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JULIA SET OF THE FUNCTION zexp(z
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Abstract. We are concerned with complex dynamics of iteration of an entire
transcendental function as in the title of this paper and discuss the following problem:
For what value of the real parameter μ does the Julia set of the function coincide with
the whole complex plane?

1. Introduction and preliminaries. The study of iteration of complex analytic
maps of the complex plane was begun by Fatou [5], [6] and Julia [8]. Fatou [7]
discussed the dynamics of iteration of entire transcendental functions. In these three
decades, this subject has been studied from diverse view points by many mathematicians.
Baker treated the dynamics of entire transcendental functions, while Misiurewicz [9]
solved Fatou's conjecture [7] affirmatively by showing that the Julia set of the
exponential function z t—• exp z is the whole complex plane C. Devaney and Krych [3]
discussed symbolic dynamics and bifurcation for a one-parameter family of the func-
tions zi—>/ίexp z for a non-zero real parameter λ. For a complex parameter λ, this bi-
furcation was also studied by Baker and Rippon [2].

In this article, we study bifurcation for a one-parameter family of entire tran-
scendental functions z i—• z exp(z + μ) of exponential type with a parameter μ.

We recall some definitions and fundamental results in complex analytic dynamics.
Let / be an entire transcendental function. For a non-negative integer n, we denote

by /" the n-th iterate / " ^ Z 0 / " ' 1 of the function /, where f° means the identity
mapping of the complex plane.

A point z0 is a periodic point of/ with period n, if/"(zo) = zo and fk{z0)Φz0 for
k<n. In particular, when the period of a periodic point z0 is one, we call z0 a fixed
point of/. A periodic point z0 of/ with period n is said to be attractive (resp. repulsive),
i f | ( / 7 | < l (resp. >1).

The Fatou set F(f) of / is the set of points where the sequence {/M}̂ L0 forms a
normal family, that is, for a point (eF(/), there is a neighborhood of ( such that
{/w}ί°=o i s a normal family in the neighborhood. The complementary set /(/) = C—F{f)
of the Fatou set F(f) is called the Julia set of / .

It is well-known that the set /(/) is a non-empty perfect set and is completely
invariant under / . It is clear that an attractive periodic point of / is contained in the
set F(f). It is also known that the set of all the repulsive periodic points of/ is dense
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in /(/) .

Hereafter, we denote by fμ an entire transcendental function z\-+z exp(z + μ), where

μ is a complex parameter.

Clearly, the function fμ has fixed points z = 0 and z = — μ. If the real part Reμ of

the parameter μ is negative, then 0</J/0)< 1, that is, the point z = 0 is an attractive

fixed point of fμ. If 11 — μ | is less than 1, then we see | fμ( — μ) | = 11 — μ | < 1 and hence

the point z= — μ is also an attractive fixed point of fμ. Therefore, we see that, if Reμ<0

or if 11 — μ | < 1, then the function fμ has the non-empty Fatou set F{fμ). In the case

μ = 0, the point z = 0 is fixed by f0 and /'o(0) = 1. Hence the point z = 0 is a rationally

indifferent fixed point of f0 and there are the so-called petal domains in the non-empty

Fatou set F(/ o). (Cf. Blanchard [3].) In other words, if Reμ<0, if 11 - μ | < 1 or if

μ = 0, the Julia set J(fμ) of fμ does not coincide with the whole complex plane.

On the other hand, Baker [1] proved the following interesting theorem.

THEOREM OF BAKER. For a certain real value μ, the function fμ has the whole complex

plane for its Julia set.

Thus, the following question arises: For what value of the parameter μ does the

Julia set of fμ coincide with the whole complex plane? In other words, it becomes a

problem to discuss the bifurcation diagram for the family {fμ } with a parameter μ. In

the following, we restrict the parameter μ to real values.

2. Fatou sets and Julia sets of fμ. We consider the one-parameter family of

functions fμ(z) = z exp(z-f μ) for a real parameter μ. First we prove two lemmas.

We suppose μ>2. Consider the function

G(μ) = μ + α(μ) + ( - μ + α(μ)) exp α(μ) ,

where α(μ) = (μ2 - 2μ + 2)1 / 2.

LEMMA 1. There exists a μ^ (> 2) such that G(μ) > 0 for 2 < μ < μ ,̂ G(μ^) = 0 and

G(μ)<0 for

PROOF. Put

z x / x μ + α(μ) , Λ l+μα(μ)
g(μ) = exp α(μ) — = exp α(μ) - μ — .

μ-α(μ) μ - 1
We see easily

α(μ) α(μ) ( μ - 1 ) 2 α(μ) fc = o k\ α(μ)

2 a(μ)
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which follows from (μ - l)(μ2 - 2μ + 2) > 2 for μ > 2. Hence g(μ) increases monotonously.
Since g(2) = exp yj 2 - ( 3 - h 2 Λ / 2 ) < 0 and lim^ „ #(μ) = + αo, there exists a μ̂  (> 2)
such that g(μ)<0 for 2<μ<μ^, g(μJ = 0 and g(μ)>0 for μ>μ*. Evidently
G(μ) = ( — μ + a(μ))g(μ) and — μ + α(μ)<0 for μ>2. Thus, the proof of the lemma is
complete.

Now, for an arbitrarily fixed μ(>2), we consider the function hμ(x) = x + fμ(x) + 2μ
of the real variable x, where fμ(x) = xQxp(x + μ). Clearly we have /^(x) = xexp hμ(x).

LEMMA 2. There exists an x' in the interval I=(-μ + β(μ), - μ + α(μ)) such that

PROOF. First, we note that

- 1 < - μ + α(μ) .

Since, for the second derivative h"μ of hμ, we have ^'(x) = (x + 2)exp(x + μ)>0 for x in
/, the first derivative h'μ of hμ increases in / monotonously. Consider the function
H(μ) = h'μ( — μ + β(μ)) of the variable μ (> 2). By elementary computation, we see H(2) = 0
and H'(μ)<0 for μ>2. Hence H(μ) decreases and h'μ(-μ + β(μ)) = H(μ)<0 for μ>2.
From the monotonicity of h'μ in / and from h'μ(— 1)= 1, we have the existence of an x'
in the interval (-μ + β(μ), — l ) c / such that ^(x 7)= 1 + ( ^ + l)exp(x/4-μ) = 0. From
this equality, we have

= x

which is negative bacause of β(μ)<xf -f μ and x;-|-1 <0. Thus, we have a proof of the
lemma.

Now we prove the following theorem.

THEOREM 1. If the real parameter μ belongs to the set (— oo, 2)u(2, μ^), then the

function fμ: zi—>z exp(z + μ) has the Julia set which is not the whole complex plane. Here

μ^ is the one appeared in Lemma 1.

PROOF. AS was already stated in section 1, the theorem holds for μe(— oo, 2).
Therefore, it suffices to prove the theorem for μe(2, μ^). The function G(μ) in Lemma
1 and the function hμ in Lemma 2 satisfy the relation G(μ) = hμ( — μ + α(μ)). Lemma 1
implies hμ( — μ + α(μ)) > 0 for our μ. Furthermore, Lemma 2 shows the existence
of x ' e ( - μ + β(μ), - μ + α(μ)) satisfying hμ(x')<0. Therefore, there exists an
xoe(-μ + /?(μ), - μ + α(μ)) such that hμ(xo) = xo + fμ(xo) + 2μ = 0. By the definition of
the function hμ, hμ(xo) = 0 implies fl(xo) = xo, that is, x0 is a periodic point of fμ with
period 2. On the other hand, we have easily
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which yields

Since β(μ)<xo + μ<oc(μ), we have \(JΊ)f(xo)\<l Hence, the point x0 is an attractive

periodic point of fμ. Therefore, the Fatou set F(fμ) of fμ for our μ is non-empty. Thus,

we complete the proof of the theorem.

REMARK. The value μ^ in Theorem 1 is the unique zero of the increasing function

g(μ) (in the proof of Lemma 1) in (2, oo). Easily, we see #(2.5) < 0 and g(2.54)>0. Hence

we have μs|c = 2.5 .

Next we show that there exist infinitely many values of the real parameter μ such

that the Julia set J(fμ) of the function fμ(z) = z exp(z + μ) is the whole complex plane.

By Theorem 1, we may assume μ > 0 .

The inverse function of fμ has only one algebraic branch point fμ(— 1). By the same

reasoning as that of Baker [1], we can easily check that, if /£(— 1)= — μ< — 2, then

the Julia set J(fμ) of fμ is the whole complex plant. In fact, by showing the existence

of a value of μ satisfying /£(— 1)= — μ< — 2, Baker proved his theorem stated in

Section 1 of this article. From this point of view, we put so(μ) = — 1 and define,

inductively, a sequence {sn(μ)}%L x by

/n-ί

\fc = O

Note that sn + 1(μ) = fμ(sn(μ)) = π+1(-l)

LEMMA 3. For any n>2, sn(μ) tends to 0 as μ-> + oo .

PROOF. For any positive constant fe, we have easily s1{μ)Λ-kμ-^ — oo as μ-^ + oo.

Hence 1s0(μ) + s1(μ) + 2μ tends to — oo as μ-> + oo, which shows s2(β)= — exp(50(μ)+

^1(μ) + 2μ)->0 as μ-> + oo.

Suppose that ^(μ) tends to 0 as μ->4-oo for each integer k satisfying 2<k<n—\.

Then, we see

w - l

Σ s1Sjι) + nμ^s0(jμ) + (s1(jι) + nμ) + s2(jμ)-\- +.yΛ_1(μ)->-oo
k = 0

as μ-» + oo. Therefore, we have sn(μ)^O as μ-» 4- oo. Thus, we are done by induction.

THEOREM 2. For each integer n (>3), there exists a value μn of the parameter μ

such that sn(μn)= — μπ, 2<μn<μn+ι and the Julia set J(fμJ of fβn is the whole complex

plane.
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PROOF. If suffices to prove the existence of μn (n>3) satisfying 2<μn<μn + 1 and

Note that, for any positive μ, we have

(*) μ < e x p ( - l + μ ) ,

where the equality holds only for μ= 1. Put φ(μ)= — 1 +s1(μ) + 2μ. Then, there exists

a unique μ' (>2) such that φ(μ') = 0. Hence s2{μ')= — exp φ(μ')= ~ 1. By using (*), we

have

s*(μ') + μ' = fμ'{s2{μ')) + μ'=~ exp( - I + μ') + μ' < 0 .

On the other hand, Lemma 3 shows s3(μ) + μ-> + oo as μ-+ + oo. Therefore, by the

continuity of the function μ\-*s3(μ) + μ, we see that there exists a μ3 (>μf) such that

^3(^3) + ̂ 3 = 0- This proves the existence of the value μ3 of μ.

Evidently we have s3(μ3)= —μ3< — I. By using Lemma 3, we see s3(μ)-+0 as

μ-> -f 00. Hence there exists a μ" (>μ 3 ) satisfying s3(μ") = — 1. Therefore, by using (*)

again, we see

s4(μ") + μ" = Λ Φ 3 G O ) + /*" = - exp( - 1 + μ") + μ" < 0 .

Since i 4(μ) + μ ^ + oo as μ—• + 00 by Lemma 3, we see from the continuity of the

function μ 1—• ^(μ) + μ that there exists a μ4 such that μ 3 < μ " < μ 4 and s 4 (μ 4 )= — μ4.

Repeating this procedure, we have the theorem.

REMARK 1. The functions φί(μ) = 2μ—\ and φ2(μ)= —s1(μ) = Qxp(—\+μ) are

both increasing and we see <p1(2.25) = 3.5, φ1(2.26) = 3.52, φ2(2.25) = 3.490- and

φ2(2.26) = 3.525- . Hence, for μr satisfying φ(μf) = φ1(μ')-φ2(μ') = 0, we have

μ' = 2.25 ••.

REMARK 2. There exists only one value μx of the parameter μ such that
si(/ ii)==""A ίi Clearly we see μx = 1 and we see by Theorem 1 that the Julia set of the

function fμί: z\—>z exp(z+ 1) is not the whole complex plane. Moreover, we can easily

see that there exists no value of μ satisfying μγ <μ and s2(μ)~ — μ.

REMARK 3. It is still open whether the sequence {μn}™=3 obtained in Theorem 2

is unbounded or not.

3. Uniqueness of μ3. First we suppose 0 < μ < 1. By (*), we have — 1 <5 r

1(μ)<

— μ (<0). Since the function fμ(x) = x exp(x + μ) increases monotonously in the interval

— 1 < x < 0, we have

Repeating this, we see

- 1 < ^ ( μ ) < ' <^(μ)<1yM_1(μ)< < - μ .



276 C. M. JANG

Next, suppose 1 < μ < μ ' , where μ! (>2) is the value of μ which appeared in the

proof of Theorem 2. This μ! satisfies φ(μ')= — 1 + ,s1(μ') + 2μ' = 0. Since φ(μ) is positive

for 1 <μ<μ', we have s2(μ)< — 1. The inequality (*) shows Si(μ)< — μ < — 1. Since the

function fμ is decreasing monotonously in the interval — oo < x < — 1, we have

fμ(-i)<fμ(-μ)<fμ(si(μ))> or

s1(μ)<-μ<s2(μ)<-l .

Repeating this procedure, we see

^ 1(μ)< ιs 3(μ)< <s2n+1(μ)< < -μ<''' <s2n(μ)< <s2(μ)

In particular, for 0 < μ < l and for l < μ < μ ' , we have s3(μ)<— μ and have also

On the other hand, we easily have

and

s2(μ)

Hence, by putting μ* = 1 +log 2, we see s'2(μ)<0 in 0 < μ < μ * , s'2(μ*) = O and s'2(μ)>0

in μ* < μ. Since μ* is less than μ! by Remark 1 of Theorem 2, we have

s2(μ)(s2(μ))~1s3(μ)>0 in μ'<μ. Furthermore, the function — \—(sί(μ) + 2)~1 decreases

in μ '<μ and greater than — 1 at μ = μ' and tends to — 1 as μ-> + oo. The function s2(μ)

increases in μ' <μ and is equal to — 1 at μ = μ' and tends to zero as μ-> + oo. Therefore,

the continuity of these two functions shows that there exists a unique μ** (>μ') such

that s'3(μ)<0 in μ ' < μ < μ * * , s3(μ**) = 0 and / 3 (μ)>0 in μ**<μ.

By easy computation, we see sr

3(l +log5)>0, which shows μ**< 1 +log 5. More-

over, we also have s3(μ')< — 3< — (1 + log5) by Remark 1 of Theorem 2. Hence, we

see that there exists no root of the equation s3(μ) = — μ in the interval μ ' < μ < μ * * .

Therefore, the equation s3(μ)= —μ has only one root μ3 which is greater than 2. Thus,

as a conclusion of the above discussion, we have the following proposition.

PROPOSITION. The value μ3 of the parameter μ in Theorem 2 is determined

uniquely.
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