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1. Introduction. Let Γ be a Fuchsian group. Denote by Λ(Γ) and Ω(Γ) its limit

set and region of discontinuity, respectively. Then Γ is said to be of the first kind if

Ω(Γ) is not connected. If all elements of Γ \ { 1 } are hyperbolic transformations, Γ is

said to be purely hyperbolic. Let w be a quasiconformal automorphism of the Riemann

sphere C which is compatible with Γ, that is, w ° γ ° w~ x is a Mόbius transformation for

each γeΓ. Then wΓw~* is a Kleinian group and is called a quasiconformal deformation

of Γ. The limit set ΛiwΓw'1) coincides with w(Λ(Γ)), which is a quasicircle when Γ is

of the first kind. For two Jordan curves Jx and J2 in the finite complex plane C we

define the Frechet distance [Jl9 J2] as inf max{| zί(t)—z2(t) |; 0 ^ / ^ 1}, where the infimum

is taken over all possible parametrizations zk(t) of Jk (£=1,2).

In Chu [1] the following theorem is used as. a key lemma to prove a theorem on

the outradii of the Teichmϋller spaces of finitely generated purely hyperbolic Fuchsian

groups of the first kind.

THEOREM A. Let J be a rectifiable Jordan curve in C and let δ>0. Then there

exists a quasiconformal deformation G of a finitely generated purely hyperbolic Fuchsian

group of the first kind so that [Λ(G), J] < δ.

Theorem A is proved by means of a theorem of Maskit on finitely generated
Kleinian groups (Maskit [4, Theorem 2]). The assumption of the rectifiability of J can
be removed (see Lemma 4.1). In this note we prove the following theorem, which is an
analogue of Theorem A.

THEOREM B. Let J be a Jordan curve in C and let δ>0. Then there exists a

quasiconformal deformation G of an infinitely generated Fuchsian group of the first kind

so that[Λ{G\J]<δ.

We prove Theorem B by constructing a group G explicitly. In §2 we prove two
lemmas which are used in §4. In §3 we construct a quasiconformal mapping used in
§5. In §4 we construct an infinitely generated Kleinian group G whose limit set Λ(G) is
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a Jordan curve with [Λ(G),J]<δ and an infinitely generated Fuchsian group G of the

first kind. In § 5 we prove a lemma which we use in § 6 to show that G is a quasiconformal

deformation of G.

The author would like to thank the referee for his many helpful comments on the

original manuscript of this note.

2. Preliminary lemmas. The purpose of this section is to prove two lemmas

(Lemmas 2.1 and 2.2) which are used in §4. For α e C and r > 0 set B(μ9 r) =

{zeC; | z - α | ^ r } . Let α π e C and rn>0 (neZ). Set Bn = B(oLn,rn). Assume that the

following conditions (l)-(3) are satisfied.

(1) Bn^ίnBn consists of one pointpn. Bmr\Bn = 0 for mφn, n±\.

(2) r2n _ ! = r2n and p2n+x is the mirror image of p2n _ ί with respect to the perpendicular

bisector of the segment α2 n_ 1 α 2 n .

(3) The radius rn converges to 0 as n tends to + oo. The center ocn converges to a point

PaoeC\(\JneZBn) as n tends to ±oo.

Let gn be the parabolic transformation with the fixed point p2n which sends p2n-χ to

P2n+I Then by the condition (2)

(4) gn{z)

where/?|w — α 2 π_iα 2 π = (α 2 π _ 1 — α2w)2/4. For a Mόbius transformation g with g(co)φco

let I(g) be the isometric circle of g (see Lehner [2, II, 10]). Then by (4)

(5) I(gn) = dB2n _ x and I(g ~ι) = 32?2n .

Let Gπ be the cyclic group generated by gn. Let G be the group generated by {gn;neZ}.

LEMMA 2.1. (i) G is the free product of Gn (neZ). In particular, G is infinitely

generated.

(ii) G is a Kleinian group and the Ford region F(G) coincides with C\[(\JneZBn) u

PROOF. The lemma follows from (1), (2), (5) and two theorems of Lehner ([2,

p. 118]). q.e.d.

LEMMA 2.2. The limit set Λ(G) of G is a Jordan curve.

Our proof of Lemma 2.2 is elementary but somewhat tedious. We give Lemmas

2.3 and 2.4, from which Lemma 2.2 follows. By Lemma 2.1 (i) each element gfeG\{l}

has a unique expression as a reduced word in gn (n e Z), that is, g = g|~ ° ° gε

k\, where

w ^ l , Sj= ± 1 andkjeZ(j=l, ,m) and gVjΦgΰ^^ 0 = l » * , w —1). The number

m is called the length of g and is denoted by l{g). For g — \ we define /(#) = 0. Set

) = B2n-1 and B(g~ί) = B2n. For w^O set $m =\
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geG}, Λ2(G) = {g(pn); geG, neZ} and Λ3(G) = Λ(G)\(Λί(G)uΛ2(G)). A sequence of
Jordan curves {Jn} in C is said to nest about a point z if, for every n, Jn+ί separates
/„ and z, and if, for any choice of zn on Jn, limπ^ aozn = z (see, for example, Maskit [4,
p. 622]).

LEMMA 2.3. For each zeΛ3(G) there exists a sequence {&jΊ} in & so that
nests about z.

PROOF. The existence of a sequence {B^jΊ} in $ such that d&i+1) separates dB^j)

and z follows from (1), (2), (5) and Lemma 2.1. Let # Λ = gij)(Bnj), where gU)eG and
£π.e JΌ We may assume gU)Φ 1. By Lemma 2.1 (ii), I(g)<z \JneZBn for all 0 e G \ { l } .
Hence dB^i) = gu\dBn)^C\D{{gU)y1), where D{{gU))~x) denotes the bounded
component of C\I((gij))~ί). Since the radii of the isometric circles of distinct elements
of G\{1} form a null sequence (Lehner [2, III, 1H]), the diameter of dB^j) tends
to 0. q.e.d.

Let {Bn; neZ} be another family of closed disks which satisfies the conditions
(l)-(3) with Bn, pn, rn, αn and p^ replaced by the ones crowned with tildes. Define gn,
Gn, G, B(gn), Big'1), J n , J and A/β) (1 ̂ /^3) in the same way as the ones with the
tildes removed. For g = \ define χ(g)=l. For g=gε

kZ
o "' °9k\GG\{\} (a reduced

word), where m^ 1, Sj= ± 1 and k^eZ (J= 1, , m), define χig) = gε&°''' °Qk\εG>
Then by Lemma 2.1 (i), χ is a well-defined isomorphism of G onto G. For B=giBigε

k))e
J m (m^O), where geG, Kg) = m, keZ,ε=±l and l(g°gk~

ε) = m+l, define ^(5) =
χ(g)iBigk))e$m. Then X gives a one-to-one correspondence between the disks of $m

and those of $m for each m ̂  0.

LEMMA 2.4. y4((z) ύ homeomorphic to Λ(G).

PROOF. Define a mapping F of ^4(G) to Λ(G) in the following way. For
z = g(pJeΛ1(G) and =^(pπ)Gyl2(e) set F{z) = χ(g\pJeΛγ{G) and j=χ(^Xpn)e^2(G),
respectively. For ZGΛ 3((J) let l^^} be a sequence in $ such that {δi?Λ} nests about z.
It follows from the proof of Lemma 2.3 that the sequence {dXi^)} also nests about
the point F(z)eΛ3(G), which is independent of the choice of {^J)}. Then F is a bijec-
tion of Λ(G) onto Λ{G). Let geG and;, n e Z with7^0. Set

= Λ(G)n ^\J{m{>jBJu{pJl N2J(g(p2n)) = Λ(G)ngQ

and

Define NUj(g(pJ), N2Jg(p2n)) and N2Jg{p2n_ί)) similarly. For zeΛ3(G) set ft3jz)=
Λ(G)n&» and iV3J(F(z))=/l(G)nX(5(Λ). Then A^/z) (lgλ:^3) are closed neighbor-
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hoods of zeAk(G) in Λ(G\ which become arbitrarily small as j tends to oo.
The same holds for the ones with the tildes removed. On the other hand,
F(Λ(G)r)B) = Λ(G)nX(B) for each Be<%. Hence F(NKj{z)) = NktJ(F(z)) for zeAk(G)
(1 ̂  k^ 3). Therefore F is a homeomorphism. q.e.d.

PROOF OF LEMMA 2.2. Choose an infinitely generated Fuchsian group of the first
kind as G in Lemma 2.4 (see, for example, G in §4). Then Λ(G) is a circle. Therefore
by Lemma 2.4 Λ(G) is a Jordan curve. q.e.d.

3. Construction of a quasiconformal mapping. Let a, b and c be positive numbers.
Let 3^ = min(β, b/c). Let h[a, b, c] be monotone increasing diffeomorphisms of class C 1

of [0, a] onto [0, b] which satisfy the following.

(6) h[a, b, c](a -ώ) = b- h[a, b9 c](ω) for ω e [0, a].

(7) h[a, b, c](ω) = cω for ω e [0, s].

(8) A[α, 0, l](ω) = ω for ω 6 [0, a].

(For example, let h[a, b, c](ω) = cω for ωe[0,ί], =& — φf — ω) for ωe[α —s, α] and
= i?(ω-α/2)exp(y(ω-fl/2)2) + ό/2 for ωe(s9a-s), where l+2y(tf/2-.ϊ)2 = c(α-2s)/
(fc —2cs) and b — 2cs = β(a — 2s)exp(γ(a/2 — s)2).) Let Y be the positive imaginary axis
{iy;y>0}. For r>0 and 0e(O, 2π), set A(r, θ) = {r(exp(/ω)-l); ωe[0, Θ]}9 A'(r,θ) =
A(r, θ)\{r(exp(iθ) -1)}, L(r, θ) = A(r, θ)uY and W(r, θ) = {q- exp(/ω) -r;q>r,0<
ω<θ}r\{z; Rez<0}. Let r, f>0 and 0, ίΓe(0, 2π). Let A be a monotone increasing
homeomorphism of [0, θ] onto [0, ff\. Then the mapping defined by r(exp(/ω)— 1)H->
f(exp(/A(ω)) — 1) for ωe[0, θ] and iy\-+iy for >>>0 is a homeomoφhism of L(r, θ) onto
L(r, S). Denote this mapping by/[r, 0; r, ^ A],

LEMMA 3.1. Let r,f>0 am/ 0,^e(O,2π). Let A' = A'(r9θ), Ά' = A'(r9θ), L =
L(r, 0), W= W(r, 0) a«rf W= W(r, θ). Let h = h[θ, 8, r/r\ and f=f[r, 0; f, ff; A]. ΓÂ n
/Aer̂  exist open neighborhoods U and 0 of A' and A' in Cl W and Cl ίV, respectively,
and a homeomorphism fofU onto 0 so that f is quasiconformal in WnU and that f — f
on LnU.

PROOF. Let v(z)= —2r/z and v(z)= -2r/z. Then v(r(exρ(/ω)-l)) = v(f(exp(/ω)-
l)) = l+//(ω), where ί(ω) = cot(ω/2). Define a mapping φ0 of (0, oo) onto itself
by Ψo(y) = (r/r)y Define a mapping φί of (ί(0), oo) onto (t(ff), oo) by ^ t (
for ωe(0, 0). Then we have

(9) v°/°v- 1 0» = ̂ o(3') for ^ G ( 0 , oo),

and

(10) v°/ov-1(l + ό>) = l + πAi()0 for ye[t(θ), oo)

where
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(11) ψ1(y) = toho r\y) = cot(h(2Arccoty)/2).

Both φ0 and ψx are monotone increasing and satisfy

(12) ΨΌ(y)=L and φ\(y) = ^^^L-h'(ω(y)),

where ω(j>) = 2Arccotj>. Since h(ω) = (r/r)ω sufficiently near 0 by (7) and since

cot(βAτccotx) = (l/β)x + O(χ-1) (x-> oo) for βΦO, (11) shows ψι(y) = (r/r)y+O(y-1)

(y-*oo). Hence

(13) lim{^ω-ί

{ + y ; ^ ^ 9 y ( ) } { o o } a n d N = { y , ^ ^ ; y ψ M ) )

(1— x)φo(t(θ))}u{oo}. Define a homeomorphism w of N onto N by w(x + iy) =

x-\-i{xφ1(y)-\-(l-x)Ψo(y)} and w(oo) = oo. Then

(14) w(iy) = iφo(y\ w{\ + iy) =

and μ[w] = (dw/dz)/(dw/dz) is given by

(is) μ[w]

in intN. It follows from (12), (13) and (15) that

(16) lim

uniformly in xe(0, 1), where ^/

0(oo) = ι^/

1(oo) = r/r. By (12), (15) and (16), it holds that

(17) ess. sup{μ[n>](z); z e Int N} < 1 .

Set £/= v~^ΛO, C7= v~X(N) and / = v " 1 ° w ° v . Then C/and 0are open neighborhoods

of A and >ϊ' in Cl ^ and Cl PΓ, respectively, and / is a homeomorphism of U onto 0.

By (17), / is quasiconformal in Wn U. By (9), (10) and (14), / = / on LnU. q.e.d.

Lemma 3.1 together with a theorem on quasiconformal mappings (Lehto-Virtanen
[3, p. 45, Theorem 8.3]) yields the following lemma.

LEMMA 3.2. Let 7= 1,2. Let rprj>0 and Θp ^ e(0,2π). Let A'j = A(rj9θj)9

A'j = A(rjJj9 Wj=W(rpθj) and frj=W(rpffj). Let h^h^B^m and fj =

/[rpβpΓpffphj]. Let p be the reflection in the imaginary axis. Then there exist open

neighborhoods U and U of A\up(Ar

2) and A\ϋp(Af

2) in Cl[Wί up(W2)] and

Cl[Wίυp(W2)], respectively, and a homeomorphism f of U onto 0 so that f is

quasiconformal in [W1 u Yϋp(W2)]n U and that f=fί on A\ and =p°f2°pon ρ(A'2).
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4. Construction of groups. Let / be a Jordan curve in C. The following lemma
is well known (see, for example, Moise [5, Ch. 6, Theorem 2]).

LEMMA 4.1. For each δ1>0 there exists a piecewise linear Jordan curve

Let δ > 0. Let K— K(δβ) be a piecewise linear Jordan curve in Lemma 4.1. Suppose
that we obtain K by joining the points v0, υl9 *, vm = v0 by segments in this order.
Choose interior points ux and u2 of the segment v1v2 so close to each other that a circle
Σ passing through ux and u2 lies in the ((5/3)-neighborhood of the segment uίu2. Let
K' be a Jordan curve obtained by replacing the open segment uγu2 by a component Σ1

of Σ\{ul9 M2} Let Pn be a point of Σ±. Let r(ΛΓ/) = {w1, w2, tfo> '" "> ̂ m-i}- K is not
difficult to construct a covering of K \{p^ by closed disks Vn(neZ) which satisfy the
following conditions.

(18) Vn_x n Fn consists of one point /?2π-1, where p2n_x G^ r \ ι?(# ' ) . Vm(\Vn = 0 for
mΦn, n+ 1.

(19) d(Vn)<δ/3 and rf(Kπ) (resp. the center of Kn) converges to 0 (resp. p^) as n tends
to + oo, where d(Vn) denotes the diameter of Vn.

(20) dVn intersects K at exactly two points p2n-x and p2n+ί9 where dVn and K make
right angles.

By the conditions (18) and (19) there exists an integer N>0 so that />2n+ie^i
for all I * I £tf. Let £„=/>«,. Let FΠ=FΠ for | / i | ^ t f + l . Cover ^\([ |J |n,>N ^ l u ^ J )
with 2ΛΓ+1 closed disks FΛ (\n\^N) so that the family {Vn}neZ satisfies (18) and (20)
with Vn,p2n-X and ^'X^X') replaced by Vn9p2n^ί and Σ\{wl51/2}, respectively. In Vn

there exist two closed disks B2n _ x = 5(α2π _ x, r2n _ x) and £ 2 | I = 5(α2n, r2n) with r2n _ x = r2π

so that B2n_1nB2n consists of one point p2n and that B2n.1r\Vn-ί = {p2n-1} and
^2n n Kn+! = {p2»+1} Similarly there exist Bn9 άw, rπ and^2n. Then the family <#0 = {Bn}neZ

(resp. ^o = { ^ L z ) satisfies the conditions (l)-(3) (resp. (l>-(3) with Bn,pn, rn, αn and
7?̂  replaced by the ones crowned with tildes). Also the following conditions are satisfied.

(21), dBn intersects Σ perpendicularly.
(22) pn=pn for |/i|^2ΛH-l, and απ = αw and rn = rn for

Define gfπ, Gπ and G (resp. £„, Gπ and G) as in § 2 by using the family Jf0 (resp. ^ 0 ) . Then
by Lemma 2.1 both G and G are infinitely generated Kleinian groups.The condition
(21) shows that each gneG keeps the bounded and unbounded components of C\Σ
invariant. Hence G is Fuchsian. Since the Ford region F(G) has no free sides, G is of
the first kind and Λ{G) = Σ (Lehner [2, p. 144]). Thus G is an infinitely generated
Fuchsian group of the first kind. On the other hand, Λ(G) is contained in
(Unez^«)u {̂ oo} by Lemma 2.1 (ii) and is a Jordan curve by Lemma 2.2. Hence both
Kr and A(G) are Jordan curves contained in ((J n e z ^»)u ί/7*)}- This together with the
condition (19) implies [Λ(G\ K']^δβ. Therefore [Λ(G), J]^[Λ(G\ K'] + [Kf

9 K\ +
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[K9J]<δ.

5. A quasiconformal mapping between the fundamental regions. Let G and G be

the groups in §4. Let Ωx and Ω2 (resp. Ω1 and Ω2) be the bounded and unbounded

components of Ω(G) (resp. Ω(G))9 respectively. Let F=F(G) and F=F(G) be the Ford

regions. Let Fj = FnΩj and Fj = FnΩj (J=\,2). Then by Lemma 2.1 (ii), δF,=

[ U « 6 z ( ^ C l ^ ] u { / U a n d ^ - I I J ^ z ί ^ n C l Ω ^ u ^ o o } 0=1,2). In particular,

dFj and dFj are Jordan curves. The purpose of this section is to prove the following

lemma.

LEMMA 5.1. Let j=\ or 2. Then there exists a homeomorphism φj ofClFj onto

Cl Fj which is quasiconformal in Fj and which satisfies the following for all neZ.

(23) <Pj(Pao)=Pao °>nd q>j{pn)=pn.

(24) gn o φj=φj o 9n on dFj n dB2n _ ± .

First we prove the following lemma.

LEMMA 5.2. Let D and D be Jordan domains in C. Let dD and dD be positively

oriented with respect to D and D, respectively. Let φ be an orientation-preserving

homeomorphism of dD onto dD. Suppose that for each point ζ e dD there exist open

neighborhoods Uζ and Uφiζ) of ζ and φ(ζ), respectively, and a homeomorphism φζ of

(ClD)n Uζ onto (ClD)n Uφ(ζ) so that φζ is quasiconformal in DnUζ and that φζ — φ on

(dD) n Uζ. Then there exists a homeomorphism φ of Cl D onto Cl D so that φ is

quasiconformal in D and φ = φ on dD.

PROOF. Let { and <f be conformal mappings of the open unit disk A onto D and

D, respectively. Let w = ξ"x ° φ ° ξ. Let dΔ be positively oriented with respect to A. Then

w is an orientation-preserving homeomorphism of dA onto itself. By the assumption

for each zed A there exist open neighborhoods Uz and Uw(z) of z and w(z), respectively,

and a homeomorphism wz of (Cl A) n Uz onto (Cl A) n Uw(z) so that wz is quasiconformal

in A n Uz and that i v z = w o n (dA)n Uz. By the reflection principle wz can be extended

to a quasiconformal mapping of ((CU)n Uz)u{x; 1/xeA n Uz) (Lehto-Virtanen [3,

p. 47]). Hence it follows from a theorem of Lehto-Virtanen ([3, Theorem II. 8.1])

and a theorem of Rickman ([6, Theorem 4]) that w has a quasiconformal extension

w to C with w = w on dA. Since w is orientation-preserving, w maps A onto itself.

Therefore φ = ξ°w°ξ~1 is a required extension. q.e.d.

PROOF OF LEMMA 5.1. We assume 7 = 1 . The proof fory = 2 is similar. First we

construct a homeomorphism φt of dFx onto dFί satisfying both (23) and (24) with φx

replaced by <pίm Next we show that φx is extended to φ1.

We may assume, if necessary by replacing the suffices n of Bn (resp. Bn) by — n for

all neZ, that Fx (resp. F x ) lies on the left of the directed circular arc pnpn+ί of dF1
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(resp. pnpn+ίofδF1). Let pn-<xn = (pn+x -<xn) exp(ι0π) and βn-aίn = (βn+1-

(0., 0Πe(0, 2π)). Set hn = h[θH9 ffn9 rjrn] and/Π = f[rn9 θn;rm9 0~M; hn] for neZ(see §3). Then

fn is a homeomorphism of An=A(rn,θn) onto j?n = ;*(/*„, ffn) with /Π(0) = 0 and

Let σn(z)=-r^^z-p^/^n-i-Pn) and (τn(z) =
^ ^

The same holds for the ones crowned with tildes. Set

(25) Ω = σ-+\ofnoσn + 1 on

Then / * is a homeomorphism of dF1πdBn onto dF1nδBn with f*(pn)=pn and

fϊ(Pn + i)=Pn+i N o w

(f*(z) for zedFx(\dBH (neZ)
(26) Φi(*)H

I p ^ for 2=/?^ .

Then φ t is a homeomorphism of δi^ onto dFt satisfying (23) with φ1 replaced by φx.

Let τn(z)=-(z-rn)exp(iθn)-rn and τn(z) = -{z-rn)exp(i§n)-rn. Since σn(pn+1) =

rn(l-exp(-iθn)) and σπ(αw) = rπ, we have σn+1=τΛ°σn. Similarly α B + 1 = τ > σ B . Then it

follows from (6) and (25) that for ωe[0, 0J

p o gn o f* o σ ~ i o p(rπ(exp(/ω) - 1 ) ) = p ° f "*°fn o τπ ° p(rπ(exp(/ω) -1))

= P 0 C l 0 Λ W e x p O R - ω)) - 1 ) ) = p o τ " H^iexpi*, ,^ - ω)) -1))

= p°τ~1 (rn(Qxp(i(ffn — hn(ω))) — 1)) = rΛ(exp(/ΛΛ(ω)) — 1) = /π(r,,(exp(/ω) — 1)) ,

where p is the reflection in the imaginary axis. Hence

(27) P° σn° Jn ° σn P=Jn O n An .

By (2), rln-1=r2n9θ2n-x=θ2n9r2n_1=r2n and S2n-ι = 82n. Hence ^ 2 n - i = ̂ 2W and

fm-i=fin Therefore (27) shows that ρ°σ2nof*noσ-^op=f2n_ί on Λ ^ ^ . On the

other hand, by (5), σ2n°gn = ρ°σ2n on dB2n_ί and d2n

og = ρ° σ2n on 35 2 n _ x . Therefore

we have gn° f*n-i=f*nΌgn o n dF1ndB2n_ί. This together with (26) shows that φ t

satisfies (24) with φ x replaced by φx.

•Next we show that ^ ! is extended to C l ^ . Let dF± and 5 ^ be positively oriented

with respect to Ft and Fί9 respectively. Then φx is orientation-preserving. Now by

Lemma 5.2 it is sufficient to prove that the following (Eζ) holds for each ζedF±: (2sζ)

There exist neighborhoods Uζ and UφM of ζ and φγ{ζ) in C l ^ and ClF l 5 respectively,

and a homeomorphism φlζ of C/ζ onto 6^(ζ) so that φ1 § ζ is quasiconformal in F1 n Int ί/ζ

and that 'φ l i ζ = φ 1 on (dFx)n Uζ. First let ζeidFJnΩ^ ThQnζe(dF1ndBn)\{pn,pn+1}

for some neZ. Hence σ~+x(ζ) is, in particular, a point of A'n. By (25) and (26),
σn+10(Pi°σnVi =/n o n ^n Therefore Lemma 3.1 shows that (Eζ) holds.

Secondly let ζ —pn for some neZ. Since σn(dFx n55n_ J = ̂ 4W_x and σn(dFx n<

p(^4π), (25), (26) and (27) show ^n°φi°σ~1=fn-ί on ^4Π_1 and =p°fn°p on

Hence Lemma 3.2 shows that (Eζ) holds.
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Finally let ζ =/?00. By (22), σn+ί = σn+1foτ all n with | n + 1/21 ̂  2N+ 3/2. By (8) and
(22), fn(z) = z for 2€^ Λ with |/ι+1/21^2^+3/2. Hence by (25) and (26) there exists a
neighborhood ί/ζ of £ in Cl/7! so that φί(z)=z for z e ί ά F J n Uζ. Let Uφiζ)=Uζ and φ l ζ

be the identity mapping. Then (Eζ) holds. q.e.d.

6. Proof of Theorem B. Let G and G be the groups constructed in §4. Then G
is an infinitely generated Kleinian group whose limit set Λ(G) is a Jordan curve with
[Λ(G), J]<δ and G is an infinitely generated Fuchsian group of the first kind. Let χ be
the isomorphism of G onto G defined in §2. Let 7= 1 or 2. Let Ωj9 Ωj9 Fj and Pj be as
in §5. Let φj be the mapping in Lemma 5.1. Define a mapping Φj of \JgeG§(ClPj)

)

(28) Φj=χ(g)-ίoΦi^g on g-^aPj) (geό).

By Lemma 5.1, Φj is a well-defined homeomorphism of Ω, onto Ωj which is
quasiconformal off the set \JgeG§(dPj)- Hence Φj is a quasiconformal mapping of Ωj
onto Ω, by a theorem of Lehto-Virtanen ([3, p. 45, Theorem 8.3]). Since Λ(G) and Λ(G)
are Jordan curves, Φj can be extended to a homeomorphism of Cl Ω, onto Cl Ωy By
(23) and (28), Φ1 = Φ2 on the set (J^eδ£({£«>} u {A; «eZ}), which is dense in yl(G) by
a theorem of Lehner ([2, p. 102]). Hence Φt = Φ2 on Λ(G). Set Φ = Φ̂  on ClΏj 0=1,2).
Then Φ is a homeomorphism of C onto itself which is quasiconformal off the circle
Λ(G). Hence Φ is a quasiconformal automorphism of C On the other hand, it follows
from (28) that χ(g)°Φ = Φ°g (ge&) on Ω(G)9 hence, by continuity, on C. Therefore G
is a quasiconformal deformation of G. q.e.d.
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