HARMONIC INNER AUTOMORPHISMS OF COMPACT CONNECTED SEMISIMPLE LIE GROUPS

Joon-Sik Park

(Received November 24, 1988, revised December 27, 1988)
0. Introduction. Harmonic maps of a compact Riemannian manifold (M, g) into another Riemannian manifold (N, h) are the extrema of the energy functional (cf. [1])

$$
E(\phi)=\frac{1}{2} \int_{M}|d \phi|^{2} d V_{g} .
$$

In this paper, we treat the case $(M, g)=(N, h)=(G, g)$ for a compact connected semisimple Lie group G with a left invariant Riemannian metric g. It is well known that every inner automorphism of G into itself is both isometric and harmonic with respect to a bi-invariant Riemannian metric g_{0} on G. However, we here deal with an arbitrary left invariant metric g on G, and show which inner automorphisms of G into itself are harmonic maps of (G, g) into itself.

In §1, we introduce Guest's criterion (cf. Lemma A) for the map between reductive homogeneous spaces G / H and G^{\prime} / H^{\prime} induced by a Lie group homomorphism from G into G^{\prime}.

In §2, using this criterion, we obtain a necessary and sufficient condition for an inner automorphism A_{x} of (G, g) to be harmonic (cf. Theorem 2.2).

In the particular case $G=S U(2)$, we then completely determine harmonic inner automorphisms of $(S U(2), g)$ for every left invariant Riemannian metric g (cf. Proposition 3.3-3.5).

Finally in Theorems 3.6 and 3.7, we show that for any left invariant and but not bi-invariant Riemannian metric g on $G=S U(2)$, there always exist on (G, g) both a non-harmonic inner automorphism and a non-isometric but harmonic inner automorphism.

Acknowledgement. I learned the theory of Lie groups and Lie algebras from Professor I. Satake during my stay at Tôhoku University. I would like to express deep appreciation to him. Moreover, I wish to express my gratitude to Professor H. Urakawa who suggested this problem to me and gave valuable advice.

1. Preliminaries. In this section, we review Guest's work which gives a necessary and sufficient condition for the map induced by a homomorphism $\theta: G \rightarrow G^{\prime}$ between reductive homogeneous spaces $G / H, G^{\prime} / H^{\prime}$ with invariant Riemannian metrics to be
harmonic (cf. [4]).
Let $\theta: G \rightarrow G^{\prime}$ be a homomorphism of compact Lie groups G, G^{\prime} such that $\theta(H) \subset H^{\prime}$ for closed subgroups H, H^{\prime}. We denote by \mathfrak{g} (resp. $\mathfrak{h}, \mathfrak{g}^{\prime}$ and \mathfrak{h}^{\prime}) the Lie algebra of all left invariant vector fields on G (resp. H, G^{\prime} and H^{\prime}). Let $f_{\theta}: G / H \rightarrow G^{\prime} \mid H^{\prime}$ be the map between reductive homogeneous spaces $G / H, G^{\prime} / \mathrm{H}^{\prime}$ induced by θ, that is, $f_{\theta}(x H)=\theta(x) H^{\prime}$, $(x \in G)$. Let \mathfrak{m} be the subspace of \mathfrak{g} such that $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ (direct sum of vector spaces) and $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$. Then the subspace \mathfrak{m} of \mathfrak{g} can be identified with the tangent space of G / H at the origin $O:=\{H\} \in G / H$.

The derivative $d f_{\theta}$ of the induced map f_{θ} is determined by its restriction to $O \in G / H$, which is given in terms of the Lie algebra homomorphism $\theta: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ by

$$
\begin{equation*}
d f_{\theta}(X)=\theta(X)_{\mathfrak{m}^{\prime}}, \quad X \in \mathfrak{m} \tag{1.1}
\end{equation*}
$$

where $\theta(X)_{\mathfrak{m}^{\prime}}$ denotes the \mathfrak{m}^{\prime}-component of the element $\theta(X) \in \mathfrak{g}^{\prime}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.
Let \langle,$\rangle (resp. \langle,\rangle^{\prime}$) be an inner product which is invariant with respect to $\operatorname{Ad}(H)$ (resp. $\operatorname{Ad}\left(H^{\prime}\right)$) on \mathfrak{m} (resp. \mathfrak{m}^{\prime}), where Ad denotes the adjoint representation of H (resp. H^{\prime}) in \mathfrak{g} (resp. \mathfrak{g}^{\prime}). This inner product \langle,$\rangle (resp. \langle$,$\rangle) determines an invariant$ Riemannian metric g (resp. g^{\prime}) on G / H (resp. G^{\prime} / H^{\prime}).

Then, the connection function α (cf. [6, p. 43]) on $\mathfrak{m} \times \mathfrak{m}$ corresponding to the invariant Riemannian connection of ($G / H, g$) is given as follows (cf. [6, p. 52]):

$$
\alpha(X, Y)=\frac{1}{2}[X, Y]_{\mathfrak{m}}+U(X, Y), \quad(X, Y \in \mathfrak{m})
$$

where $U(X, Y)$ is determined by

$$
\begin{equation*}
2\langle U(X, Y), Z\rangle=\left\langle[Z, X]_{\mathfrak{m}}, Y\right\rangle+\left\langle X,[Z, Y]_{\mathfrak{m}}\right\rangle, \quad(X, Y, Z \in \mathfrak{m}), \tag{1.2}
\end{equation*}
$$

and X_{m} denotes the m -component of an element $X \in \mathfrak{g}=\mathfrak{h}+\mathfrak{m}$.
The invariant metric g^{\prime} on $G^{\prime} / H^{\prime}, U^{\prime}$ on $\mathfrak{m}^{\prime} \times \mathfrak{m}^{\prime}$, and the connection function α^{\prime} are given similarly.

Recall that for Riemannian manifolds $(M, g),(N, h)$, a smooth map $f: M \rightarrow N$ is said to be harmonic if $\operatorname{tr} \nabla(d f)=0$, namely, the tension field $\tau(f)$ vanishes identically (cf. [1, 2]).

Guest [4, Lemma 2.1] obtained the following:
Lemma A. The induced map $(G / H, g)$ into $\left(G^{\prime} / H^{\prime}, g^{\prime}\right)$ is harmonic if and only if

$$
\sum_{i=1}^{m}\left\{\left[\theta\left(X_{i}\right)_{\mathfrak{h}^{\prime}}, d f_{\theta}\left(X_{i}\right)\right]+U^{\prime}\left(d f_{\theta}\left(X_{i}\right), d f_{\theta}\left(X_{i}\right)\right)-d f_{\theta}\left(U\left(X_{i}, X_{i}\right)\right)\right\}=0,
$$

where $\left\{X_{i}\right\}_{i=1}^{m}$ is an orthonormal basis of m with respect to \langle,$\rangle , and m:=$ $\operatorname{dim}(G / H)=\operatorname{dim} m$.

2. Harmonic maps between compact semisimple Lie groups.

2.1. Let G be a compact semisimple Lie group and T be a maximal torus of G.

We denote by \mathfrak{g} (resp. \mathfrak{t}) the Lie algebra of G (resp. T). Let $\mathfrak{g}^{\boldsymbol{c}}$ be the complexification of \mathfrak{g}. We denote by Δ the set of all nonzero roots of g^{c} with respect to t^{c}, and by Δ^{+} the set of all positive roots with respect to a fixed linear order in the dual space of $\left\{H \in t^{c} \mid \alpha(H) \in \boldsymbol{R} \text { for any } \alpha \in \Delta\right\}_{\boldsymbol{R}}$. Let B be the Killing form of \mathfrak{g}^{c}. We define an inner product \langle,\rangle_{0} on \mathfrak{g} by $\langle X, Y\rangle_{0}:=-B(X, Y),(X, Y \in \mathfrak{g})$.

We choose an orthonormal basis of g with respect to the inner product \langle,\rangle_{0} as follows: For $\alpha \in \Delta$, let E_{α} be a root vector such that $B\left(E_{\alpha}, E_{-\alpha}\right)=-1$ and $N_{\alpha, \beta}=N_{-\alpha,-\beta}$ for $\alpha, \beta \in \Delta(\alpha+\beta \neq 0)$, where $N_{\alpha, \beta}$ are real numbers defined by

$$
\left(\begin{array}{ll}
{\left[E_{\alpha}, E_{\beta}\right]=N_{\alpha, \beta} E_{\alpha+\beta}} & \text { if } \quad \alpha, \beta, \alpha+\beta \in \Delta, \quad \text { and } \tag{2.1}\\
N_{\alpha, \beta}=0 & \text { if } 0 \neq \alpha+\beta \notin \Delta
\end{array}\right.
$$

Hence, $\left[E_{\alpha}, E_{-\alpha}\right]=-H_{\alpha}, H_{\alpha}$ being determined by $B\left(H, H_{\alpha}\right)=\alpha(H)$ for any $H \in$ t. For $\alpha \in \Delta$, put $U_{\alpha}=E_{\alpha}+E_{-\alpha}, V_{\alpha}=\sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right)$ which belong to \mathfrak{g}. Let $\left\{H_{i}\right\}_{i=1}^{s}$ be an orthonormal basis of t with respect to \langle,\rangle_{0}, where $s=\operatorname{dim} T$. Then

$$
\begin{equation*}
\left\{(1 / \sqrt{2}) U_{\alpha},(1 / \sqrt{2}) V_{\alpha}, H_{i} \mid \alpha \in \Delta^{+}, 1 \leqq i \leqq s\right\} \tag{2.2}
\end{equation*}
$$

is an orthonormal basis of \mathfrak{g} with respect to \langle,\rangle_{0}.
On the other hand, we take another inner product \langle,$\rangle on \mathfrak{g}$ such that

$$
\begin{equation*}
\left\{a_{\alpha}^{-1} \cdot\left(U_{\alpha} / \sqrt{2}\right), b_{\alpha}^{-1} \cdot\left(V_{\alpha} / \sqrt{2}\right), c_{i}^{-1} \cdot H_{i} \mid \alpha \in \Delta^{+}, 1 \leqq i \leqq s\right\} \tag{2.3}
\end{equation*}
$$

is an orthonormal basis of \mathfrak{g} with respect to \langle,$\rangle , where a_{\alpha}, b_{\alpha}$ and c_{i} are positive constants. Then \langle,\rangle_{0} (resp. \langle,$\rangle) determines a left invariant Riemannian metric g_{0}$ (resp. g) on G. In fact, g_{0} becomes a bi-invariant metric on G.

An inner automorphism $A_{x}:(G, g) \rightarrow(G, g),(x \in G)$, is harmonic if and only if

$$
\begin{align*}
& \sum_{i=1}^{s} c_{i}^{-2}\left\{U\left(\operatorname{Ad}(x) H_{i}, \operatorname{Ad}(x) H_{i}\right)-\operatorname{Ad}(x) U\left(H_{i}, H_{i}\right)\right\} \tag{2.4}\\
& \quad+\sum_{\alpha \in \Delta^{+}}\left(a_{\alpha}^{-2} / 2\right)\left\{U\left(\operatorname{Ad}(x) U_{\alpha}, \operatorname{Ad}(x) U_{\alpha}\right)-\operatorname{Ad}(x) U\left(U_{\alpha}, U_{\alpha}\right)\right\} \\
& \quad+\sum_{\alpha \in \Delta^{+}}\left(b_{\alpha}^{-2} / 2\right)\left\{U\left(\operatorname{Ad}(x) V_{\alpha}, \operatorname{Ad}(x) V_{\alpha}\right)-\operatorname{Ad}(x) U\left(V_{\alpha}, V_{\alpha}\right)\right\}=0 .
\end{align*}
$$

This follows from the case $H=\{e\}$ of the reductive homogeneous space G / H in Lemma A of $\S 1$.

Now, we analyze the formula (2.4) further.
Lemma 2.1.
(i) $U\left(H_{i}, H_{j}\right)=0, \quad(1 \leqq i, j \leqq s)$,
(ii) $U\left(U_{\alpha}, U_{\alpha}\right)=U\left(V_{\alpha}, V_{\alpha}\right)=0$,
(iii) $U\left(U_{\alpha}, V_{\alpha}\right)=\sqrt{-1} \sum_{i=1}^{s} c_{i}^{-2} \alpha\left(H_{i}\right)\left(a_{\alpha}^{2}-b_{\alpha}^{2}\right) H_{i}$, and
(iii') $\left\langle U\left(U_{\alpha}, V_{\alpha}\right), c_{i}^{-1} H_{i}\right\rangle=\sqrt{-1} c_{i}^{-1} \alpha\left(H_{i}\right)\left(a_{\alpha}^{2}-b_{\alpha}^{2}\right)$,
where $\alpha \in \Delta^{+}$in (ii), (iii) and (iii').
Proof. From (1.2), we have

$$
\begin{equation*}
2\left\langle U\left(U_{\alpha}, V_{\alpha}\right), Z\right\rangle=\left\langle\left[Z, U_{\alpha}\right], V_{\alpha}\right\rangle+\left\langle U_{\alpha},\left[Z, V_{\alpha}\right]\right\rangle, \quad Z \in \mathfrak{g} . \tag{2.5}
\end{equation*}
$$

Using (2.1), we obtain the following equations:

$$
\left(\begin{array}{l}
{\left[H_{i}, U_{\alpha}\right]=-\sqrt{-1} \alpha\left(H_{i}\right) \cdot V_{\alpha}, \quad\left[H_{i}, V_{\alpha}\right]=\sqrt{-1} \alpha\left(H_{i}\right) \cdot U_{\alpha},} \tag{2.6}\\
{\left[U_{\beta}, U_{\alpha}\right]=N_{\beta, \alpha} U_{\beta+\alpha}+N_{\beta,-\alpha} U_{\beta-\alpha},} \\
{\left[U_{\beta}, V_{\alpha}\right]=N_{\beta, \alpha} V_{\beta+\alpha}-N_{\beta,-\alpha} V_{\beta-\alpha},} \\
{\left[V_{\beta}, V_{\alpha}\right]=N_{\beta,-\alpha} U_{\beta-\alpha}-N_{\beta, \alpha} U_{\beta+\alpha},} \\
U_{\alpha}=U_{-\alpha}, \quad V_{-\alpha}=-V_{\alpha}, \\
\left\langle U_{\alpha}, U_{\alpha}\right\rangle=2 a_{\alpha}^{2}, \quad\left\langle V_{\alpha}, V_{\alpha}\right\rangle=2 b_{\alpha}^{2},
\end{array}\right.
$$

where $\alpha, \beta \in \Delta^{+}, 1 \leqq i \leqq s$. From (2.6), we get

$$
\left[Z, U_{\alpha}\right]=\left(\begin{array}{llll}
-\sqrt{-1} c_{i}^{-1} \alpha\left(H_{i}\right) V_{\alpha} \quad \text { if } \quad Z=c_{i}^{-1} H_{i}, & \tag{2.7}\\
\left(a_{\beta}^{-1} / \sqrt{2}\right)\left\{N_{\beta, \alpha} U_{\beta+\alpha}+N_{\beta,-\alpha} U_{\beta-\alpha}\right\} & \text { if } & Z=a_{\beta}^{-1}\left(U_{\beta} / \sqrt{2}\right), \\
\left(b_{\beta}^{-1} / \sqrt{2}\right)\left\{N_{\beta, \alpha} V_{\beta+\alpha}+N_{\beta,-\alpha} V_{\beta-\alpha}\right\} & \text { if } & Z=b_{\beta}^{-1}\left(V_{\beta} / \sqrt{2}\right)
\end{array}\right.
$$

and
(2.8) $\left[Z, U_{\alpha}\right]=\left(\begin{array}{l}\sqrt{-1} c_{i}^{-1} \alpha\left(H_{i}\right) U_{\alpha} \quad \text { if } \quad Z=c_{i}^{-1} H_{i} \\ \left(a_{\beta}^{-1} / \sqrt{2}\right)\left\{N_{\beta, \alpha} V_{\beta+\alpha}+N_{-\beta, \alpha} V_{-\beta+\alpha}\right\} \\ \left(b_{\beta}^{-1} / \sqrt{2}\right)\left\{N_{\beta,-a} U_{\beta-\alpha}-N_{\beta, \alpha} U_{\beta+\alpha}\right\} \quad \text { if } \quad Z=a_{\beta}^{-1}\left(U_{\beta} / \sqrt{2}\right), \\ Z=b_{\beta}^{-1}\left(V_{\beta} / \sqrt{2}\right) .\end{array}\right.$

Hence, from (2.3) and (2.5)-(2.8), we obtain (iii). The assertion (iii') follows immediately from (iii). Similarly, using (1.2), (2.1) and (2.6), we can prove (i) and (ii).
q.e.d.

Theorem 2.2. An inner automorphism $A_{t},(t \in T)$, of a compact connected semisimple Lie group (G, g) is a harmonic map if and only if

$$
\begin{equation*}
\sum_{\alpha \in \Delta^{+}}\left(b_{\alpha}^{-2}-a_{\alpha}^{-2}\right)\left(b_{\alpha}^{2}-a_{\alpha}^{2}\right) \sin (2 \sqrt{-1} \alpha(H)) \alpha=0, \tag{2.9}
\end{equation*}
$$

where $t=\exp H,(H \in \mathfrak{t})$.
Proof. For $t=\exp H \in T$, we have

$$
\left(\begin{array}{l}
\operatorname{Ad}(t) U_{\alpha}=\cos (\sqrt{-1} \alpha(H)) U_{\alpha}-\sin (\sqrt{-1} \alpha(H)) V_{\alpha} \tag{2.10}\\
\operatorname{Ad}(t) V_{\alpha}=\sin (\sqrt{-1} \alpha(H)) U_{\alpha}+\cos (\sqrt{-1} \alpha(H)) V_{\alpha}
\end{array}\right.
$$

Theorem 2.2 is obtained from (2.4), Lemma 2.1 and (2.10).
q.e.d.

Remark. Let x be an arbitrary point of a compact connected semisimple Lie group G. Then there exists a maximal torus T of G containing x (cf. [8, Th. 3.9.4, p.

72]). Therefore the criterion for A_{x} to be harmonic can be obtained by a direct application of Theorem 2.2.
2.2. The Lie algebra $\mathfrak{s l}_{n}(\boldsymbol{C})$ of $S L_{n}(\boldsymbol{C})$ is the complexification of the real Lie algebra $\mathfrak{s u}(n)$ of $S U(n)$. Let $E_{i j}$ denote a square matrix with the (i, j)-entry being 1 , and all the other entries being 0 . Let \mathfrak{h} be a Cartan subalgebra of $\mathfrak{s l}_{n}(C)$ which consists of the diagonal matrices of trace 0 . Then we have the direct some decomposition

$$
\begin{equation*}
\mathfrak{s l}_{n}(\boldsymbol{C})=\mathfrak{h}+\sum_{i \neq j} \boldsymbol{C} E_{i j} . \tag{2.11}
\end{equation*}
$$

If $e_{i}(H),(H \in \mathfrak{h}, 1 \leqq i \leqq n)$, is the diagonal matrix with the (i, i)-entry 1 and the other entries 0 , we get

$$
\begin{equation*}
\left[H, E_{i j}\right]=\left(e_{i}-e_{j}\right)(H) \cdot E_{i j} \tag{2.12}
\end{equation*}
$$

Here, the non-zero roots of $\mathfrak{s l}_{n}(\boldsymbol{C})$ with respect to \mathfrak{h} are

$$
\begin{equation*}
e_{i}-e_{j}, \quad(1 \leqq i, j \leqq n, i \neq j) . \tag{2.13}
\end{equation*}
$$

Let B be the Killing form of $\mathfrak{s l}_{n}(C)$ which is given by

$$
\begin{equation*}
B(X, Y)=2 n \operatorname{Trace}(X Y), \quad\left(X, Y \in \mathfrak{s l}_{n}(C)\right) \tag{2.14}
\end{equation*}
$$

We define an inner product \langle,\rangle_{0} on $\mathfrak{s u}(n)$ by

$$
\langle X, Y\rangle_{0}:=-B(X, Y), \quad(X, Y \in \mathfrak{s u}(n))
$$

We choose an orthonormal basis of $\mathfrak{s u}(n)$ with respect to \langle,\rangle_{o} as follows: For i, j such that $1 \leqq i<j \leqq n$, let $E_{e_{i}-e_{j}}\left(\right.$ resp. $\left.E_{e_{j}-e_{i}}\right)$ denote the root vectors with the (i,j)-entry being $1 / \sqrt{2 n}$ (resp. the (j, i)-entry being $-1 / \sqrt{2 n}$) and all the other entries being 0 . Then $B\left(E_{e_{i}-e_{j}}, E_{e_{j}-e_{i}}\right)=-1$, and $H_{e_{i}-e_{j}},(i<j)$, is the diagonal matrix

$$
\stackrel{\stackrel{i}{v}}{(0, \cdots, 0,} \stackrel{1}{1} 2 n, 0, \cdots, 0,-\stackrel{\stackrel{j}{1} / 2 n, 0, \cdots, 0)}{ }
$$

of order n. We put

$$
U_{e_{i}-e_{j}}:=E_{e_{i}-e_{j}}+E_{e_{j}-e_{i}}, \quad V_{e_{i}-e_{j}}:=\sqrt{-1}\left(E_{e_{i}-e_{j}}-E_{e_{j}-e_{i}}\right)
$$

and

$$
H_{i, j}:=\sqrt{-n} H_{e_{i}-e_{j}},
$$

where $1 \leqq i, j \leqq n$ and $i \neq j$. Then,

$$
\begin{equation*}
\left\{U_{e_{i}-e_{j}} / \sqrt{2}, V_{e_{i}-e_{j}} / \sqrt{2}, H_{i, i+1} \mid 1 \leqq i \leqq n-1,1 \leqq i<j \leqq n\right\} \tag{2.15}
\end{equation*}
$$

is an orthonormal basis of $\mathfrak{s u}(n)$ with respect to \langle,\rangle_{0}.
On the other hand, we take another inner product \langle,$\rangle on \mathfrak{s u}(n)$ such that

$$
\begin{equation*}
\left\{a_{i j}^{-1}\left(U_{e_{i}-e_{j}} / \sqrt{2}\right), b_{i j}^{-1}\left(U_{e_{i}-e_{j}} / \sqrt{2}\right), c_{i}^{-1} H_{i, i+1} \mid 1 \leqq i \leqq n-1,1 \leqq i<j \leqq n\right\}, \tag{2.16}
\end{equation*}
$$

$\left(a_{i j}, b_{i j}, c_{i}\right.$: positive constants), is an orthonormal basis of $\mathfrak{s u}(n)$ with respect to \langle,$\rangle .$ Then \langle,$\rangle determines a left invariant Riemannian metric g$ on $\mathfrak{s u}(n)$. Let T be a maximal torus of $S U(n)$ whose Lie algebra is $\mathrm{t}:=\left\{H_{i, i+1} \mid 1 \leqq i \leqq n-1\right\}_{\boldsymbol{R}}$. Then, we get the following from Theorem 2.2:

Corollary 2.3. An inner automorphism $A_{t},(t \in T)$, of $(S U(n), g)$ is a harmonic map if and only if

$$
\begin{equation*}
\sum_{1 \leqq i<j \leqq n}\left(b_{i j}^{-2}-a_{i j}^{-2}\right)\left(b_{i j}^{2}-a_{i j}^{2}\right) \sin \left(2 \sqrt{-1}\left(e_{i}-e_{j}\right)(H)\right)\left(e_{i}-e_{j}\right)=0, \tag{2.17}
\end{equation*}
$$

where $t=\exp (H),(H \in \mathfrak{t})$.
3. The case of $S U(2)$. In this section, we get necessary and sufficient conditions for inner automorphisms $A_{x},(x \in S U(2))$, of $S U(2)$ to be harmonic with respect to any left invariant Riemannian metric.

The Lie algebra $\mathfrak{s l}_{2}(C)$ of $S L_{2}(C)$ is the complexification of the real Lie algebra $\mathfrak{s u}(2)$. The Killing form B of $\mathfrak{s I}_{2}(C)$ satisfies

$$
\begin{equation*}
B(X, Y)=4 \operatorname{Trace}(X Y), \quad\left(X, Y \in \mathfrak{s I}_{2}(C)\right) \tag{3.1}
\end{equation*}
$$

We define an inner product \langle,\rangle_{0} on $\mathfrak{s u}(2)$ by

$$
\langle X, Y\rangle_{0}:=-B(X, Y), \quad(X, Y \in \mathfrak{s u}(2)) .
$$

In this section, g denotes any left invariant Riemannian metric of $S U(2)$.
The following lemma is known (cf. [7, Lemma 1.1, p. 154]):
Lemma 3.1. Let g be a left invariant Riemannian metric. Let \langle,$\rangle be an inner$ product on $\mathfrak{s u}(2)$ defined by $\langle X, Y\rangle:=g_{e}\left(X_{e}, Y_{e}\right)$, where $X, Y \in \mathfrak{s u}(2)$ and e is the identity matrix of $S U(2)$. Then there exist an orthonormal basis $\left(X_{1}, X_{2}, X_{3}\right)$ of $\mathfrak{s u}(2)$ with respect to \langle,\rangle_{0} such that

$$
\left(\begin{array}{l}
{\left[X_{1}, X_{2}\right]=(1 / \sqrt{2}) X_{3},\left[X_{2}, X_{3}\right]=(1 / \sqrt{2}) X_{1},} \tag{3.2}\\
{\left[X_{3}, X_{1}\right]=(1 / \sqrt{2}) X_{2},\left\langle X_{i}, X_{j}\right\rangle=\delta_{i j} a_{i}^{2},}
\end{array}\right.
$$

where $a_{i},(1 \leqq i \leqq 3)$, are positive real numbers determined by the given left invariant Riemannian metric g of $S U(2)$.

Now, putting $Y_{1}:=2 \sqrt{2} X_{1}, \quad Y_{2}:=2 \sqrt{2} X_{2}, \quad$ and $\quad Y_{3}:=2 \sqrt{2} X_{3}$ for the orthonormal basis (X_{1}, X_{2}, X_{3}) with respect to \langle,\rangle_{0} in Lemma 3.1, we have

$$
\begin{equation*}
\left[Y_{1}, Y_{2}\right]=2 Y_{3}, \quad\left[Y_{2}, Y_{3}\right]=2 Y_{1}, \quad\left[Y_{3}, Y_{1}\right]=2 Y_{2} . \tag{3.3}
\end{equation*}
$$

We know from Lemma A of $\S 1$ that an inner automorphism $A_{x},(x \in S U(2))$, of $(S U(2), g)$ is harmonic if and only if

$$
\begin{gather*}
\sum_{i=1}^{3}\left\{U\left(\operatorname{Ad}(x) \cdot Y_{i} /\left(2 \sqrt{2} a_{i}\right), \operatorname{Ad}(x) \cdot Y_{i} /\left(2 \sqrt{2} a_{i}\right)\right)\right. \tag{3.4}\\
\left.-\operatorname{Ad}(x) \cdot U\left(Y_{i} /\left(2 \sqrt{2} a_{i}\right), Y_{i} /\left(2 \sqrt{2} a_{i}\right)\right)\right\} \\
=\sum_{i=1}^{3}\left(a_{i}^{-2} / 8\right)\left\{U\left(\operatorname{Ad}(x) Y_{i}, \operatorname{Ad}(x) Y_{i}\right)-\operatorname{Ad}(x) U\left(Y_{i}, Y_{i}\right)\right\}=0 .
\end{gather*}
$$

In order to analyze (3.4) further, we need the following:
Lemma 3.2.

$$
\left(\begin{array}{l}
U\left(Y_{1}, Y_{1}\right)=U\left(Y_{2}, Y_{2}\right)=U\left(Y_{3}, Y_{3}\right)=0, \tag{3.5}\\
U\left(Y_{1}, Y_{2}\right)=\left(a_{2}^{2}-a_{1}^{2}\right) a_{3}^{-2} Y_{3}, \\
U\left(Y_{2}, Y_{3}\right)=\left(a_{3}^{2}-a_{2}^{2}\right) a_{1}^{-2} Y_{1}, \\
U\left(Y_{3}, Y_{1}\right)=\left(a_{1}^{2}-a_{3}^{2}\right) a_{2}^{-2} Y_{2} .
\end{array}\right.
$$

Proof. Using (1.2), we can prove this lemma in the same way as in the proof of Lemma 2.1 of $\S 2$.
q.e.d.

Proposition 3.3. An inner automorphism $A_{x},\left(x=\exp \left(r Y_{1}\right), r \in R\right)$, of $(S U(2), g)$ is harmonic if and only if

$$
\left(a_{3}^{2}-a_{2}^{2}\right)\left(a_{2}^{-2}-a_{3}^{-2}\right) \sin (4 r)=0,
$$

that is,

$$
\begin{equation*}
a_{2}=a_{3} \quad \text { or } \quad r \in\{(n \pi) / 4 \mid n \text { is an integer }\} \tag{3.6}
\end{equation*}
$$

Proof. Using (3.3), we have

$$
\left(\begin{array}{l}
\operatorname{Ad}(x) Y_{2}=\cos (2 r) Y_{2}+\sin (2 r) Y_{3}, \tag{3.7}\\
\operatorname{Ad}(x) Y_{3}=\cos (2 r) Y_{3}-\sin (2 r) Y_{2}
\end{array}\right.
$$

We know from (3.4), Lemma 3.2 and (3.7) that A_{x} is harmonic if and only if

$$
\begin{equation*}
\sin (4 r)\left(a_{2}^{-2}-a_{3}^{-2}\right)\left(a_{3}^{2}-a_{2}^{2}\right) a_{1}^{-2} Y_{1}=0 \tag{3.8}
\end{equation*}
$$

Proposition 3.4. An inner automorphism $A_{x},\left(x=\exp \left(r Y_{2}\right), r \in R\right)$, of $(S U(2), g)$ is a harmonic map if and only if

$$
\left(a_{1}^{2}-a_{3}^{2}\right)\left(a_{1}^{-2}-a_{3}^{-2}\right) \sin (4 r)=0,
$$

that is,

$$
\begin{equation*}
a_{1}=a_{3} \quad \text { or } \quad r \in\{(n \pi) / 4 \mid n \text { is an integer }\} . \tag{3.9}
\end{equation*}
$$

Proof. Using (3.3), we have

$$
\left(\begin{array}{l}
\operatorname{Ad}(x) Y_{1}=\cos (2 r) Y_{1}-\sin (2 r) Y_{3}, \tag{3.10}\\
\operatorname{Ad}(x) Y_{3}=\cos (2 r) Y_{3}+\sin (2 r) Y_{1} .
\end{array}\right.
$$

Hence, we find from (3.4), Lemma 3.2 and (3.10) that A_{x} is harmonic if and only if

$$
\begin{equation*}
\sin (4 r)\left(a_{3}^{-2}-a_{1}^{-2}\right) a_{2}^{-2}\left(a_{1}^{2}-a_{3}^{2}\right) Y_{2}=0 \quad \text { q.e.d. } \tag{3.11}
\end{equation*}
$$

Proposition 3.5. An inner automorphism $A_{x},\left(x=\exp \left(r Y_{3}\right), r \in R\right)$, of $(S U(2), g)$ is a harmonic map if and only if

$$
\begin{equation*}
a_{1}=a_{2} \quad \text { or } \quad r \in\{(n \pi) / 4 \mid n \text { is an integer }\} . \tag{3.12}
\end{equation*}
$$

Proof. We get from (3.3)

$$
\left(\begin{array}{l}
\operatorname{Ad}(x) Y_{1}=\cos (2 r) Y_{1}+\sin (2 r) Y_{2} \tag{3.13}\\
\operatorname{Ad}(x) Y_{2}=\cos (2 r) Y_{2}-\sin (2 r) Y_{1}
\end{array}\right.
$$

Using (3.4), Lemma 3.2 and (3.13), we obtain this proposition.
Thus, from Propositions 3.3, 3.4 and 3.5, we have:
Theorem 3.6. An inner automorphism A_{x} of $(S U(2), g)$ for any $x \in S U(2)$ is a harmonic map if and only if the metric g of $(S U(2), g)$ is bi-invariant.

Proof. If A_{x} for any $x \in S U(2)$ is harmonic, then $a_{1}=a_{2}=a_{3}$ by Propositions 3.3-3.5. Hence, $-B(X, Y)=c^{2}\langle X, Y\rangle$, and $\langle[Z, X], Y\rangle+\langle X,[Z, Y]\rangle=0$ for any $X, Y, Z \in \mathfrak{s u}(2)$. The second equation implies that $\langle\operatorname{Ad}(\exp r Z) X, \operatorname{Ad}(\exp r Z) Y\rangle$ is a constant independent of $r \in \boldsymbol{R}$. Hence B is bi-invariant. Conversely, if g is bi-invariant, we know from (1.2) that $U(X, Y)=0$ for any $X, Y \in \mathfrak{s u}(2)$. Thus, A_{x} for any $x \in S U(2)$ is harmonic.
q.e.d.

Finally, we get:
Theorem 3.7. Assume that a left invariant metric g of $(S U(2), g)$ is not bi-invariant. Then, there always exist non-isometric harmonic inner automorphisms A_{x} of $(S U(2), g)$.

Proof. Since g is not bi-invariant by the assumption, there are two different numbers among $\left\{a_{1}, a_{2}, a_{3}\right\}$ by Theorem 3.6. Then, from (3.7), (3.10) and (3.13), there exist non-isometric but harmonic inner automorphisms A_{x} for $x \in S U(2)$ such that

$$
x=\left(\begin{array}{lll}
\exp (\pi / 4) Y_{1} & \text { when } a_{2} \neq a_{3}, \\
\exp (\pi / 4) Y_{2} & \text { when } a_{3} \neq a_{1}, \text { and } \\
\exp (\pi / 4) Y_{3} & \text { when } a_{1} \neq a_{2} .
\end{array}\right.
$$

Indeed, we get $\left\langle Y_{i}, Y_{i}\right\rangle=8 a_{i}^{2}, i=1,2,3$. On the other hand we obtain

$$
\begin{aligned}
& \left\langle\operatorname{Ad}\left(\exp (\pi / 4) Y_{3}\right) Y_{1}, \operatorname{Ad}\left(\exp (\pi / 4) Y_{3}\right) Y_{1}\right\rangle=\left\langle Y_{2}, Y_{2}\right\rangle=8 a_{2}^{2}, \\
& \left\langle\operatorname{Ad}\left(\exp (\pi / 4) Y_{1}\right) Y_{2}, \operatorname{Ad}\left(\exp (\pi / 4) Y_{1}\right) Y_{2}\right\rangle=\left\langle Y_{3}, Y_{3}\right\rangle=8 a_{3}^{2},
\end{aligned}
$$

and

$$
\left\langle\operatorname{Ad}\left(\exp (\pi / 4) Y_{2}\right) Y_{3}, \operatorname{Ad}\left(\exp (\pi / 4) Y_{2}\right) Y_{3}\right\rangle=\left\langle Y_{1}, Y_{1}\right\rangle=8 a_{1}^{2} .
$$

Therefore, the inner automorphisms A_{x}, for the above elements x, are non-isometric but harmonic maps of $(S U(2), g)$ into itself.

Bibliography

[1] J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, CBMS Regional Conf., 1981.
[2] J. Eells and L. Lemaire, A Report on Harmonic Maps, Bull. London Math. Soc. 10 (1978), 1-68.
[3] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[4] M. A. Guest, Geometry of maps between generalized flag manifolds, J. Diff. Geom. 25(1987), 223-247.
[5] N. Iwahori, Theory of Lie Groups (in Japanese), Iwanami, Tokyo, 1957.
[6] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
[7] K. Sugahara, The sectional curvature and the diameter estimate for the left invariant metrics on $S U(2, C)$ and $S O(3, R)$, Math. Japonica 26 (1981), 153-159.
[8] N. Wallach, Harmonic Analysis on Homogeneous Spaces, Dekker, New York, 1973.
Mathematical Institute
Tôhoku University
Sendai, 980
Japan

