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1. Introduction. Let I' be a Fuchsian group. Denote by A(I') and Q(I) its limit
set and region of discontinuity, respectively. Then I is said to be of the first kind if
(I) is not connected. If all elements of I'\\{1} are hyperbolic transformations, I' is
said to be purely hyperbolic. Let w be a quasiconformal automorphism of the Riemann
sphere € which is compatible with I', that is, woyow™! is a Mobius transformation for
each yeI". Then wI'w ™! is a Kleinian group and is called a quasiconformal deformation
of I'. The limit set A(wl'w~!) coincides with w(A(I")), which is a quasicircle when I is
of the first kind. For two Jordan curves J, and J, in the finite complex plane C we
define the Fréchet distance [J,, J,] as inf max{| z,(f) — z,(t) |; 0 £ ¢ < 1}, where the infimum
is taken over all possible parametrizations z(t) of J, (k=1, 2).

In Chu [1] the following theorem is used as.a key lemma to prove a theorem on
the outradii of the Teichmiiller spaces of finitely generated purely hyperbolic Fuchsian
groups of the first kind.

THEOREM A. Let J be a rectifiable Jordan curve in C and let 6>0. Then there
exists a quasiconformal deformation G of a finitely generated purely hyperbolic Fuchsian
group of the first kind so that [A(G), J]1<é.

Theorem A is proved by means of a theorem of Maskit on finitely generated
Kleinian groups (Maskit [4, Theorem 2]). The assumption of the rectifiability of J can
be removed (see Lemma 4.1). In this note we prove the following theorem, which is an
analogue of Theorem A.

THEOREM B. Let J be a Jordan curve in C and let §>0. Then there exists a
quasiconformal deformation G of an infinitely generated Fuchsian group of the first kind
so that [A(G), J] <.

We prove Theorem B by constructing a group G explicitly. In §2 we prove two
lemmas which are used in §4. In §3 we construct a quasiconformal mapping used in
§5. In §4 we construct an infinitely generated Kleinian group G whose limit set A(G) is
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a Jordan curve with [A(G), J]<4 and an infinitely generated Fuchsian group G of the
first kind. In § 5 we prove a lemma which we use in § 6 to show that G is a quasiconformal
deformation of G.

The author would like to thank the referee for his many helpful comments on the
original manuscript of this note.

2. Preliminary lemmas. The purpose of this section is to prove two lemmas
(Lemmas 2.1 and 2.2) which are used in §4. For aeC and r>0 set B(a,r)=
{zeC,|z—a|=r}. Let a,eC and r,>0 (neZ). Set B,=B(a,,r,). Assume that the
following conditions (1)-(3) are satisfied.

(1) B,_,nB, consists of one point p,. B,nB,= for m#n, n+1.

) r,,—1=r,,and p,, . is the mirror image of p,,_, with respect to the perpendicular
bisector of the segment a5, _,a,,.

(3) The radius r, converges to 0 as n tends to + co. The center a, converges to a point

P €C\(U,.zB) as n tends to + 0.

Let g, be the parabolic transformation with the fixed point p,, which sends p,,_; to
Pan+1- Then by the condition (2)

2
02nZ —P2n
) gulz)=—2—Fn
where p2,— 05, _ 105, = (03, 1 —®5,)?/4. For a Mobius transformation g with g(o0) # oo
let I(g) be the isometric circle of g (see Lehner [2, 11, 10]). Then by (4)
5) I(gy)=0B,,~; and I(g,')=0B,,.
Let G, be the cyclic group generated by g,. Let G be the group generated by {g,; ne Z}.

LEMMA 2.1. (i) G is the free product of G, (n€ Z). In particular, G is infinitely
generated.

(ii) G is a Kleinian group and the Ford region F(G) coincides with C \I\J
{Po}]-

PrOOF. The lemma follows from (1), (2), (5) and two theorems of Lehner ([2,
p. 118)]). q.ed.

LEMMA 2.2. The limit set A(G) of G is a Jordan curve.

B,)u

neZ

Our proof of Lemma 2.2 is elementary but somewhat tedious. We give Lemmas
2.3 and 2.4, from which Lemma 2.2 follows. By Lemma 2.1 (i) each element ge G\ {1}
has a unique expression as a reduced word in g, (ne Z), that is, g=gjm° - - - ° gj}, where
m21l,e;=+1andkjeZ(j=1, ---,m) and g #g,,%'* (j=1, - - -, m—1). The number
m is called the length of g and is denoted by I(g). For g=1 we define /(g)=0. Set
B(g,)=B,,-, and B(g, ')=B,, For m20 set #,={g(B(g}); g€G, Ug)=m, ke Z,
e=+1,lgeg,)=m+1}andset B=J, _, Bm Then Bo={B,},cz- Set 4,(G)={g(p.,);
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geG}, A,(G)={g(p,); g€ G, ne Z} and A3(G)=A(G)\(4,(G)uU 4,(G)). A sequence of
Jordan curves {J,} in C is said to nest about a point z if, for every n, J,,, separates
J, and z, and if, for any choice of z, on J,, lim,_, ,z,=z (see, for example, Maskit [4,
p. 622)).

LEMMA 2.3. For each ze A5(G) there exists a sequence {B"} in % so that {0B"}
nests about z.

Proor. The existence of a sequence {B} in # such that 0BY*") separates 0B
and z follows from (1), (2), (5) and Lemma 2.1. Let B?=g"(B, ), where g’ € G and
B, € B,. We may assume g # 1. By Lemma 2.1 (ii), I(g)< J ., B, for all ge G\ {1}.
Hence 0BY=¢'"(0B,)=CID((g"")~!), where D((g'?)"') denotes the bounded
component of C\ I((g*?)~1). Since the radii of the isometric circles of distinct elements
of G\{1} form a null sequence (Lehner [2, III, 1H]), the diameter of 0B tends
to 0. q.e.d.

Let {B,; ne Z} be another family of closed disks which satisfies the conditions
(1)—(3) with B,, p,, r., @, and p, replaced by the ones crowned with tildes. Define §,,,
G,, G, B@,), BG, "), #, # and A J(G') (1<j<3) in the same way as the ones with the
tildes removed. For =1 define x(§)=1. For g=gimo---ogite G\ {1} (a reduced
word), where m21, ¢;= +1 and kjeZ (j=1, - - -, m), define y(§)=gim° - °gi €G.
Then by Lemma 2.1 (i), x is a well-defined isomorphism of G onto G. For B=g§(B(§})) e
&, (m=0), where eG, IG)=m, keZ,e=+1 and I(Gog,)=m+1, define X(B)=
¥(G)(B(gE)) € ®,,. Then X gives a one-to-one correspondence between the disks of %,
and those of 4,, for each m=0. -

LEMMA 2.4. A(G) is homeomorphic to A(G).

ProOF. Define a mapping F of A(G) to A(G) in the following way. For
z=§(P)€ A,(G) and =§(p,) € 45(G) set F(2)=x(GNp,) € 4,(G) and =x(GXp,) € 45(G),
respectively. For ze A5(G) let {B?} be a sequence in # such that {08?} nests about z.
It follows from the proof of Lemma 2.3 that the sequence {0X(B?)} also nests about
the point F(z)€ A5(G), which is independent of the choice of {B?}. Then F is a bijec-
tion of A(G) onto A(G). Let je G and j, ne Z with j=0. Set

N, (3(5.)
=AG)n GAU > ; Bl U {P})s N2 f§(B2n)) = AG) 0 §@5  (Bon- 1) U G3(B,,))
and
N, (§(P2-1))
=A(G)n§((gn—1 o Ogn—j)(EZn—2j—2)U(g;1° ce ogn_+1j—1)(§2n+2j—l))'

Define {V!,J{g(pw)), N3, {9(p2,)) and N, {g(p,,-,)) similarly. For zeAa(é) set ﬁ3,j(z)=
A(G)n BY and N, {F(2))=A(G)n X(B). Then N, (z) (1<k<3) are closed neighbor-
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hoods of zeA(G) in A(G), which become arbitrarily small as j tends to oo.
The same holds for the ones with the tildes removed. On the other hand,
FA(G)n By=A(G)n X(B) for each Be#. Hence F(N, (z))=N, fF(2)) for ze A(G)
(1 £k <3). Therefore F is a homeomorphism. q.ed.

- ProOOF OF LEMMA 2.2. Choose an infinitely generated Fuchsian group of the first
kind as G in Lemma 2.4 (see, for example, G in §4). Then A(G) is a circle. Therefore
by Lemma 2.4 A(G) is a Jordan curve. q.e.d.

3. Construction of a quasiconformal mapping. Let a, b and ¢ be positive numbers.
Let 3s=min(a, b/c). Let hla, b, c] be monotone increasing diffeomorphisms of class C*
of [0, a] onto [0, b] which satisfy the following.

6) hla, b, cJ(a—w)=b—Hh|a, b, c)(w) for wel0,d].
@) hla, b, cJ(w)=cw for wel0,s].
®) ha, a, 1J(w)=w for wel0,q].

(For example, let hla, b, c]J(w)=cw for wel0,s], =b—cla—w) for we[a—s, a] and
=B(w—a/2) exp(y(w—a/2)>)+b/2 for we(s,a—s), where 1+2y(a/2—s)?=cla—2s)/
(b—2cs) and b—2cs=f(a—2s) exp(y(a/2—s)?).) Let Y be the positive imaginary axis
{iy; y>0}. For r>0 and 6€(0, 2x), set A(r, 6)={r(exp(iw)—1); w€[0, 0]}, A'(r, )=
A(r, OO\ {r(exp(i0)—1)}, L(r,0)=A(r,0)uY and W(r, 6)={q exp(iw)—r;qg>r,0<
w<0}n{z; Rez<0}. Let r,#7>0 and 6, fe(0, 21). Let h be a monotone increasing
homeomorphism of [0, 6] onto [0, 8]. Then the mapping defined by r(exp(iw)—1)+—
F(exp(ih(w)) —1) for we[0, 0] and iy+> iy for y>0 is a homeomorphism of L(r, #) onto
L(7, ). Denote this mapping by f[r, 6; 7, 0; h).

LemMA 3.1. Let r,7#>0 and 6,0e(0,2n). Let A'=A'(r,0), A =AF 0), L=
L(r, 0), W=W(r,0) and W=W(F,0). Let h=h[0, 0, r/f] and f=f[r,0;F, 0; h]. Then
there exist open neighborhoods U and U of A’ and A’ in CI W and Cl W, respectively,
and a homeomorphism f of U onto U so that f is quasiconformal in Wn U and that f = f
on LnU.

ProOF. Let W(z)= —2r/z and ¥z)= —2F/z. Then v(r(exp(iw) — 1)) = ¥(F(exp(iw) —
1))=1+i-H(w), where #w)=cot(w/2). Define a mapping Y, of (0, 0) onto itself

by Yo(y) = (F/r)y. Define a mapping y; of (#(6), 00) onto (#(f), o) by ¥, (¢(w)) = t(h(w))
for we (0, 6). Then we have

&) Vo fov l(iy)=io(y)  for ye(0, o0),
and
(10) Vofov Y1 +iy)=1+iy,(y) for ye[t®), ),

where
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(11) Y (»)=tohot™(y)=cot(h(2 Arccot y)/2) .
Both y, and ¢, are monotone increasing and satisfy

deve T Lo sinf@(»)/2)
(12) ¥ o(Y)—7 and l(y)———sinz(h(w(y» ) H(w(y)) ,

where w(y)=2Arccoty. Since h(w)=(r/F)w sufficiently near 0 by (7) and since
cot(B Arccot x) =(1/B)x+O(x~*) (x— o) for B0, (11) shows ¥ (»)=(Fr)y+0(r 1)
(y— ). Hence

13) Jin:o {'//1()’)—'//0(}’)}=0 .

Let N={x+iy;0x<1,y>10)}u{w} and N={x+iy; 0Sx=1; y>xy,(1(0)+
(1—x)o(t(8))} u{oo}. Define a homeomorphism w of N onto N by w(x+iy)=
x+i{xy () +(1 —x)Wo(»)} and w(co)=oo. Then

(14) wiy)=ipo(y), w1 +ip)=1+i)(y),
and p[w]=(0w/d2)/(0w/0z) is given by

)= (=W + ()=}
(13) M ) = (D) + (L= o) + 0 1() — o)

in Int N. It follows from (12), (13) and (15) that
1—xy's(00) —(1 —x) ()

m N
6) e S P e T e

uniformly in x € (0, 1), where Y (o) =y (c0)=F/r. By (12), (15) and (16), it holds that
a7n ess. sup{pu[w](z); zeInt N} <1.

Set U=v~(N), U=v"'(N)and f=7"'owov. Then U and U are open neighborhoods
of A4’ and 4’ in CI W and C1 W, respectively, and f is a homeomorphism of U onto U.
By (17), f is quasiconformal in Wn U. By (9), (10) and (14), f=f on LnU. q.e.d.

Lemma 3.1 together with a theorem on quasiconformal mappings (Lehto-Virtanen

[3, p. 45, Theorem 8.3]) yields the following lemma.

LeMMA 3.2, Let j=1,2. Let r,#>0 and 0, 0,€(0,2n). Let A)=A'(r;0)),
Aj=A'F,0), W=W(;,0) and W;=W(,0). Let h;=h0;,0,r/F] and f;=
SfTrj, 65 7, (7].; h;l. Let p be the reflection in the imaginary axis.. Then there exist open
neighborhoods U and U of Ay up(4,) and Ayup(dy) in CIW,up(W,)] and
CI[W,up(W,)], respectively, and a homeomorphism f of U onto U so that [ is

quasiconformal in [W,uYUp(W,)]nU and that f=f, on A, and =po f,°p on p(A4}).
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4. . Construction of groups. Let J be a Jordan curve in C. The following lemma
is well known (see, for example, Moise [5, Ch. 6, Theorem 2]).

LemMMA 4.1. For each 6,>0 there exists a piecewise linear Jordan curve K(6,)
with [K(d,), J]<$,.

Let 6>0. Let K= K(J/3) be a piecewise linear Jordan curve in Lemma 4.1. Suppose
that we obtain K by joining the points vy, vy, * -, v,,=0v, by segments in this order.
Choose interior points #; and u, of the segment v,v, so close to each other that a circle
X passing through u; and u, lies in the (§/3)-neighborhood of the segment u,u,. Let
K’ be a Jordan curve obtained by replacing the open segment u,u, by a component X,
of Z\{u,, u,}: Let p,, be a point of Z,. Let v(K')={uy, uy, vg, ***, Uy—4}. It is not
difficult to construct a covering of K’ \ {p,} by closed disks V, (n € Z) which satisfy the
following conditions.

(18) V,_,nV, consists of one point p,,_,, where p,,_, e K'\v(K"). V,nV,= for
m#n,nt1.

(19) d(V,)<d/3 and d(V,) (resp. the center of V,) converges to 0 (resp. p,,) as n tends
to + oo, where d(V,) denotes the diameter of V.

(20) 0V, intersects K’ at exactly two points p,,_; and p,,,,, where 0V, and K’ make
right angles.

By the conditions (18) and (19) there exists an integer N>0 so that p,,, €%,
for all |[n| 2 N. Let p,,=p,,. Let ¥,=V, for |[n|ZN+1. Cover Z\([J Inl>N Vlu{p.D
with 2N +1 closed disks ¥, (|n|<N) so that the family {¥,},. satisfies (18) and (20)
with V,, p,,—; and K"\ 0(K') replaced by V,, p,,_, and 2\ {u,, u,}, respectively. In V,
there exist two closed disks B,,_; = B(t3,-1, F2,—1) and B,,= B(a,,, r,,) With r,,_; =r,,
so that B,,_,nB,, consists of one point p,, and that B,,_,nV,_,={p,,—,} and
B3uN Vs 1 ={DP2n+ 1} Similarly there exist B,, d,, 7, and j,,. Then the family o= {B,},.z
(resp. Bo={B,},z) satisfies the conditions (1)~(3) (resp. (1)~(3) with B,, p,, r,, a, and
D replaced by the ones crowned with tildes). Also the following conditions are satisfied.

(21). 0B, intersects X perpendicularly.
22) p,=p,for|n|=22N+1, and a,=d, and r,=F, for |n+1/2|=2N+3/2.

Define g,, G, and G (resp. §,, G, and G) as in § 2 by using the family &, (resp. #,). Then
by Lemma 2.1 both G and G are infinitely generated Kleinian groups.The condition
(21) shows that each §,e G keeps the bounded and unbounded components of €\ 2
invariant. Hence G is Fuchsian. Since the Ford region F(G) has no free sides, G is of
the first kind and A(G)=ZX (Lehner [2, p. 144]). Thus G is an infinitely generated
Fuchsian group of the first kind. On the other hand, A(G) is contained in
(U,eczB)Y{po} by Lemma 2.1 (ii) and is a Jordan curve by Lemma 2.2. Hence both
K" and A(G) are Jordan curves contained in (|J,., V) U{p.}. This together with the
condition (19) implies [A(G), K'1<d/3. Therefore [A(G), J]Z[A(G), K']1+[K', K]+
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[K, J]<0.

5. A quasiconformal mapping between the fundamental regions. Let G and G be
the groups in §4. Let ©, and Q, (resp. , and Q,) be the bounded and unbounded
components of (G) (resp. (G)), respectively. Let F=F(G) and F=F(G) be the Ford
regions. Let F;=FnQ; and F}:F’nﬁj (j=1,2). Then by Lemma 2.1 (ii), 0F;=
[U,.z@B,nC1Q)]u{p,} and 0F;=[{J,., (@B,nC1Q)Iu{p,} (=1, 2). In particular,
6Fj and oF ; are Jordan curves. The purpose of this section is to prove the following
lemma.

LeMMA 5.1. Let j=1 or 2. Then there exists a homeomorphism &; of C1F; onto
CIF ; which is quasiconformal in F; and which satisfies the following for all ne Z.

(23) (bj(pw) =ﬁco and (’bj(pn) =ﬁn .
(24) Gn° Pj=0;°gn on OF;n0B,,_ .
First we prove the following lemma.

LEMMA 5.2. Let D and D be Jordan domains in C. Let 0D and 3D be positively
oriented with respect to D and D, respectively. Let ¢ be an orientation-preserving
homeomorphism of 0D onto 0D. Suppose that for each point {€dD there exist open
neighborhoods U, and (7,,,@, of { and @({), respectively, and a homeomorphism &, of
(C1D)n Uy onto (C1D)n (7,,,@ so that {, is quasiconformal in Dn U, and that p,=¢ on
(@D)nU,. Then there exists a homeomorphism ¢ of ClD onto ClD so that ¢ is
quasiconformal in D and $ =@ on dD.

PrOOF. Let £ and £ be conformal mappings of the open unit disk 4 onto D and
D, respectively. Let w=E 1o g o £. Let 04 be positively oriented with respect to 4. Then
w is an orientation-preserving homeomorphism of d4 onto itself. By the assumption
for each ze d4 there exist open neighborhoods U, and U, of z and w(z), respectively,
and a homeomorphism w, of (Cl14)n U, onto (Cl 4)n Uw(,) so that W, is quasiconformal
in AnU, and that w,=w on (d4)n U,. By the reflection principle W, can be extended
to a quasiconformal mapping of ((Cl4)nU,)u{x;1/xeAnU,} (Lehto-Virtanen [3,
p. 47]). Hence it follows from a theorem of Lehto-Virtanen ([3, Theorem II. 8.1])
and a theorem of Rickman ([6, Theorem 4]) that w has a quasiconformal extension
w to € with w=w on 04. Since W is orientation-preserving, W maps 4 onto itself.
Therefore p=EWwo&~1 is a required extension. q.e.d.

Proor OF LEMMA 5.1. We assume j=1. The proof for j=2 is similar. First we
construct a homeomorphism ¢, of F, onto dF, satisfying both (23) and (24) with ¢,
replaced by ¢,. Next we show that ¢, is extended to ¢@,.

We may assume, if necessary by replacing the suffices n of B, (resp. B,) by —n for
all ne Z, that F, (resp. F,) lies on the left of the directed circular arc PnPn+1 Of OF,



356 H. SEKIGAWA

(tesp. Pubn+1 Of OF)). Let p,—a,=(pys 1 —,) exp(ib,) and p,—&,=(p,+ —d,) exp(if,)
©,, 8,€ (0, 2m)). Set h,=h[0,, 0,, r,/F,] and f,= f[r,, 0,; 7, 0,; h,] for ne Z (see §3). Then
f, is a homeomorphism of A,=A(r,, 0, onto A,=A(,8,) with f,(0)=0 and
Sorexp(i8,) — 1)) =F,(exp(if,) - 1). Let 0,(2)=—r,_,(z—p,)/(@,-1—p,) and 6,(z)=
— Fu—1(z—Pw)/(@n -1 —Pn)- Theno,(p,) =0, 0,(®, - )= —r,_,and 6,(0F N 0B,_)=A4,_;.
The same holds for the ones crowned with tildes. Set

(25) f:=0~n_+11°fn°°'n+1 on aFlnaBn'

Then f* is a homeomorphism of F,ndB, onto 0F,ndB, with f*(p,)=p, and
S ¥(Pn+1)=Pn+1- Now define

f¥2) for zedF,noB, (neZ)

Do for z=p,.

(26) ¢4(2)= {

Then ¢, is a homeomorphism of 0F, onto 0F, satisfying (23) with ¢, replaced by ¢,.
Let t,(z)=—(z—r,)exp(if,)—r, and %,(2)=—(z—7,) exp(if,)—F,. Since 6 (Pp+1)=
r,(1—exp(—i0,)) and g,(a,)=r,, we have ¢,,,=1,°0,. Similarly &,,,=7%,°46,. Then it
follows from (6) and (25) that for we[0, 6,]

peGnefroo, toplrexplio)—1)=po°t, ' o fyo1,° plr,(expliv) —1))
=peot, o frexp(i(6,—w))— 1)) =p o T, ' (Fo(exp(ih,(6,— w))—1))
=p ot  (Fulexp(i(f, — hy(w))) — 1) =F,(exp(ih,(@)) — 1) = f,(r,(exp(iw) — 1)) ,

where p is the reflection in the imaginary axis. Hence

@7 pedofrca,top=f, on Ad,.

BY (2), 72u-1="2n 020—1 =020, F2u_1=Fp, and 0,,_,=0,, Hence A,,_;=A4,, and
Sfan—1=Sfon Therefore (27) shows that p°G,,° f¥,°05,' °p=fm—1 On A,,_;. On the
other hand, by (5), 6,,°9,=p°0,, on dB,,_, and 6,,°j=p ° 6,, on dB,,_,. Therefore
we have §,° f%,-1=f%.°9, on 0F,n0B,,_,. This together with (26) shows that ¢,
satisfies (24) with @, replaced by ¢;.

.Next we show that ¢, is extended to C1 F,. Let 0P, and 0F, be positively oriented
with respect to F, and F,, respectively. Then ¢, is orientation-preserving. Now by
Lemma 5.2 it is sufficient to prove that the following (E;) holds for each {edF, : (E)
There exist neighborhoods U, and ﬁm(() of { and @,({) in C1 F, and CI F,, respectively,
and a homeomorphism @, ; of U, onto U, so that ¢, . is quasiconformal in F; nInt U,
and that ¢, ,=¢, on (0F;)n U,. First let (€ (0F,)nQ,. Then { €(0F; N 0B,)\{Pps Pn+1}
for some ne Z. Hence o,,({) is, in particular, a point of 4,. By (25) and (26),
O,:1°0,°0,,=f, on A4, Therefore Lemma 3.1 shows that (Ey) holds.

Secondly let {=p, for some ne Z. Since 6,(0F,ndB,_,)=A,_, and ¢,(0F,ndB,)=
p(4,), (25), (26) and (27) show G,°@,°0, '=f,_; on A,_,; and =po f,op on p(4,).
Hence Lemma 3.2 shows that (E;) holds.
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Finally let {=p. By (22), 6, =6, for all n with |n+1/2| 22N +3/2. By (8) and
(22), f(z)=z for ze A, with |n+1/2|=2N+3/2. Hence by (25) and (26) there exists a
neighborhood U, of { in C1F, so that ¢,(z)=z for ze (0F,)n U,. Let U, =U, and &, ,
be the identity mapping. Then (E,) holds. q.e.d.

6. Proof of Theorem B. Let G and G be the groups constructed in §4. Then G
is an infinitely generated Kleinian group whose limit set A(G) is a Jordan curve with
[A(G), J]< 6 and G is an infinitely generated Fuchsian group of the first kind. Let y be
the isomorphism of G onto G defined in §2. Let j=1 or 2. Let 2, ;, F; and F; be as
in §~5. Let @; be the mapping in Lemma 5.1. Define a mapping &; of |J jecd(Cl Fj)
(=€) by

(28) &=1@ '°p;'e§ on §TUCIF) @eb).

By Lemma 5.1, &; is a well-defined homeomorphism of ﬁ,- onto ; which is
quasiconformal off the set | J gecg(ai - Hence @; is a quasiconformal mapping of Qj
onto £, by a theorem of Lehto-Virtanen ([3, p. 45, Theorem 8.3]). Since A(G) and A(G)
are Jordan curves, @; can be extended to a homeomorphism of C1€; onto Cl1Q,. By
(23) and (28), @, =, on the set J ;. s §({ P} U { Bs; n€ Z}), which is dense in A(G) by
a theorem of Lehner ([2, p. 102]). Hence &, = ®, on A(G). Set &= ®@;on Cl Qj U=12).
Then & is a homeomorphism of € onto itself which is quasiconformal off the circle
A(G). Hence @ is a quasiconformal automorphism of €. On the other hand, it follows
from (28) that y(§)c ®=P°§ (§eG) on (G), hence, by continuity, on €. Therefore G
is a quasiconformal deformation of G. q.e.d.
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