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1. Introduction. The group Mob of all Mόbius transformations acting on the
extended complex plane C is identified with the 3-dimensional complex Lie group
PSL(2, C). A discrete subgroup G of Mob is said to be Kleinian if its region of dis-
continuity Ω(G) in C is not empty. Λ(G)\ = C-Ω(G) is called the limit set of G. If
Λ(G) contains infinitely many points, we say G is non-elementary. Throughout this
paper, we denote by G a finitely generated non-elementary Kleinian group which
may contain elliptic elements. For this G, we consider the following three conditions
(A), (B) and (C), which are defined later in this section.

(A) G is geometrically finite.
(B) G is quasiconformally (QC) stable.
(C) The Bers map β* : B(Ω(G\ G)-+PH\G, Π) is surjective.

In §4 and §5 of this paper (Corollaries 1 and 2), we prove

Stronger results for more restricted torsion-free Kleinian groups were obtained by
Sullivan [16]. Concerning other known partial solutions to our problem, one may refer
to §2.

ACKNOWLEDGEMENT. The author would like to thank the referees for reading the
manuscript carefully. He also thanks Professor Ken-ichi Sakan for correcting some
mistakes in the previous version of this paper and providing valuable comments.

(A) Geometric finiteness is the most familiar criterion for Kleinian groups to be
"good". G is said to be geometrically finite if the action of G as isometries on the
hyperbolic space H3 has a finite-sided Dirichlet fundamental polyhedron. There is a
well-known equivalent characterization by Beardon-Maskit (see [10, Chap. VI. C. 7]).

(B) To define quasiconformal (QC) stability, we choose a system of generators
of G = {g1, - -,gk}. All our arguments do not depend on the choice of generators.
A homomorphism χ: G->Mόb is determined by the images of the generators
(χ(θi)> '' *> X(θk))> which satisfy relations arising from the relations satisfied by
0i> ' ' '»Gk I n this sense, we represent by χ not only a homomorphism of G but also
a point of the product manifold (Mόb)fc. Therefore the set Hom(G, Mob) of
homomorphisms χ: G-^Mob can be regarded as a subvariety of (Mόb)k, which is an
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affine algebraic variety. Further, we denote by Homp(G, Mob) the algebraic subvariety
whose points correspond to parabolic homomorphisms χ: G-»Mόb, that is, the images
of parabolic elements of G under χ are parabolic or the identity.

Let M(G) be the unit ball in the Banach space of Beltrami differentials for G on C
with L°°-norm || ||. Note that by Sullivan's theorem [15, §V], the Beltrami differentials
for G have essential support on Ω(G). We define a holomorphic map

ΦG: MόbxM(G)->(Mόb)*

by

(α, μ)ι->(α° wμog1 o(αo wμ)~ι, , α o / o ^ o ί o / ) " 1 ) ,

where wμ is the normalized QC automorphism of C whose complex dilatation is μ. The
image ΦG(Mόb x M(G)) is denoted by Homqc(G, Mob). It consists of isomorphisms
induced by QC automorphisms. Clearly Homqc(G, Mόb)<=Homp(G, Mob).

DEFINITION. G is said to be quasiconformally (QC) stable if there is an open
neighborhood U of the origin (gί9 * , gk) in (Mob)* such that ί/nHomp(G, Mόb)c
Homqc(G, Mob).

REMARK 1. (1) One may define the QC stability equivalently by allowable
homomorphisms instead of parabolic homomorphisms (cf. [3]).

(2) Elementary groups satisfy (A) and (B). But, since the following (C) is
meaningless for them, we need to assume G is non-elementary.

(C) We now explain the cohomology of Kleinian groups and define β*. Mob acts
from the right on the vector space 77 of quadratic polynomials via pg(z)=p(gz)g'(z)~1

for peΠ, geMδb, zeC. A mapping p: G-+Π is called a cocycle if p(gιog2) =
P(.9\)Q2 + P(Q2) f°r Gu Qi^G. The coboundary for peΠ is the cocycle p defined
by p(g)=pg—p for geG. The (Eichler) cohomology group Hι(G, Π) is the group
Z1(G,Π) of cocycles modulo the group B1(G, Π) of coboundaries. If pe Z1(G,Π)
satisfies p\GoeB1(Go, Π) for every parabolic cyclic subgroup Go of G, we say that p
belongs to space PZ1(G, Π) of parabolic cocycles. We define the parabolic (Eichler)
cohomology group to be PH\G, Π) = PZ\G, Π)/B\G, 77).

Let B(Ω(G), G) be the Banach space of holomorphic quadratic differentials φ for
G on Ω(G) with the norm

\\φ\\B' = n-2φ\\ΩiG)= sup λ-\z)\φ{z)\
zeΩ(G)

finite, where λ(z) is the Poincare density defined on each component of Ω(G). Since G
is finitely generated, B(Ω(G), G) is finite dimensional. The Bers map

β*
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is defined as follows: For φeB(Ω(G), G), let h be a potential for the canonical Beltrami
differential λ~2φ, say,

Then

- 1 - ^ for ^ G G , Z G C ,

belongs to 77. It can be verified that ρePZι{G, 77). We define β*φ as the cohomology
class of p. The Bers map β* is clearly anti-linear and is known to be injective (cf. [5,
p. 170, Th. 2.4]).

2. A summary of known results. In this paper, we study the problem whether
the conditions (A), (B) and (C) are equivalent to one another. We now summarize
known results on this subject.

Gardiner and Kra [4, Th. 8.4] showed that (C) implies (B), and posed the problem
whether the converse is true (see [6, Problems 5.1 & 3.1]). Later, Sakan supplemented
their results and provided a necessary and sufficient condition for (C). Since his
observation is useful for us, we briefly explain it.

From the arguments in [4], the Bers map β* may be regarded as the differential
at the orgin of the anti-holomorphic function from the unit ball of B(Ω(G), G) to the
deformation variety up to conjugation, by the map which sends φ to the isomorphism
induced by the normalized QC automorphism whose complex dilatation is λ~2φ. The
target PH\G, Π) = PZ\G, 77)/51(G, 77) may be considered as the "tangent space" of
Homp(G, Mόb)/Mόb at the origin, though this statement is not quite correct because
in general we do not know whether the origin is a regular point of the algebraic variety
Homp(G, Mob) or not. By the implicit function theorem, β* is surjective if and only
if locally (I) Homp(G, Mob) coincides with Homqc(G, Mob), and (II) it is a complex
analytic submanifold of (Mob)k. Here (I) is the same as (B), and Sakan [14, Lemma
2] remarked that (II) is equivalent to the following condition which was introduced by
Bers [3, p. 32]:

DEFINITION. G is quasi-stable (conditionally stable) if for any open neighbor-
hood N of the origin in M(G), there exists an open neighborhood U of the orgin in
(Mob)* such that ί/nHomqc(G, Mδb)cΦG(Mδb x ΛO .

PROPOSITION 1 ([14, Th. 1]). β* is surjective if and only if G is both QC stable
and quasi-stable.

REMARK 2. Following Bers [3, p. 15], we say G to be uniformly stable if G is
both QC stable and quasi-stable.

Another important result is a partial answer to our problem restricted to the
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so-called function groups. Namely, Nakada [13, Th. 3] showed that for function groups,

(B), (C) and the following condition (A') are equivalent to one another:

(A') G is constructed from elementary groups and quasi-Fuchsian groups by

applications of the combination theorems I and II finitely many times.

REMARK 3. The combination theorems I and II have several versions (cf. [10,

Chap. VII]). Among them we adopt in this paper the form established in [9, p. 249],

which is the same as [12, p. 700] and [17, p. 354]. They treat the cases where the

amalgamated and the conjugated subgroups are either trivial, parabolic cyclic or elliptic

cyclic.

On the other hand, for function groups, the equivalence (A) <=> (A') was shown,

for instance, in [17, §2, Cor.]. Therefore we have the following:

PROPOSITION 2. For function groups, that is, finitely generated non-elementary

Kleίnίan groups with an invariant component of the region of discontinuity the conditions

(A), (A'), (B) and (C) are equivalent to one another.

We sketch an outline of the proof for our later discussion in the proof of Lemma

1 in the next section. The equivalence (C) o (A') was shown in [12, Th. 5]. Both

equivalences (A) o (A') and (C) <=> (A') are based on the following:

FACT 1 (Maskit [9. Th. 1]). Every function group is constructed from elementary

groups, quasi-Fuchsian groups and totally degenerate groups without accidental parabolic

transformations (APT) by a finite number of applications of the combination theorems I

and II.

As we have mentioned, (C) => (B) was proved by Gardiner-Kra. By the following

two facts combined with Fact 1, we get (B) => (A'), which completes the proof of this

proposition:

FACT 2 (Nakada [13, Lemmas 5, 6]). Let G be a finitely generated Kleinian group

constructed from finitely generated Kleinian groups {Gi, , Gs} by the combination

theorems I and II. If G is QC stable, then each of'{Gί9 '—,GS} is QC stable.

FACT 3. A totally degenerate group without APT is not QC stable.

Indeed, for such a group G, dim PHι(G, Π) = 2dim B(Ω(G), G) by Kra [5, p. 209],

where dim B(Ω(G), G)φO. Thus β* is not surjective. By [4, p. 1058, Cor.], this implies

G is not QC stable.

3. Lemmas. By reconsidering Proposition 2 with the purpose of extending it to

the general case, we get the following lemma which is a key to the proofs of our

theorems:

LEMMA 1. If G is QC stable, then every component subgroup H of G, i.e., the

stabilizer of a component ofΩ(G), satisfies the conditions (A), (A'), (B) and(C). Especially,
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H is quasi-stable.

PROOF. By the decomposition theorem of Abikoff-Maskit [2, Th. 1], every finitely

generated Kleinian group is constructed from elementary groups, totally degenerate

groups without APT and web groups by applications of the combination theorems

finitely many times. By Fact 2 in §2, if G is QC stable, then each subgroup arising from

the decomposition of G must be QC stable. Therefore by Fact 3, totally degenerate

groups do not appear in the decomposition of G, that is, G is constructed from elementary

groups and web groups. Since the operations of our combination theorems work on

the component subgroups (see Remark 4 below for a more precise assertion), each

component subgroup of G, which itself is regarded as a function group, satisfies (A').

By Proposition 2, it satisfies (A), (B) and (C). In particular, by Proposition 1, it is

quasi-stable. •

REMARK 4. Let G be a Kleinian group constructed by, say, the combination

theorem I, from Kleinian groups G1 and G2. We can describe each component subgroup

of G in terms of the component subgroups of Gλ and G2 as in the following proposition.

It is a corollary to the proofs of the combination theorems.

PROPOSITION. (1) Let G be a Kleinian group constructed by the combination

theorem I from Kleinian groups Gx and G2 with the cyclic amalgamated subgroup H {we

denote this condition by G = Gί*
ι

HG2for brevity). Then any component subgroup of G is

conjugate with respect to some element of G to either

Stab G i (4 ) or S t a b ^ Ω O *ι

H StabG 2(ί22),

where each of At and Ωt is a component ofΩ{Gt) (/= 1, 2).

(2) Let G be a Kleinian group constructed by the combination theorem II from a

Kleinian group G' and a loxodromic transformation f with the cyclic conjugated subgroups

Hγ and H2 satisfying fH^'1 =H2 {we denote this condition by G = G'^J for brevity).

Then any component subgroup ofG is conjugate with respect to some element ofG to either

StabG,(zΓ), Stab^K^/zo/) or

where each of A', Ω1 and Ω2 is a component of Ω{Gf) and h is an element of G'.

To construct a QC automorphism of C satisfying our requirements, we first construct

a QC homeomorphism on some components of Ω{G) compatible with the component

subgroups, and then extend it to C compatibly with G. This process is accomplished

by an application of the so-called identity theorem of Maskit [8], and may be summarized

as follows:

LEMMA 2. Let G be a finitely generated Kleinian group, {At} {i=l, , n) be a

maximal collection of non-equivalent components of Ω{G), and Hi be the component

subgroup of A i for each i= 1, , n. Suppose that χ e Hom(G, Mob) and f (i=\9 , n)

is a QC mapping of At into C such that fι°h = χ{h) ° ft for every h e //t . Then there is a
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mapping f ofΩ(G) to C which satisfies f | Δ. = / f and induces χ, i.e., f °g = χ{g) o f for every
geG on Ω(G). Especially, || μ(/) ||Ω(G) = max{|| μ(/, ) \\Δi\ 1 <i<n}, that is, the L^-norm
of the complex dilatation μ(f)(z) of f over Ω(G) is equal to the maximum taken over
that of μ(fi)(z) over Atfor all ί= 1, - , n.

PROOF. By assumption, any component A of Ω(G) is of the form A=g(Aι) for
some / and some geG. We define/on each component of Ω(G) by

fi°g~1 on g(Ai).

It is well defined. Indeed, if g, λeG and g(Δi) = λ(Ai)9 then fo λ~ι og = χ(λ~1 °g)°f.
Hence we have (χ(λ)ofioλ-ί)o(χ(g)of.og-ί)-1=χ(λ)ofioλ~ίogofr1oχ(g)-1 =
χ(λo λ~* o g og-*) = id. Similarly, we can check that / induces χ. D

LEMMA 3. Assume that χeHom q c (G, Mob), and let w be a QC automorphism of
Csatisfying χ(g) = wogo w'1 for every geG. Let f be a mapping of Ω{G) to Csuch that
the restriction off to each component of Ω{G) is QC, and which induces χ. Then the
following (1) and (2) hold:

(1) For each component A of Ω(G), f{A) coincides with w(A). In particular, f is
actually a QC homeomorphism of Ω{G) onto w(Ω(G)) = Ω(wGw~1).

(2) There is a Q C automorphism F of C , having the p r o p e r t y that F | Ω(G) = f , F

induces χ , and || μ(F) \\c= II μ(J) \\Ω{Gy

PROOF. (1) Let A be an arbitrary component of Ω(G) a n d / b e the restriction of
/ to A. Set u — w" * of It is a QC mapping of A satisfying uoh = houΐoτ every h of the
component subgroup Hfor A. We show u(A) = A below, from which follows f(A) = w(A).

It is obvious that u(A) is invariant under uHu'1 =H. u{A) has no intersection with
Λ(H), for if u(A)nΛ(H) were not empty, A nu~\A(H)) = A nΛ(u~1Hu) = A nΛ(H)
would not be empty. Hence u(A) is contained in some component A1 of Ω(H). Since
the Riemann surface u(A)/H, which is QC equivalent to A/H, is of finite type, the set
of points of A!-u(A) is discrete in Aι (cf. [10, Chap. II, F. 8]). IfA1-u(Δ)Φ0, u{A)
is a domain with a puncture, hence so does the component A of Ω(G). This contradicts
the fact that the limit set Λ(G) of the non-elementary Kleinian group G has no isolated
points. Therefore A1 = u(A).

Assume that Ax = u{A)ΦA. H has two invariant components A and Ax. As is well
known, H is then quasi-Fuchsian. Thus u is a QC homeomorphism of a quasi-disk A
onto another quasi-disk Ax. Further, u has a homeomorphic extension ύ of A = A u Λ(H)
onto A1 = Aίϋ Λ(H). Let z0 e Λ(H) be an attractive fixed point of a loxodromic element
h of H. Since lim,,^ hn(z) = z0 for any point z in C except the repelling fixed point of
h, and u°h = hou,we have w(z0) = z0. Hence M | ̂ ( H ) = id, for such attractive fixed points
are dense in Λ(H). Since the QC mapping u preserves orientation, this is a contradic-
tion. Therefore we get A=u(A).

(2) To w~xof we apply Maskit's identity theorem in [8]. Then there is a QC
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automorphism J of C, where J\Ω(G) = W~1 °f a n d ^U(G) = id Set F=w°J. F is a QC

automorphism of C such that F \Ω(G) =/. Then it is obvious that Fog = χ(g) o F for every

geG. The remaining assertion is a consequence of the theorem of Sullivan [15, p. 490],

which guarantees that the Beltrami differentials for a finitely generated Kleinian group

G do not have essential support on Λ(G). •

REMARK 5. The author learned a substantial part of Lemmas 2 and 3 from the

original manuscript of Sakan [14].

4. A proof of ( B ) o ( C ) . As we mentioned in §2, (C) is equivalent to uniform

stability (Proposition 1 and Remark 2). Bers [3, p. 16] raised the conjecture that uniform

stability is the same as QC stability (B). Therefore we know at this stage that his

conjecture is just our problem ( B ) o ( C ) . We can give an affirmative answer to it by

proving the following theorem:

THEOREM 1. QC stability implies quasi-stability.

PROOF. Suppose G to be QC stable. By Lemma 1, every component subgroup of

G is quasi-stable. Therefore a proof of Theorem 1 is reduced to the following:

LEMMA 4. Let G be a finitely generated Kleinian group. If every component subgroup

of G is quasi-stable, then G is quasi-stable.

PROOF. Let Nε(G) = {μeM(G)\ \\ μ \\ c<ε for ε>0}. Let {A ί9 , An) be a system

of conjugacy classes of the components of Ω(G), and {Hί9 , Hn} be their component

subgroups. For a moment, we omit the index i, and denote each of {//,} by H. We fix

generators of G = (gu , gk}, H=(hu , λm>, and fix words hj = wj(gί, --,gk)

(j= l? •• ,m).We then let (Mob)G (resp. (Mόb)H) denote the product manifold (Mόb)fc

(resp. (Mόb)m), and let r be the mapping of (Mόb)G to (Mob)" defined by

r : ( λ u •• ' t λ j ^ i w ^ , ' " , λ k ) 9 •• , w m ( A 1 , •••, λ k ) ) .

Then, r is continuous. For χeHom(G, Mob), r(χ) represents the restriction of the

homomorphism χ to //, hence r(χ)eHom(//, Mob). For each Hx (/=1, ••*,«), this

map is denoted by rt.

Each Hi 0 = 1 , •••,«) is quasi-stable by assumption. Hence for Nε(Hι), there is

a neighborhood U( of the origin in (Mόb)H i such that ί/f n Homq c(// (, Mob) cz

ΦH.(Mόb x Nε(HJ). We choose a neighborhood U of the origin in (Mόb)G so that r^U)

is contained in Ui for all i= 1, , n. For this U, we show that ί/nHom q c(G, Mob) c

ΦG(Mόb x Nε(G)). Let χ be an arbitrary point of ί/nHom q c(G, Mob), and w be

a QC automorphism of C which induces χ. Let χi = ri(χ) be the restriction of χ to

Hi. Then &e Ux, n Homqc(7/t., Mob) aΦHi(Mob xNε(Hi)). Hence there exists a QC

automorphism f{. C-+C which satisfies || μ(/ t ) | | e < ε and induces χf. We need this/-

only on A{ and not on the complement of A v By applying Lemmas 2 and 3, we get a
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QC automorphism F of C which satisfies || μ(F) \\c<ε and induces χ. Therefore χ is

in ΦG(Mόb x Nε(G)). D D

REMARK 6. One can find criteria for quasi-stability of function groups in [11,

Th. 4].

COROLLARY 1. (B) and (C) are equivalent.

REMARK 7. Since (C) is preserved under the combination theorems [12, Th. 3, 4

& Lemmas 10, 11, 12], so is (B) by the above corollary. That is, a Kleinian group

constructed from QC stable Kleinian groups by the combination theorems is also QC

stable. This result was stated by Abikoff [1, Th. 3, 4].

5. A proof of (A) => (B). In this section, we prove (A) => (B). If G is torsion-free,

Marden [7] used 3-dimensional methods and proved this result. In order to reduce the

problem to the case of torsion-free Kleinian groups, we first show the following Theorem

2. It gives an affirmative answer to the problem which was raised in [6, Problem 3.3].

The implication (A) => (B) then follows as a corollary to Theorem 2.

THEOREM 2. Let G be a finitely generated Kleinian group, and Γ be its subgroup

of finite index. If Γ is QC stable, then so is G.

PROOF. AS in the proof of Lemma 4, we fix a system of generators of Γ and their

words constructed from {gί9 gk}. Let r'\ (Mόb)G -»(Mόb)Γ be the mapping defined

by the words. By the QC stability of Γ, there is a neighborhood V of the origin in

(Mόb)Γ such that FnHom p (Γ, Mόb)cHom q c (Γ, Mob).

Let A be an arbitrary component of Ω(G). A is also a component of Ω(Γ), because

[G\ Γ]<oo guarantees Λ(G) = Λ(Γ). By Ahlfors' finiteness theorem, A/StabG(A) and

zl/StabΓ(zl) are Riemann surfaces of finite type. Let ̂ ( r e s p . A2) be the hyperbolic area

of A/StabG(A) (resp. zl/StabΓ(zl)). Then A2 = AX x [StabG(zl): StabΓ(zl)]. Since both Aγ

and A2 are positive and finite, we have [StabG(zl): StabΓ(Zl)]<oo. Further, by Lemma

1, the component subgruoup StabΓ(zl) of Γ is geometrically finite. Since an extension

of a geometrically finite Kleinian group with finite index is also geometrically finite [10,

Chap. VI, E. 6], .we know that StabG(zl) is geometrically finite.

Let {Aί9 , An} be a system of conjugacy classes of components of Ω(G), and

{Hί9 -, Hn} be their component subgroups. By the above consideration, each

Hi (/=1, ••-,«) is geometrically finite. It follows from Proposition 2 that Ht is

QC stable: there is a neighborhood Ut of the origin in (Mόb)H i such that £/,n

Homp(// i5 Mob) cz Homq c(// έ, Mob). Now we take a neighborhood U of the origin in

(Mόb)G so that r'(U)a Vand ^(ί/)c= £/,- for /= 1, , n, where rt is the same mapping

as in the proof of Lemma 4.

Let χ be a point of ί/nHomp(G, Mob). By the definition of U, r\χ)e

Homq c(Γ, Mob) and r£(χ) G Homqc(//t-, Mob). The latter implies that there is a QC

homeomorphism f of C which satisfies χ(hι) =f o h{ °f[~x for every ht e //,-. By Lemma



BERS MAP FOR KLEINIAN GROUPS 335

2, we then get a mapping / of Ω(G) satisfying /1 Δ . =ft and / o g = χ(g) o f for every

geG. We denote r\χ) by χΓ. Clearly / o γ = χΓ(y) o / for every y e Γ on Ω(G) = Ω(Γ).

Since χ Γ eHom q c (Γ, Mob), applying Lemma 3, we see that there is a QC automor-

phism F of C such that F\ΩiG)=Ω(Γ) = f. Therefore F turns out to satisfy χ(g) =

FogoF'1 for every geG. It means that χeHomqc(G, Mob). Since χ is an arbitrary

point of t/nHomp(G, Mob), we have completed the proof. •

COROLLARY 2. (A) implies (B).

PROOF. A finitely generated Kleinian group G has a torsion-free subgroup Γ of

finite index by Selberg's well-known lemma, and Γ is geometrically finite since G is

geometrically finite (see [10, Chap. VI, F. 3]). For a torsion-free Kleinian group, the

assertion was already proved by Marden [7, §9]. Hence Γ is QC stable. By Theorem

2, G is QC stable. •
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