(X)=f3(X)9p = 29 (K/p)=-l, and(d(V2tP), A/β) p = + l.

Then (LίtP, L2 p) is of type I, and L2 p becomes a proper Rp-module. Moreover, Up(f)

contains a unique Up-conjugacy class of this type.

Case (3): d(K) =12 (mod 32) (f=f3;p=2). In this case we may put Kp =

Qp(y/-5)9 Θp=Zp[y/-5l and π - l + V 3 ^ Here X 2 + l is irreducible over Kp and

Gp(f) contains a unique conjugacy class such that (d(Vp\ K/Q)p= + 1 .

LEMMA 4.14. Suppose f(X) =f3(X), p=2, and d(K) = 12 (mod 32). Then there is
no element of type II in Up{f).

PROOF. Suppose there exists an elment ge Up(f) of type II. By Lemma 3.5, (ii),
we may put

LUp=ΘpXι, L2>p

xi=(hθ9yf=5), x2 = (0,1,0), x3 = ( - V ^ 5 , 0 , - 1 ) .

Put th = (tx1, *x2, *x3) and g0 =hgh~1. Then we see that g0 is written in the following form

/I 0 β\

% = I 0 a b I a9 b e Θp , NKplQp{a) + 6NKp/Qp(b) = 1 , TτKp/Qp(a) = 0 .

\ 0 -6bp ap'

Calculating the (1, l)-entry of g = h~ιgQheGL2){Θp\ we have 1 + 5flp = 0 (mod 2). This is

a contradiction, because rTτKp/Qp(a)=0. q.e.d.

Next we suppose that (^i,p, L2 p) is of type I. By Lemma 3.2, (ii), L2 p is normal

unimodular, which we assume being fixed.

LEMMA 4.15. Suppose f(X)=f3(X),p = 2, d(K)=\2 (mod 32), and (d(V2tP)9

K/Q)p= + 1. Then (Lx p, L2 p) is of type I, and we have the following assertions.

(i) L2 p is either a proper RQ p-module, or a proper R2 p-module.

(ii) There is a unique Up-conjugacy class [g]v of this type such that the correspond-

ing L2 p is a proper Ro p-module. Let δ run through a complete set of representatives in

G(g)p\Gp/Up such that δ~ιgδeUp and L2p corresponding to δ~xgδ is a proper R2 p-

module. Then we have

P R O O F . First we prove (i). By Lemma 4.3, it suffices to show that {RjtP/L2tP} Φ 0

if and only ify = O or 2. From Lemmas 4.5 and 4.6, (i), we have



POSITIVE DEFINITE UNIMODULAR HERMITIAN FORMS 201

and

Since N/Q is unramified at p=2 (cf. Lemma 4.1), we see that {Rι,p/L2 p}=0. .Next

we prove (ii). The above expression and the translation theorem in local class field

theory show that {Ro,P/
L2,P}=NMp/Np(Ro,P)' This, together with Lemma 4.3, shows

the uniqueness of [g]v . Similarly, we see that the number of (5's is equal to

p p P P

Now put R(j]p: = M^ Π Rfp. Then it is easy to see that, for any δ as above, one has

[G(g)pnUp: G(g)pϊ\δUpδ-ι] = [R^p: R2

ι\\ We thus have

q.e.d.

Case (4): d(K)=—4 (mod 32) (f=f3;p=2). In this case we may put Kp =

Qp(yJ—lX ®p = Zp[yJ-l], and π = l + > / —1. Here X2+\ is decomposed over Kp as

(X+y/ —l)(X—y/ — 1), hence Gp(f)//Gp contains exactly two conjugacy classes such

that (d(V2 p), K/Q)p= + 1. They are distinguished by the invariant

t2), K/Q)p (= ± 1),

where V2pj is as in (4.1.B).

By an argument similar to that in Case (3), we see that there is no such element of
type II in Up(f).

Let {Lx p, L2 p) be a pair of type I, where L2 p is assumed to be fixed.

LEMMA 4.16. Suppose f(X)=f3(X), p=2, d(K)=-4 (mod 32), and (d(V2tP),
KIQ)P= + 1. Then C î,P>

 L2, P)
 is of type I, and we have the following assertions:

(i) L2 p is either a proper RQ p-module, or a proper R2 p-module.

(ii) There are exactly two Up-conjugacy classes [g^u , [g2]u of this type such that

the corresponding L2 p are proper R^ p-modules. They belong to distinct Gp-conjugacy

classes', [g^pφ [g2]P- For i= 1, 2, let δ = δ(i) run through a complete set of representatives in

G{gi)p\GpIUp such that δ~1giδeUp and L2 p, which corresponds to o~*gfi, is a proper

R2 p-module.

Then we have
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PROOF. We have Mp = Kp® Kp, NP=QP® Qp, Rp = R0,P = ®P® 0P, and Sp =

Zp® Zp. These expressions, together with Lemmas 4.5, 4.6, (ii), show that

^ {RiJL2,p} = 0 .

(i) follows from this. We also see that {R0,plL2p}jNM /N (Rp) is represented by two

elements (1,1) and (ε, ε), where εeZp, (ε,K/Q)p= — l. They correspond to \gι\Up,

[02]u Finally using the argument in the proof of Lemma 4.15, (ii), we have

Now it is easy to see that [R£2 '- Ri,P] = 2. q.e.d.

Case (5): i\\d(X) (J=f3;p = 2). In this case X2+l is irreducible over Kp and

Gp(f)//Gp contains a unique conjugacy class such that (d(V2 p), K/Q)p= + 1 . As in

Cases (3), (4), we see that there is no element of type II in Up(f). But in the present case,

the £/p-conjugacy classes of type I are divided into two subtypes, which we have to treat

separately:

typel-l : Lp = LUp®L2,p, (d{L2p\ K/Qp)= + 1 ,

L2 p is normal unimodular ,

type 1-2: Lp = LUp®L2,p, {d{L2^ K/Qp)= + 1 ,

L2 p is subnormal unimodular .

Let (Lx p, L2 p) be of type l-k (k = 1, 2), with L2 p being fixed.

LEMMA 4.17. Suppose f(X)=/3(X), p = 2, S\\d(K), and (d(V2tP), A/β) p= + l.

Then (Lj p, L2 p) is of type 1-1 or 1-2. Moreover, we have the following assertions:

(i) L2 p is a proper Rx p (resp. ROpymodule, if it is of type 1-1 (resp. 1-2).

(ii) There is a unique Όp-conjugacy class [g]v such that the corresponding L2 p is a

proper RQ p-module. Let δ run through all representatives ofG(g)p\Gp/Up such that δ~ιgδ

is an element of Up and of type 1-1. Then we have

ΣlG(g)pΠUp: G{g)pKδUpδ-i] = 2.
δ

PROOF. Let L2p be a unimodular plane such that (d(L2 p), K/Q)p= + 1. Then, by

Lemma 4.4, {Rjp/L2p} is contained in the set of all zeNp satisfying (4.4), with RjtP

instead of Rp. From this fact and Lemma 4.6, (iii), we have
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Now, let ω be a prime element of Np. Since 8\\d(K), we see that the different of Np/Qp is
2ω Sp, hence we have

TrMplKp(zaaσ)eΎrNplQp(z Sp) = 2Zp (aeR0,p)

for any ze{R0,p/L2p}. Therefore L2 p is a subnormal lattice if it is a proper ROp-
module. Thus we have shown (i). It follows that the equality holds in the inclusion (*);
above, if either

j=0, L2 p = subnormal, or 7 = 1 , L2 p = normal.

Then the assertion (ii) can be proved by an argument similar to those in the proof of the

preceding lemmas, with the fact that [Ro,p: Rΐ,p\ = 2 q.e.d.

Now let f(X)=f41(X) or f42(X), and p = 3. There are four cases (6)-(9) to be
considered separately. However, in some cases the arguments are quite parallel to those
in the above. So we shall omit the proof in such cases. We first note that to study
Upifii)// Up is simpler than Up(f41)// Up, because of the following:

LEMMA 4.18. Suppose f(X)=f42(X) and p = 3. Then, for any element of Up(f)
which satisfies the condition of Lemma 4.10, (ii), the corresponding (L1 p, L2 p) is of type I.

This is proved easily by Lemma 3.1 (cf. Proof of Lemma 4.8, (i) or Lemma 4.11).
Case (6): (K/p)= + l. (f=f*1J42;P = 3)- In this case X2±X+\ are irreducible

over Qp and Gp(f) consists of a single Gyconjugacy class. It satisfies (d(V2 p), K/Q)p =
(3, K/Q)p.

LEMMA 4.19. Suppose that f(X) =/ 4 1 (X) or f42(X\ p = 3, and {Kip) = + 1.

0) Iff(X)=f42(
x\ then (A,p> L2,p) is of type I, L2p is a proper Rp-module, and

Up(f) consists of a unique Up-conjugacy class.
(ii) Iff(X)=fArl(X), then for each type, L2 p is a proper Rp-module and there is a

unique Up-conjugacy class of that type. Let [g]v (resp. [δ~ίgδ]u ,δeGp) be the Up-
conjugacy class of type I (resp. type II). Then we have

[G(g)p0Up: p p

Proof is omitted (see the proof of Lemma 4.12).

Case (7): (K/p)=-\ (/=/4 1,/4 2;/> = 3). In this case, X2±X+\ are irreducible
over Kp, and Gp(f)//Gp contains a unique class such that (d(V2 p), K/Q)p = (3, K/Q)p

LEMMA 4.20. Suppose that f(X)=f41(X) or f42(X), p = 3, and (K/p)=- 1.
(i) Iff(X) =A2(n then [g]p ΠUp = 0.
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(ii) Iff(X)=f4_ι(X), then (Lγ p, L2 p) is of type II, and L2 p is a proper Rp-module.

There is a unique Up-conjugacy class in [g]p Π Up. Moreover, we have

PROOF. We first prove (i). Suppose that [g]pdUpΦ0, and let (Lx p, L2 p) be the
pair corresponding to an element of this set. By Lemma 4.18, this is of type I, hence L2 p

is unimodular. Then we have (d(L2 p), K]Q)p= + \ (note that (K/p)^0), which is a
contradiction. Next we prove (ii). From the above we see that (LίtP, L2 p) is of type II,
and by Lemma 4.7, (i), L2 p is a proper /^-module. Here an argument similar to that in
the proof of Lemma 3.5, (i) shows that any (LίtP, L2 p) of type II can be transformed by
the t/p-action to the following:

B &Pχ3

Xl=(l, 1, 1), x2 = (P, 1,-1), JC3 = ( - 2 , 1, 1).

So we assume that (Llp, L2 p) is this standard one. Then it is easy to see that {Rp/L2p}
coincides with the set of all zeNp satisfying (4.4), with Rp instead of Rp. It follows from
this and Lemma 4.3, that there is a unique V(L2 p)-equivalence class of proper Rp-
module structures on L2 p. This means that, for any gί9 g2e Up corresponding to the
a b o v e (LίtP9 L2 p ) , t h e r e exis t s heGp s u c h t h a t h~1g1h=g2, Lλ p-h = L1 p, a n d L2 p-h =

L2 p. N o w w e p u t tx: = (tx1, *x2,
 tx3)(eGL3(Kp)), gι =x~1u1x, g2=x~1u2x (uί9 u2e Up),

and h = x~xυx. Then we have v~1u1v = u29 and we may write

Ί 0\ _ / l 0\ _/c 0

/' " 2 \0 5 2 / ' ^"VO T

Then T is seen to have the form

a b

-3εbp εap

with a,b,εe Θp, N(a)+3N(b)=l, N(έ) = \ (N(*) = NKp/Qp(*)). Then, a straightforward
calculation shows that we have

heGL3(Θp)oc~1εap = l (mod/?).

Therefore, replacing c by — c if necessary, we can find h in Up. It follows that [g]p Π Up

consists of a single ί/p-conjugacy class. By a similar argument, we have

[G(g)p:G(g)p0Up]=4.
q.e.d.

REMARK. In the assertion (ii) above, [g]pC\Up^0 is easily seen. Indeed the
element
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belongs to this set.

Case (8): d(K) = 3 (mod 9) ( / = / 4 i , / 4 2 ; ^ = 3). In this case we may put K=

Qp(yJ~ΐ\ &P = Zp[yfTl and π=JT. Here X2±X+\ are irreducible over Kp and
Gp(f)//Gp contains a unique conjugacy class such that (d(V2p), K/Qp) =

LEMMA 4.21. Suppose that f(X) =f^(X) or f42(X% p = 39 and d(K) = 3 (mod 9),
and(d(V2tP)9K/Q)p=-l.

(0 Iff(X)=f42(X)9 t n e n (Lx p, L2 p) is of type I, L2 p is a proper Rp-module, and

Up(f) contains a unique Up-conjugacy class of this type.

(ii) Iff(X)=f41(X), then L2p is a proper R^p (resp. RUp)-module if(LUp, L2p) is

of type I {resp. type II). There is a unique Up-conjugacy class [g]v of type I. Let δ run

through all representatives ofG{g)p\GpjUp such that δ~1gδ belongs to Up and is of type II.

Then we have

δ

Proof is omitted (see the proof of Lemma 4.20).

Case (9): d(K)=—3 (mod9) (/=Λi ? Λ2;/ 7 =3). In this case we may put Kp =

QPU^X &P = Zp[yJ^3], and π = yJ~^3. Here X* + X+l (resp. X*-X+\) is decom-

posed over Kp as (X-ω)(X-ω2) (resp. (X+ ω)(X+ ω2)), hence Gp(f)//Gp contains

exactly two conjugacy classes such that (d(V2 p ), K/Q)p = (3, K/Q)p ( = +1). They are

determined by the invariant (d(V2tPΛ), * / β ) p = (rf(K2fPt2), K/Q)p (= ± 1).

LEMMA 4.22. Suppose thatf(X) =/ 4 1(JQ orf^X), p = 3, and d(K) = - 3 (mod 9),

(i) If f{X)=fA2(X\ then (LίtP,L2tP) is of type I, L2 p is a proper Rp-module.

Moreover, Up(f) contains two Up-conjugacy classes [g^u and [g2]v of this type. They

belong to distinct Gp-conjugacy classes: [gι]pΦ[g2]p.

(ii) Iff(X)=f41(X), then L2p is a proper Ro p (resp. Rlp)-module if(LίtP, L2p) is

of type I (resp. type II). There are exactly two Up-conjugacy classes [gγ\vp, [g2]ifp *w Up(f)

which are of type I; and they belong to distinct Gp-conjugacy classes. Let δ run through all

representatives of G(g)p\Gp/Up such that δ~xgδ belongs to Up and is of type II. Then we

have

0 •••(d(V2ιPj),K/Q)p=-\.
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Proof is again omitted (see the proof of Lemma 4.20).

4.4. We now summarize the results obtained above, and calculate the contri-

butions Γ3, Γ4 1, and Γ4 2 to the formula (0.1), from the conjugacy classes belonging to

/ 3 ( J 0 , Λ i W , and/ 4 2 (Z) respectively.
We first describe the locally integral conjugacy classes in G(f) for each f(X).

PROPOSITION 4.23. Suppose f(X)=f3(X).

(i) If d(K)Ξ£—4 (mod 32), then there exists a unique locally integral conjugacy

class in G(f) // G. It is characterized by

(d(V2tP),K/Q)p= + l at all p<oo ,

(d(V2tPj), K/Q)p= + 1 0 = 1, 2) at any p in the case (4.15).

(ii) If d(K)= —4 (mod 32), then there are exactly two locally integral conjugacy

classes in G(f)//G. They are characterized by

(d(V2tP),K/Q)p= + l at all p<oo ,

(d(V2tPj)9 K/Q)p= + 1 (7 = 1, 2) at any pφl in the case (4.1.Λ).

±l at p = 2.

PROPOSITION 4.24. Suppose f(X)=f41(X).

(i) If d(K) ^ — 3 (mod 9), then there exists a unique locally integral conjugacy class

in G(f) IIG. It is characterized by

P = (3, K/Q)p at all p< oo ,

(d(V2tPj), K/Q)p= + 1 (j= 1, 2) at any p in the case (4.2.B).

(ii) If d(K)= —3 (mod 9), then there are exactly two locally integral conjugacy

classes in G(f)//G. They are characterized by

(d( V2tP), K/Q)p = (3, K/Q)p at all p < oo ,

(d(V2tPj), K/Q)p= + 1 (j= 1, 2) at any pφ3 in the case (4.2.B).

±\ at p = 3 .

PROPOSITION 4.25. Suppose f(X)=f42(X).

(i) If (K/p)= -}-l or d(K) = 3 (mod 9), then there exists a unique locally integral

conjugacy class in G(f)//G. It is characterized by the same condition as in Proposition

4.24, (i).

(ii) If(K/p)= — 1, then there is no locally integral conjugacy class in G(f)//G.

(iii) If d(K)= —3 (mod 9), then there are exactly two locally integral conjugacy

classes in G(f)//G. They are characterized by the same condition as in Propostion 4.24,



POSITIVE DEFINITE UNIMODULAR HERMITIAN FORMS 207

Now, let [#] = [#]G be a locally integral conjugacy class in G(f) // G. Once an idelic

arithmetic subgroup V of G(gf)A is fixed, we may consider each factor of h([g]; J£?) in

(0.2). In order to apply the results in [32, § 5], we choose ^as follows: Firstly we identify

G(g) with Λ ^ x A/*1*, and define V=\\VVV by

(for each/?<oo)

Therefore, the first factor M(V) of h([g]; &) is nothing but M^K/Q) x M^M/N), where

each factor is the standard mass in the (one-dimensional) principal genus. By [32,

Theorems 5.6, 5.7], we have

with T being the number of distinct prime divisors of the relative discriminant d(M/N),

and

Φ(P) =

= (d(K)/p)

(-l/p)'-f(X)=f3(X)

or fA1{X).

We note that, by Dirichlet's formula for the class numbers of imaginary quadratic fields,

we have Bx χ = — h(K) (note that we are assuming Kφ Q(^J — 1), Q(^J — 3)). Also we have

Bγ ψ= — 1/2 or — 1/3, according a s / = / 3 or f=f4ί9 f42- Thus we have

(4.5)

By Lemma 4.1, we have:

(4.6) Iff(X) = f3(X),

O

f(X)=f3(X)

f(X)=f41(X), f42(X).

T= 1 d(K)= 12 (mod 32) or S\\d(K)

2 •• d(D)=-4 (mod 32).

(4.7)

T= 1 ••• d(K) = 3 (mod 9)

2 ••• t/(Z))=-3 (mod 9).
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As for the second factor ΠP(Σ<5 I n (M^; 9)) °f Λ(M; ^)> it is easy to show that
Indp((5; g) = \ if and only if the pair {Lγ p, L2 p) corresponding to δ~1gδ is of type I, and
L2 pis a proper /^-module. Therefore, Lemmas 4.8, 4.9, 4.12, 4.13, 4.15, 4.16, 4.17, 4.19,
4.20, 4.21 and 4.22 together imply the following results:

(4.8) Iff(X) =f3(X), and P φ2 9 then

(4.9) lff(X) =f3(X), and p = 2, then

r 2 (AZp)= + l

1 • • . ( * / / > ) = - 1

7 ••

3 ••

3- S\\d(K).

(4.10) If/(JQ =Λi (*), hiW; and /> / 3, then

(4.11)

(4.12) If/(J0=ΛiW, andp = 39 then

3

4

7

13

1

=/ 4 2 W, and p = 3, then

(K/p)=-l

ί/(^) = 3 (mod 9)

d(K)=-3 (mod 9), (rf(K2t|>J), A7β)3= + 1

. d(K)=-3 (mod 9), (rf(F2fPj), K/Q)3=- 1

5. ΛZ = 3: Explicit formulas (main results).

5.1. We collect all data that we obtained in §§3, 4, and putting them into the
general formula (0.1), we get an explicit formula for the class number Λ(i?) of the
principal genus S£ of the ternary positive definite Hermitian space (K, H).

Let K=Q(y] —m) be an imaginary quadratic field with discriminant d(K% where m

is a positive square-free integer. For each polynomial fι(X) listed in Lemma 1.2, we put

(5.1) r 4:
[g]

where the sum is extended over the locally integral G-conjugacy classes [#] in G(fy. Thus
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Γ is the contribution to our class number formula from the conjugacy classes belonging

to

MAIN THOEREM 5.1. The class number h3 of the principal genus in the ternary
positive definite Hermitian space, with respect to the unitary group, is given as follows:
h3 = \ if d(K) = — 3, or —4; and in the other cases,

(5.2) A3 = 2Γ1 + 2Γ2 + 2T3 + 2Γ

where the contribution Ttfrom G(fi) is given by

(4\d(K)\-4

T2 = (h(K)2/2t+*3) x 4| d(K) | + 2

• -m=\

• -m = 5

4| d(K) I - 1 otherwise

4 ••• -m=\

1 -" -m=3

2 ••• -m = 5

3 ••• - m = ± 2 , 7

6 ••• -m=\

-m = 2

, = (/*(#)2/2t+23)x

-m=\

(mod 8)

(mod 8)

(mod 3)

(mod 3)

-m =

0

1/14

0

// d(K)=-S

otherwise

if d{K)=-l

otherwise

where t is the number of distinct prime divisors of d(K), χ is the Dirichlet character
attached to K, and B3 χ is the third generalized Bernoulli number attached to χ.

PROOF. The fact that h3 = l for d(K)= — 3 , - 4 was proved in [32, Proposition
5.13]. So we assume, in the following, that d(K)Φ —3, —4. Recall that 7\ was already
given in [32, Theorem 5.6]. The evaluation for T2 was carried out in Propositions 3.10,
3.12 and 3.13. In the same way as for Γ2, we can get easily the above expressions for Γ3,
^41, TA2 from the results in §4. Thus it remains to evaluate T5 and T6. Let ζm be a
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primitive m-th root of unity. The point here is that the order Θ[ζ8] (resp. Θ[ζΊ]) is the
maximal order of K(ζ8) (resp. K(ζΊ)), in the unique case K=Q(^J— 2) (resp. Q(yJ— 7))
where we have non-trivial contribution. Using this fact, one can easily show that the
locally integral G-conjugacy class, or the t/p-conjugacy class corresponding to the
characteristic polynomial in question, is unique. Thus we see that the contribution Tt =
h{[gl &) (ι = 5, 6) is nothing but the mass of the centralizer β(C8)

(1) (resp. β(C7)
(1)), which

we evaluated in [32, Theorem 5.7]. q.e.d.

5.2 Class numbers for SU(3). As in §1, we regard G ( 1 ): = SU(F, H) as an
algebraic group over Q. Let ££^ be any G(1)-genus contained in the principal genus JSf0
with respect to G. Then we consider the class number h{

3

l): = Λ(1)(J^υ), i.e., the number
of Ga ^orbits in ^Q\ O u r second main result is concerned, as well as its evaluation, with
the relation between h3

1] and the unitary class number h3.

M A I N THEOREM 5.2. (i) The two class numbers h3

l) and h3 are related by

(5.3) A3 = A1*31)

J

where hι=h(K)/2t~1 is the one-dimensional unitary class number. In particular, h3

1]

depends only on the G-genus i??0.
(ii) More precisely, suppose that d(K) Φ - 3, - 4, - 7, - 8, and letf^X) be as in the

list of Lemma 1.2. Then the contribution T\l) of the G(1)-conjugacy classes in Ga\fi) to the
general formula, which is similar to (0.1), is related to Ti by

(5.4) Γ = (Λ(A:)/2ί)Γί1) (for each ϊ).

(iii) An explicit formula for h(

3

] is given as follows:

h^=\ (resp. 2) if K=Q(j^\), 0 ( / ^ 3 ) (resp. β(V^2), Q(^)\ and otherwise,

*(D=r<i>+ n n + n υ + n v + n v ,

We shall give a table for A^υ below. Here we note that our result for the relation
between h3 and A"', which holds without any condition, is rather remarkable since in
general this kind of relation can be shown only under some conditions. See [32, § 2].



POSITIVE DEFINITE UNIMODULAR HERMITIAN FORMS 211

PROOF. If K is one of the exceptional fields, it is easy to check the assertion, since

we know that h3 = 1 or 2. So we assume that d{K)Φ — 3, — 4, — 7, —8, and prove (ii),

from which (i) and (iii) follow immediately. First note that our general formula (0.1)

remains valid, if we replace G by G ( 1 ). However, we have to notice that, in general, the

Hasse principle (see [32, Proposition 4.8]), fails to hold for the G(1)-conjugacy classes.

But for certain types of conjugacy classes in G ( 1 ), we still have the Hasse principle:

LEMMA 5.3. Let g be an element of G{1\ and suppose that the determinant det:

G-> A^1} maps the centralίzer G(g) onto Λ11*. Then the G{1)-conjugacy class [g](1) is uniquely

determined by its image in the set of G^-conjugacy classes.

This lemma is easily proved. Now we note that, under the above assumption on

d(K), the condition of Lemma 5.3 is satisfied for any element g in Ga\fi), since f(X) has

a linear factor (X— 1). Also it is easy to see that the £/p-conjugacy class [g]v is

decomposed into [det Up: det(Up(g))] U(

p

}-conjugacy classes [δ~1gδ]u"\ On the other

hand, one has the equality

[det Up: det(Up(g))]'ind^(δ; g) = lnάp(l g).

where Ind^υ((5; g) is defined similarly as Indp(<5; g) with G(1) instead of G (cf. [32, §3]).

Now the contribution Γ | υ is calculated in exactly the same way as Tt. Noting the above

equality and the relation between the two masses M(G(g)), M(Ga\g)), which is

analogous to that given in [32, Proposition 5.8], we get the assertion of Theorem 5.2.

q.e.d.

TABLE O F CLASS NUMBERS OF THE PRINCIPAL GENERA ( / I = 1 , 2 , 3). In the

following table, we give, for each imaginary quadratic field K with discriminant

\d(K) \<250, the class numbers ΛJ,1* of the principal genera, in the positive definite

standard Hermitian spaces (Kn, //), for n = 2, and 3, with respect to the special unitary

group. Note that h[1] = l, and h^KK)/?-1, and that A3=A1 Λ^1).

(/)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)

d(K)

- 3
— 4
- 7
- 8

- 1 1
- 1 5
- 1 9
- 2 0
- 2 3
- 2 4

ramified primes h

3
2
7
2

11

3*5
19

2*5
23

2*3

I 1
[ 1

I 1
I 1
I 2
I 2
[ 2
I 3
3 3
1 2

^ 3 )

1
1
2
2
2
5
3
7

10
7
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(/)

(11)
(12)
(13)
(14)

(15)
(16)
(17)
(18)

(19)
(20)

(21)
(22)
(23)
(24)

(25)
(26)
(27)
(28)
(29)
(30)

(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)

(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)

d{K)

-31
-35
-39
-40
-43
-47
-51
-52
-55
-56

-59
-67
-68
-71
-79
-83
-84
-87
-88
-91

-95
-103
-104
-107
-111
-115
-116
-119
-120
-123

-127
-131
-132
-136
-139
-143
-148
-151
-152
-155

ramified primes

31
5*7
3*13
2*5
43
47

3*17
2*13
5*11
2*7

59
67

2*17
71
79
83

2*3*7
3*29
2*11
7*13

5*19
103

2*13
107

3*37
5*23
2*29

7*17
2*3*5
3*41

127
131

2*3*11
2*17
139

11*13
2*37
151

2*19
5*31

K

3
1
2
1
1
5
1
1
2
2

3
1
2
7
5
3
1
3
1
1

4
5
3
3
4
1
3

5
1
1

5
5
1

2
3
5
1
7
3
2

3
4
4
4
4
5
4
5
6
4

6
6
6
7
7
8
6
6
6
8

10
9
8
10
8
12
9

10
8
8

11
12
8

10
12
14
11
13
10
16

JL(1)Λ
3

13
10
21
12
8
31
16
18
31
31

26
17
40
66
59
43
56
77
40
40

107
88
97
66
133
62
118

172
97
72

125
121
115

120
104
227
113
200
181
148
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(/)

(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)

(61)
(62)
(63)
(64)

(65)
(66)
(67)
(68)
(69)
(70)

(71)
(72)
(73)
(74)
(75)
(76)
(77)

d{K)

-159
-163
-164
-167
-168
-179
-183
-184
-187
-191

-195
-199
-203
-211

-212
-215
-219
-223
-227
-228

-231
-232
-235
-239
-244
-247
-248

ramified primes

3*53
163
2*41
167

2*3*7
179

3*61
2*23
11*17
191

3*5*13
199

7*29
211

2*53
5*43
3*73
223
227

2*3*19

3*7*11
2*29
5*47
239
2*61
13*19
2*31

K

5
1
4
11
1
5
4
2
1
13

1
9
2
3

3
7
2
7
5
1

3
1
1
15
3
3
4

10
14
12
15
8
16
12
12
16
17

16
17
16
18
15
22
14
19
20
12

12
16
24
21
17
22
16

267
111
239
308
182
213
303
215
170
423

228
368
252
243
341
537
290
411
339
341

558
303
284
669
436
481
510

6. Dimension of automorphic forms. We give here an explicit formula for the

dimension of automorphic forms of "weight p" on G^\ where (p, 3F\ is any irreducible

continuous representation of the compact group

G ( ^ - S U ( 2 ) or SU(3) (Λ = 2 O Γ 3 ) .

6.1. Let (p, J*0 be as above and extend it to a representation of G^ through the

projection G^^G^. Denote by Mp(J5?) the space over C consisting of the J^-valued

functions / on G%] satisfying f(uxa) = p(u)f(x) for any we U=U(L), xeG^ and

aeG{1\ where we fix an (^-lattice L in a given genus J2?.

PROPOSITION 6.1. The dimension of Mp(<£) is given by

dim



214 K. HASHIMOTO AND H. KOSEKI

where the sums are the same as in the formula (0.1), and tr(p(/)) is the character of p at

any element of (/«>(/).

PROOF. Let Γt (\<i<h = ha)) be the finite group given by [32, (3.2)], and put

^ ^ { m e J ^ ; p(γ)m=m for any yeΓi}. Then it is easy to see that the mapping

Mp(J?)-+® i^h f i—>(p(ξi)~
1f(ξi)) is an isomorphism. It follows that

Σ^Σ

Now the assertion follows from [32, Proposition 3.1].

Thus, to know the dimension of Mp(S£\ we have only to compute the character

tr(p(/)) for each polynomial feF listed in Lemmas 1.1, 1.2.

6.2. First suppose that « = 2 . Then the irreducible representations of §U(2) is

parametrized by a non-negative integer k, to which corresponds the fc-th symmetric

tensor representation pk. As is well known, we have

(6.1) tr(pfc(l)) = tr(pfc(Λ)) = Ar+ 1 , tr(pk

where in the second formula, / # / x and C, C"1 are the roots off(X). It follows that

(6.2) tr(pk(/2)) = [l,0, - 1 , 0 ; 4], tr(pk(f3)) = [l, - 1 , 0 ; 3],

where ί = [ί0? ^i? ' "9tq-i\<i\ means that we have t = tt if k = i (mod ̂ ).

Next suppose that n = 3. Then the irreducible representations are parametrized by

the pairs (kl9 k2) of non-negative integers such that kί>k2>0. The corresponding

representation p = ρiki,k2)
 n a s t n e degree

(6.3) tr(p(fΐ)) = (kί -k2+ \)(k, + 2)(k2+

and the character

£ X -(6.4) tr(p(/))= Σ
i = 1 v°i ~~ °jA°i — °k) \°j~c'k)

where ε1? ε2, ε3 (ειε2

ε3 = Ό are the distinct roots of f(X), and we put a: = ki

It follows that, explicitly we have

( ^ + 2)/2 ••• (^ 1 ?^ 2) = (0,0)

(6.5) tr(p(/2)) =
0

-k1 + k2-l)/2-
(mod 2)
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tr(p(/3)) =

tr(p(/4 1)) =

tr(p(/4 2)) =

1

- 1

0

1

- 1

0

3

2

1

- 1

- 2

- 3

(kl9k2) = (092)9(39l)9(392)

otherwise

(mod 3)

(mod 3)

otherwise

(*„ * 2 ) = (1, 0), (1, 1), (2, 0), (2, 2), (3, 1), (3, 2)

(*1,*2) = (0,0),(3,0),(3,3)

(Λ, ,k2) = (2, 4), (5, 1), (5, 4) (mod 6).

(*,, * 2 ) = (0, 2), (2, 4), (1, 3), (1, 4), (5, 2), (5, 3)

otherwise.

CORRECTION TO [31], [32]:

[31]: Page 324, line 5 (in the table). Read "(mod 32)" for "(mod 22)".

[31]: Page 324, line 7 from bottom. Read "odd (resp. even)" for "1 (resp. 2)".

[31]: Page 325, line 13 from bottom. Read "1 (resp. 2)" for "odd (resp. even)".

[32]: Page 20, line 15 from bottom. Read " 2 ' " for " 2 ' " 1 " .
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