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VECTOR FIELDS AND DIFFERENTIAL FORMS ON
GENERALIZED RAYNAUD SURFACES
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Abstract. We consider the tangent and cotangent sheaves of generalized Raynaud
surfaces, which have cuspidal fibrations and which are mostly of general type. In
particular, we compute the dimensions of the space of vector fields and of non-closed
differential 1-forms.

Let / : V-+B be a fibration from a smooth projective surface to a smooth projective
curve over an algebraically closed field k. In the case of characteristic zero, almost all
fibres of / are nonsingular. In the case of positive characteristic, however, there exists
fibrations whose general fibres have singularities. Generalized Raynaud surfaces are
typical examples of surfaces which have such fibrations. Moreover, these surfaces have
interesting geometry in positive characteristic. In the present article, we compute the
dimension of the space of vector fields and give an estimate for the difference of the
dimension of the space of all global differential 1-forms from that of the space of closed
differential 1-forms on generalized Raynaud surfaces.

1. Generalized Raynaud surfaces. Throughout this article, we assume that k is
an algebraically closed field of characteristic/? ^ 3 . To begin with, we define generalized
Tango curves. Let C be a smooth projective curve over k and let Jf be an invertible
sheaf on C with positive degree. Suppose that there exist local sections {ξιeΓ(Uh &c)}iei
whose differentials {dξ^ are local generators of the sheaf of differentials ΩQ satisfying
dξi = afjtdξj, where {aij}iJeI are transition functions of Jf for an affine open covering
{Ui}iei and where n is a positive integer with nψO (mod/?) and n>\. Then we call the
triple (C, JV, {dξi}) a generalized Tango curve of index n. Note that JV^^ΩQ. The
following lemma is useful for constructing generalized Tango curves. For the proof, we
refer to Takeda [7].

LEMMA 1.1 (Kurke [1]). Let ω be an exact differential on a smooth projective curve
C. Suppose that the divisor of ω has the form pnD, where D is a nonzero effective divisor
and n is a positive integer with nψO (mod/?) and n>\. Then there exist local sections
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{£feΓ(£//5 (9c)}iei sucn that (C, (9C{D), {dξ^) is a generalized Tango curve of index n.

We shall give an example of a generalized Tango curve.

EXAMPLE 1.2 (Raynaud [5]). Let C be an affine plane curve defined by the equa-
tion ynp—y = χnp~1, where n is a positive integer with nφO (mod/?) and n> 1. Since the
genus of C is (np—l)(np — 2)/2, the divisor of the exact differential dx is np(np — 3)Po0,
where P^ is the point at infinity. By Lemma 1.1, we know that (C, Θc((np — 3)Po0), dx)
is a generalized Tango curve of index n. We note that H°(C, Θc((np — 3)Poo))^0 and
dim#°(C, Θc(p(np-3)PO0))>\ for §2 and §3.

Now, we shall construct a generalized Raynaud surface. Let (C, Jf, dξ) be a
generalized Tango curve of index n. Then there exist an affine open covering {ί/t}ίe/

of C and local sections ^6Γ(ί/ ί5 0C) satisfying dξi = a1fdξp where αfj is the transition
functions for Jf on t/£n £/,. Moreover, there exist sections b^eΓiJJ^ Uj9 Θc) such that
ξ^aΊfξj + bfj. We define a Gorenstein scheme Y and a morphism </>: Y-+C by giving
local data as

where x—a^j + b^ y^aftyj, s^a^Sj + a^ήb^ U = a^t.p xx^tr\, y^tf1, and
n + q = hp(q, heZ,0<q<p). Unless « + 1 Ξ 0 (mod/?), Fis not normal. So, we take the
normalization μ: X-> Y and denote φ = φ° μ. We call this surface X a generalized Raynaud
surface over a generalized Tango curve (C, Jf, dξ). The generalized Raynaud surface
X has the following properties:

(1) A" is a nonsingular relatively minimal surface and A'is of general type provided

(2) φ is a fibration and all fibres of φ are rational curves with one cusp of type

χp=yn. The singular locus Σ of the fibres, i.e., the locus of the moving singularities, is
locally defined by y{ — 0 in the same notation as above.

(3) There exists a section E of φ lying over Uie/{^ = }̂ s u c ^ ^ a t ^ e n o r m a l
sheaf of E is isomorphic to Jf and Θx{Σ) = Θx{pE)®φ*Jr~p.

(4) X has the following numerical invariants:
(i) ωx = Θx{{np-p-n-\)E)<8>φ*Jfn+p.

(ii) (K2

x) = (n2p2-p2-n2-4np+l)d, where </=degyΓ.
(iii) The Euler number of X is e(X) = — 2npd.
(iv) χ(Θx) = (n2P2-P2-n2-6np+ l)d/\2.
(5) #*(£) ® φ*^Γ is an ample invertible sheaf on X and

For the proof of these facts and more detailed discussions on generalized Raynaud
surfaces, see [7].

Throughout this article, we keep the notation in this section.



GENERALIZED RAYNAUD SURFACES 361

2. Vector fields on generalized Raynaud surfaces. In this section, we prove the

following theorem:

THEOREM 2.1. Let Θx be the tangent sheaf of a generalized Raynaud surface X.

Then we have

(H°(C,JT) if ,7+1=0(mod/?),
H°(X,ΘX) = \ F

I 0 otherwise.

We note that X is of general type provided (p, n)^(3, 2), and that H°{C,
This theorem is a refined version of Lang [3, Theorem 1]. Our proof of this theorem
begins with the following:

LEMMA 2.2 (Lang [2]). There is an exact sequence

0 -• φ*Ωl® Θx((n- l)Σ) -+Ωι

x-> ωx,c®Θx(-{n-\)Σ) -> 0 .

PROOF. Since φ is smooth on X—Σ, we obtain the required exact sequence on
X-Σ. Near Γ, AΊs locally defined by the equation xf-yi-ξ^O (see §1). By exterior
differentiation, we have dξ~ — nyΊ~1dyi or dξi/yΊ~1= —ndyt. We know that (xu y() is
a local coordinate system and that Σ is locally defined by ^ = 0. Hence there is an
injection φ*Ωc® ®χ{(n— l)Σ)-+Ωx whose cokernel is locally free. Now, the assertion is
clear. q.e.d.

Note that Θx^Ω]c®ωx

1 and recall that Θx(Σ) = Θx(pE)®φ*Jr~p and ωx =
(9x{{np-p-n-\)E)®φ*Jrn+p (see §1). So, we have:

COROLLARY 2.3. There is an exact sequence

0 -> Θx({n+ \)E)® φ*JT~n -+ΘX-+ Θx{-{n-\)pE)®φ*Jf-p -> 0 .

Since H°(X9 Θx{-{n- \)pE)® φ*JT-η = 0, we know that H°(X, Θx) =
ι). Hence we consider the

direct image φ*®x((n +\)E). Let F: C'-*C be the A>Frobenius morphism, i.e., C is the
normalization of C in k(C)1/p. Let X' = XxcC and let φ': X-+C and π: A ^ J f be
the projections. Take the normalization v: Z->X' and denote φ = φΌγ. Then φ : Z^C
is nothing but the P^bundle P{Θσ®F*Jr)-^σ (see [7, §3]).

C-—> C > C

Since the set of nonnormal points of X' is π~1(Σ), we see that X1 is isomorphic to
Z except over π"1(Z). Let C/J = F""1(ί/i) and let η—ξl^, where £/,. and ξf are the same
as in §1. Then φf"\U^ is defined by xf—y" — ηf = 0 near π " 1 ^ ) - Since /? and « are
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relatively prime, there exist positive integers α and β such that ocp — βn=l. Set
zi=yc!(xi — 1Ίi)~β' Then we see that zf=yh zn

i=xi~γ\i and that (zi9 ηt) is a local coordinate

system on Z. Let 0t be the cokernel of the natural injection ®x>-+v^@z. Then

S u p p ^ = π~1(^') It is e a s Y t o verify that 0t\φ.-^υ'.^ ®mΘv'.z^, where z{ is the same as

above, and where m ranges over all positive integers except Np + Nn, p, and n. Denote

S=v*(π*E) = π*E. By tensoring π*Θx((n+\)E), we have

0 -> π*&x((n + \)E) -> vj)z((n + \)S) -» 0t ® π*Θx((n + \)E) -* 0 .

Since π ~ 1 ( £ ) n S u p ρ ^ = 0 , W e have @®π*Θx({n+ \)E) = 0t. Restrict this sequence to

Φ/~1(C/J) and take the direct images. Then we have

0 -> φ'*π*Θx{{n+\)E)\υ> -> ̂ z ( ( / i + 1)5)1^ ̂ > Θ © ^ Γ ,
m

where m is the same as above. Since ψ:Z-*C is a /^-bundle, we obtain

z? + 1 Considering the kernel of τ, we have

where [x] denotes the greatest integer not exceeding x. Since <ji>

F*Ψ*@x((n+ I)^)|i7 a n < i since xf and >>t are sections of ΘVi, we get

1̂  = 0Όi θ Φ ^ , θ 0Όtyt ® θ (Pc^

Recall that x^a^XjΛ-b^ and y. = afjyj. So, we have:

LEMMA 2.4. In the same notation and under the same assumptions as above, we have

V if n + 1 <p ,

where V is the locally free sheaf on C which is locally generated by 1 and xt.

Now, we are ready to prove Theorem 2.1. We already know that H°(X, Θx) =

H°(C, φ*&χ{(n+ \)E)®jV~n). So, by the previous lemma and deg./f >0, we have

H°(X,θx) = <
[ H°{C, V ® Jί ~n) otherwise .

By identifying xt with ηh we can regard V as a subsheaf of F^Θσ. Meanwhile FJ9C,

Jr~n is isomorphic to Jf~nv as a sheaf of abelian groups. Hence H°(C, V®<Λr~n)

H°(C, FJ)C ® J^~n) = 0. Therefore, the proof of Theorem 2.1 is complete.

3. Differential 1-forms on generalized Raynaud surfaces. In this section, we
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consider the differential 1-forms and their closedness on generalized Raynaud surfaces.

Lemma 2.2 implies that there is an exact sequence

0 -• Θx{{n-\)pE)®φ*J\r(1-n»®φ*Ω1

c -> Ωx -• Θx(-(n + l)E)® φ*JTn -> 0 .

Since H°(X, Θx(-(n+l)E)®φ*jrn) = 0, we have that H°(X, ΩX) = H°{X, Θx((n-\)pE)

® φ *jr^ ~n^®φ *Ω£) = H°(C, φ *Θx({n - \)pE) ® JT{1 ~n)p ® Ω£). On the other hand, by

the same argument as in Lemma 2.4, we get the following Lemma:

LEMMA 3.1. Retain the same notation and assumptions as above. Then we have

ι = o

where Wx is the locally free Θc-module which is locally generated by 1, xi9 . . . , xιfn~ι~1)p/n].

From this lemma, it follows that

Recall that yt is a local generator of Jίv. Hence we know that global 1-forms of X are

locally of the form

«-l [(n-l-l)p/n]

Σ Σ fu^TyΓ'dξ,,
1 = 0 m = 0

where /ίmi's are local sections of Θc. Since yΓ^'^dξ— —ndyi and since (xh yt) is a local

coordinate system of X, we see that a global 1-form is closed if and only if it is locally

of the form Σ"=o/ϊOi^Γ^i m t r i e above expression. Therefore, we have:

THEOREM 3.2. Let %x be the sheaf of closed l-forms on X. Then

H°(X, &X) = H°(C, Jf-p{n-1)®Ωι

c@J/'-p{n-2)®Ω1

c® ®Ωι

c)

^//°(C, Jίp)® H°(C, Jί2p)® ®H°{C, Jίnp).

COROLLARY 3.3. In the same notation, we have

f0^, Ωx)-dimH°(X, &x)^dimH°(C, Wo® JTP)-dimH°(C, JTp).

When n>p, we have W0^F^Θσ by identifying xt with ηt. Hence we have the

following estimate:

COROLLARY 3.4. When n>p, we have

dimH°{X, Ωx)-dimH°(X, %x)^{p- l)(dimH°(C, Jίp)-1).

PROOF. By assumption, we have W0®Jrp^F^Θσ®Jrp^Jrp2, where the last

isomorphism is not as 0c-modules, but as sheaves of abelian groups. Meanwhile, for

invertible sheaves JS? and Jί, we know that dim H°(C, <£ ® Jί) ̂  dim H°(C, &) +
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dim#°(C, Jt)-\. So, we have dim7/°(C, Jί2p)^2dimH°(C, Jf*)- 1 and so on.
q.e.d.

To close this article, we note that Example 1.2 is an example for which
dimH°(C, Jίp)- 1 is positive.
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