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AREA INTEGRALS FOR RIESZ MEASURES ON THE SIEGEL
UPPER HALF SPACE OF TYPE II

HITOSHI ARAI*
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Abstract. The area integrals of harmonic functions on the Siegel upper half space
of type II are important tools for studying Hardy spaces and boundary behavior of
harmonic functions. In this paper we will extend the area integrals to subharmonic
functions on the Siegel upper half space of type II, and prove their //-estimates by the
admissible maximal functions for all 0 <p < oo. The extended area integrals are analogues
of the area integrals which were introduced by T. McConell in the case of the Euclidean
upper half space.

1. Introduction. The area integrals of harmonic functions on the Siegel upper
half space of type II were studied extensively by Koranyi and Vagi [7] and Geller [4]
etc. In this paper we will extend the area integrals to subharmonic functions and prove
their //-estimates by the admissible maximal functions. In the case of the Euclidean
upper half space, such an extension of the area integrals was introduced by McConell
[8] and //-estimates for the extended area integrals by nontangential maximal functions
were proved by McConell [8], Uchiyama [10] and Kaneko [6].

Throughout this paper we denote by ^"+1 the Siegel upper half space .of type II,
{(z0, z) e C x Cn : Im z0 - 1 z |2 > 0}. Since one thinks of ̂ n + 1 as the product of the interval
(0, +00) and the Heisenberg group Hn under the coordinate change (h, t, z) =
(Im z0 — I z |2, Re z0, z) (cf. [7], [4]), we will be concerned in this paper with analysis
on (0, + oo) x Hn instead of ^π + 1. The Heisenberg group Hn is the Lie group whose
underlying manifold is R x Cn + 1, with multiplication (/, z) - (tr, z') = (t + t' + 2 Im(£ z/}),
z + z') and dilation δr(t, z) = (r2/, rz) (see [3]).

In order to describe our analogue of McConelΓs area integral and the main result,
we now mention the notation. Throughout this paper we denote by Un + 1 the space
(0, oo)x#" = {(A,(f,z)):Ae(0, oo), (/, z)eHn = Rx Cn + 1}. In the (A, (t, z))-coordinate,
the following vector fields generate the tangent bundle T(Un+l)\
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where z = (zl9 . . . , zn), Xj = Re Zj and yj = lm zj9j= !,...,«.
We denote by g the Riemannian metric such that the frames {2hH, 2hT,

^J~h Yj} are orthonormal. This metric is identified with a constant multiple of the Bergman

metric of <%n+1 under the coordinate change. By the definition of the Laplace-Beltrami

operator L of the metric g we have L = 4h[_hH2 — nH+hT2-4L0~], where L0 is the

sub-Laplacian of the Heisenberg group, that is, L0= — £(Ar?+ Yj). (For detail, see [3]
and [4]).

We now recall the definitions of harmonic and subharmonic functions on Un+1.

DEFINITION. (1) A C2-fιmction/on an open set Ω of Un+ 1 is harmonic if L/=0

on Ω.
(2) A function u on Ω is subharmonic if (i) u satisfies — oo<w<oo on Ω and

u(z) > —ao for some z e Ω; (ii) w is upper semicontinuous on Ω; (iii) for every smooth

relatively compact domain D in Ω and for every continuous function h on the closure

D of D which is harmonic on D and u<h on the boundary dD of D, we have u<hmD.

It is well known that if u is a subharmonic function on Un + 1, then there exists a

unique nonnegative Radon measure μu onUn+l such that for every compactly supported
C2-function φ on ί/π+1,

f υ(Z)Lφ(Z)dVJZ) = ί φ(Z)dμu(Z) ,
Jt/" + 1 Jt/" + 1

where dVg is the Riemannian measure with respect to the metric g, that is, dVg (h, t,

z) = (l/4hn + 2)dV(h, ί, z), where dV is the (Euclidean) Lebesgue measure on Un+ΐ (cf.

[5, Theorems 2.3.2 and 2.3.3]). The measure μu is called the Riesz measure of u.

Now we are ready to define an analogue of McConelΓs area integral for a

subharmonic function u on Un + 1. For α>0 and xe//n, our analogue SΛ(μu)(x) is

defined as follows:

where AΛ(x) is the admissible domain defined by

where | | is the usual homogeneous norm on Hn, that is, | w | = (/2 + |z|4)1/4 for

w = (t,z)eHn (see [4]). The function Sa(μu) is regarded as an extension of the area

integral, bacause if u = \ v \ 2 for some harmonic function v in Un+1, then Green's
formula with respect to the metric g yields dμu(Z) = Lu(Z)dVg(Z) = \ Vv(Z)\2dVg(Z\

and therefore

\Vv(Z)\2dVg(Z).
X)

Here the right hand side is known as the square of the area integral of v.
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For a subharmonic function u on C/w + 1, we denote by ύ$ the admissible maximal
function of u defined by

where χE is the characteristic function of a set E.
Our main theorem is the following:

THEOREM. Let u be a subharmonic function on Un+ΐ. Then for anyQ<a, /?< oo and
0</?< oo, there exists a constant Cp depending only on α, β,p and g such that

ί μu(AΛ(x)γdx<Cp\ u
J Hn J Hn

^(x)pdx, 0</?<oo,

where dx is the Haar measure on Hn.

In the case of the Euclidean upper half space, the above inequality was obtained by
McConell as a main result in [8] with a restriction on the range of p. However, the
restriction was later removed by Uchiyama [10]. Recently, Kaneko [6] simplified
Uchiyama's proof by using geometric features of sawtooth regions generated by

nontangential cones. For the proof of Theorem, we will expand the idea of Kaneko
into our non-Euclidean case.

As we have shown, if u = \v \2 for some harmonic function v on Un + 1, the function

SΛ(μu) is the square of the area integral of v. Consequently the Theorem is a generalization
to subharmonic functions of Koranyi and Vagi [7, Theorem 8.2] when 2~1</?<oo,
and of Geller [4, Theorem 5.1(a)] when 0</?<2~1.

After proving a preliminary lemma in Section 2, we will study in Section 3 sawtooth

regions defined by admissible domains. Then in Section 4 we will prove Theorem.

2. Preliminaries. In this section we will generalize to homogeneous groups of a
lemma of Murai-Uchiyama for the Euclidean space ([9]). To avoid wasting of space,
we refer to the book [3] for all terminology and notation about homogeneous groups
and functions of bounded mean oscillation, which will be used in this section. Throughout

this section, G is a homogeneous group endowed with the quasi-metric d( , ) defined

by d(x9y) = \y~1 x\9 where | | is the homogeneous norm of G. We denote by μ the
bi-invariant Haar measure on G. The Heisenberg group is a typical example of

homogeneous groups.
Let BMO(G) be the space of all functions of bounded mean oscillation on G, and

let II HBMO be the BMO-norm. The following lemma was proved by Murai and
Uchiyama by using certain maximal dyadic cubes when G is the Euclidean space. Here

we will generalize it to homogeneous groups by a proof in which no maximal dyadic

cubes are used.

LEMMA 1. Suppose μ(G)=+oo. Iffε BMO(G) and | |/| |BMo^l> then tnere exist
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positive constants c± and c2 depending only on G, d and μ such that

μ({xEG:\f(x)\>γ})£Clexp(-c2γ)μ({xEG:\f(x)\>l}), γ>l .

PROOF. Let E = (x e G : | f(x) \ > 1 } . We may assume that μ(E) < oo . For x E G and

r>0, let B(x, r) = {yeG:d(y, x)<r}. Take a family of balls, say {B(x, Λ0}jv=ι,2....» which
is a covering of G, and let EN = Er\B(x, N) for every N= 1, 2, . . . . Let N be a large

number so that EN^0, Denote by LN the set of points of density of EN. Then for every

x G LN, we can define

r '(*) = sup{r > 0 : μ(E n B(x, r)) > —μ(B(x9 r))}

and obrain that 0<r'(x). Moreover, the assumptions that μ(G)= +00 and μ(E)<co

yield r'(x)<+oo. Therefore by the Wiener lemma (cf. [3, (1.66)]), we can take

points xl9x2, ... eLN in such a way that the balls B(xp r'(XjJ) are disjoint and LNa

\JjB(xp Cr'(Xj)), where C is a positive constant depending only on G, d and μ.

Hence by the definition of r'(x) there exists r(xy)e(0, r'(.Xy)] satisfying

(1) μ(EnB(xp

(2)

(3) LN c= .

Let Bj = B(xp r(Xj)) and CBj = B(xp 2Cr(Xj)). Then

JCBi

vt\ιeγεfCBi = \CBfdxlμ(CB^. Hence

(4) 1

By (2) and (4) we have

* n { | / | > l }

Therefore

Accordingly |/|clϊι.<4. Since ^,ΛOn{|/|>y}cι5(χ,ΛOn{|/|>l}c..e.U^j and

l/-/cB il>l/|-|/U>7-4 on {|/|>y}, we get by [3, Theorem 5.15] that
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μ(B(x, N) n {I / 1 > y}) < £ μ(CBl n {| / 1 > y})
j

< d exp( - c2(y - 4))Σ μ(CB

,n^) (by (1))

(We used [3, Theorem 5.15] for the third inequality.) Here Cl and C2 are positive
constants depending only on G. Thus by letting 7V->oo we obtain the lemma.

3. Carleson measures and admissible regions. A main step of Uchiyama's proof of
the extended McConell theorem is to verify that a measure defined by a sawtooth region
in the Euclidean upper half space is a Carleson measure. In this section we will prove
a non-Euclidean analogue of his lemma by enlarging an idea of Kaneko [6] into our
setting. For EaHn, let W(X(E) = \JxeE AΛ(x). As is well known, the set is a Heisenberg
analogue of the sawtooth region. From now on we use the following notation:

Q(x9y) = \y~l'x\2

 9

 f°r x,yeHn and

B2(x, r) = {yeHn: ρ(x, y)<r} for xe//", r>0.

Let us recall that a nonnegative measure v on Un + 1 is called a Carleson measure if

where we denote the Haar measure of a measurable set F in Hn by | F \ .

PROPOSITION 1. Suppose 0<α</?<oo. Let u be as in Theorem, and let E=
{x€Hn\ w|(jt)< 1}. If a measure v is defined by

v(F) =

then || v ||C<C3, where C3 is a constant depending only on α, β and the metric g.

In order to prove this proposition, we will construct a smooth function χ which
behaves like the characteristic function of WΛ(E) n WΛ(B) for a ball B in Hn. Using such
a smooth function one can compute the measure v((0, r) x B), where r is the radius of
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B, because it behaves very much like the integral Jw(Λ, x)L(χ(h, x)hn+1)dVg(h, x). We
will begin with providing such a function:

LEMMA 2. Let E be a closed set in //", and let B be a ball B2(x, r0). Suppose

0<λ0<>Ό andQ«x<β<cc. Then there exist a nonnegative C™ function χ on Un+l and
two constants c3> 1, c4> 1 depending only on α, β and Hn, which satisfy

(1) χ=lon WΛ(E} n WΛ(B) n ((Λ0, r0) x //");
(2) χ = 0 off WP(E) n ̂ (Λ) n ((cj X c3r0) x Λ(χ, c4r0));

(3) |Lχ|<C4;0m/

(4) I (Vχ, Vhn+ 1) I < C5/zπ+ *, wλere C4 0Aiί/ C5 are positive constants depending only

on a, /? a«rf gf, and where (Vχ, V7zπ + 1) w ίΛe /wwer product of the gradients of χ and hn+1

with respect to the metric g.

PROOF. For any small number s > 0 and any (Λ, x) e U" + 1 = (0, oo) x Hn, let

, x), s) = ((l -s)h, (1 + j)A) x B2(x, sh)^Un+1 .

Then it is easy to check that there exists a constant τe(0, 1) depending on α, β and Hn

such that for every w e //",
(5) Λ((A, x), τ) c ̂ (α+Λ/2(w) when (A, x) e v4α(w), and
(6) Λ((A, x), τ)n^(α+^)/2(w) = 0 when (A, x)^^(w).
Now take a C°°-function p on CM + 1 such that p>0, supp(p) c ( - 1 , l)x£2(0, 1)

and |Cr, + !/>(/*, x)dhdx=\. Let

) n {((1 -τ)A0, (1 +τ)r0) x //"} ,

and

From (5), (6) and the definition of χ is follows that χ satisfies the conditions (1) and

(2) when we put c3 = (1 +τ)/(l -τ) and

where K is the constant such that |Λ: J> |< | x \+K\ y \ for every x,yeHn (see [4] for

this triangle inequality).
By easy calculation we get

)\<cτh-^ \H2χ(h,x)\<cτh-\ \T2χ(h, x) \<cτh~2 , |L0χ(A, x) \<cτh^ ,

where cτ is a constant depending only on α, jS, g and τ, but τ is a constant determined

by α, /? and the Heisenberg group structure. Therefore we have
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and furthermore,

where C4 and C5 are positive constants depending only on α, β and g.

By this lemma, Proposition 1 is proved as follws:

PROOF OF PROPOSITION 1. Let E be as in Proposition 1. Take a ball B = B2(x, r0).
For E and B, let χ be as in the previous lemma, and let F= {(h,x)eUn + l: L(χhn + l) / 0}.
Then we have

v((A0,r0)x5)<[ hn + 1dμu<
JwOI(£)nH'0,(B)n((Ao,< o)xH") Jl'"*1

u(h, x)L(χ(h, x)hn+1)d¥g(h, x)

= I u(h, x){hn+1Lχ(h, x) + (Vχ(h, x), Vhn+ί)}dVg(h, x)
JF

<C6ί \u(h,x)\h"+ldVg(h,x)
JF

<CΛ h"+1dVg(h,x) = 4-1C6 f h~ldhdx

~4~1Q ίB2(,,c,o) [Lw,*~ VΛ}^ =: (I)'

where C6 is a positive constant depending only on α, β and #, and c4 is the constant
as in Lemma 2. In the same way as in [6, p. 593], we obtain that (I)<C7|5|, where
C7 is a positive constant depending only on α, β and g. Indeed, for x e B(x, c4r0), we have

where ̂  = [{(1 -τ)/(l +τ)}A0> A0]> ̂ [{a/ft'o, {(1 +τ)/(l -τ)}r0] and A3 =
φ;)2/α], with ^W-maxlinfίb-1 jc| : je£}, inf{| j'1 χ| : je^}}. Thus

v((0, r0) x Λ) = lim v((Λ0, r0) x B} < CΊ\ B \ .

4. A good λ inequality and proof of the Theorem. We will begin with proving
a good λ inequality which implies the Theorem. For Wa £/π + 1, α>0 and the Riesz
measure μu of a subharmonic function u on Un + l, let
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As a consequence of Proposition 1 and Lemma 1 we have the following:

PROPOSITION 2 (A good λ inequality). Suppose 0<α</?<oo. Let u and μu be as
in the Theorem. For R>Q,letTR = (- R, R) x £2(0, r). Then for ally>\ and for all R > 0,

\{xeHn: Sa(TR, μj(χ) > γ, uj(x) < 1} | < c5 exp(- c6γ)\{xeH": S2Λ(TR, μu)(x) > 1} | ,

where c5 and c6 are positive constants depending only on α, β and g.

PROOF. Let Ψ be an infinitely differentiable function on Hn such that Ψ=l on
£2(0, α), Ψ = 0 off £2(0, 2α) and 0<Ψ<1 on Hn. Let Ψh(x) = h~n~lΨ(δ1/^/τx), xεHn.
Then we get:

ASSERTION 1. If a measure dm on Un+1 is a Carleson measure, then the balayage
Ψ*m of dm defined by

Ψ*m(y) = Ψh(y ~l - x)dm(h, x), y e Hn,

is a function of bounded mean oscillation. Indeed

\\Ψ*m\\BMO<C8\\ml,

where C8 is a positive constant depending only on α and Hn.

REMARK. Note that since B2(x, r) = B(x, ^J r ), so for a locally integrable function

/on //", we have

1
— ί / G O " / Λ l f f(y'W dy.xeH*, r>θl.
' r) I J3 (x ri \ i 1\B2(x,

PROOF OF ASSERTION 1 . Since ̂  behaves very much like the characteristic function
of 5(0, α), we see by [1] that the operator M/(jt) = sup{| Ψh*f(y)\ : \y~l -x\2<h} is
bounded from Lq(Hn, dx) to Lq(Hn, dx) for 1 <q< oo. Moreover, by easy calculus we
obtain

and from the mean value theorem (cf. [3]) is follows that

when h + \x\2>c\ v | 2, where c is a sufficiently large constant depending only on //",
and C9 and C10 are positive constants depending only on //" and Ψ. Therefore Assertion
1 is an immediate consequence of Theorem 4(i) of [1]. (The end of the proof of
Assertion 1).

Now we return to the proof of Proposition 2. By what we obtained so far, we can
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apply the argument in [6, p. 594] to our case: The definition of Ψ implies that for

SΛ( WΛ(E) n TR9 μu)(x) < Ψ*vR(x) < S2Λ(TR, μu)(x) , xεH",

where vκ is the measure defined by vR(F) = v(TRnF) while v is the measure defined in

Proposition 1. Hence by Proposition 1 and Assertion 1 we have ||Ϊ/*VR ||BMO<C8C3.
Therefore Lemma 1 implies that

\{x:Ψ*vR(x)>y}\<c1εxp(-c2y)\{x:Ψ*vR(x)>l}\,

for y > 1 . Thus we can prove Proposition 2 by using the fact that Sa( WΛ(E} n TR, μu)(x) =

S*(TR> AUW when xeE.

PROOF OF THE THEOREM. What we have seen so far allow us to apply the argument

in [10, pp. 376-377] and [6, pp. 594-595] to our setting: Let a = (a + β)/2 and b =

max{<2, β}. By Proposition 2 we get

I [Sa(TR, μu)>yλ}\<\{Sa(TR, μu)>yλ, uί^λ}\ + \{uf>λ} \

<CΊ exp(-c8y)| {S2a(TR, μu)>λ} \ + \ {u*>λ} \ ,

where CΊ and c8 are positive constants depending only on α, β and g. Therefore

(1) γ-*\\ Sa(TR, μu) \\?p<cΊ exp(-cβy)|| ^2α(ΓR, μj ||J+ || u% ||J .

We need the following:

LEMMA 3. Suppose 0 < α < β < oo, and 0 <p < oo . Then for every compactly
supported nonnegative Radon measure v,

[ {v(Λ/J(x))}'Λ<C11[ {v(A.(x))}>dx,
J Hn J Hn

where Cn is a positive constant depending on α, β, p and Hn but is independent ofv.

PROOF. Since v is compactly supported, the set {v(Aβ(x))<λ} is closed for

Hence we get the lemma in the same way as in the proof of Proposition 4 in Coifman,
Meyer and Stein [2]. (The end of proof of Lemma 3).

Now we are ready to complete the proof of the Theorem. By Lemma 3 and the

inequality (1) we see that if y is sufficient large, then

where C12 is a positive constant depending only on α, β and g. Thus we are done letting
R-+OO and recalling the fact that the ZΛnorm of uξ and that of w| are equivalent.
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