POLARIZED SURFACES OF 4 -GENUS 3 AND DEGREE 5

Masanori Yoshioka

(Received November 28, 1991, revised January 23, 1992)

Abstract

In this paper we try to classify those polarized surfaces (M, L) of Δ-genus 3 and degree 5 , for which the linear system $|L|$ has finite base locus and defines a non-birational rational map. Then a surface obtained by the blowing up at a point of M is a double cover of a desigularization of a quadric surface. Moreover, we divide these surfaces into four types according to the shape of the fiber containing the exceptional curve. Three of them are fiber spaces over the projective line and the other is an irrational ruled surface. Conversely, we show the existence of polarized surfaces in each of the four types.

1. Introduction. Fujita [3], [4] classified polarized surfaces of Δ-genus 1 or 2, but those of Δ-genus 3 are not well-understood up to now. Our aim is to classify the polarized surfaces (M, L) of Δ-genus 3 and degree 5 over the complex number field \boldsymbol{C}. In this paper, we only treat the case where the base locus of the linear system $|L|$ is finite and the rational map Φ_{L} is not birational.

In Fujita's theory of polarized varieties, regular rungs play an important role. We assume that $\Delta(M, L) \leq g(M, L)$ and that $\mathrm{Bs}|L|$ is finite. By Fujita's embedding theorem (Theorem 1 in $\S 1$ below), there exist nonsingular regular rungs for those surfaces which satisfy $L^{2} \geq 2 \Delta(M, L)-1$. We are interested in the case $L^{2}=2 \Delta(M, L)-1$. The surfaces with $\Delta(M, L)=1$ and $L^{2}=1$ or with $\Delta(M, L)=2$ and $L^{2}=3$ are contained in the classification by Fujita. Hence we try to classify the next class of the surfaces which satisfy the above equality. For the surfaces with $\Delta(M, L)=3$ and $L^{2}=5, \operatorname{deg} \Phi_{L}$ is one or two. In this paper we classify the case $\operatorname{deg} \Phi_{L}=2$ in a method similar to that in [4].

In this case, the base locus of $|L|$ is a point p, and by the blowing up at p, we obtain a surface \tilde{M} and a degree 2 morphism $\Phi_{\tilde{L}}: \tilde{M} \rightarrow \boldsymbol{P}^{3}$. Moreover, we lift it to a morphism f_{0} to $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ or Σ_{2}. We carry out the classification by dividing the surfaces to four classes by the type of a divisor $f_{0}^{*} \Gamma \subset \tilde{M}$ (cf. Theorem 2 in $\S 2$). We lift f_{0} to a finite double covering to a surface obtained from either $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ or Σ_{2} by the blowing up at one or two points (cf. Theorems $3,4,5,6,7$, in §5, §6, §7, §7, §8). We describe the branch locus of the double covering. Conversely, we show the existence of polarized surfaces in each of the four types.

The author expresses his gratitude to Professor Takao Fujita for encouragement and useful suggestions. Thanks are also due to Professor Masa-Nori Ishida for
valuable advice.
2. Fujita's theory of polarized varieties. In this section, we recall necessary results on polarized varieties which we need later. A polarized variety (M, L) is a pair of an n-dimensional complete algebraic variety M and an ample divisor L on M. By using the Hilbert polynomial $\chi(t L)$, we define integers $\chi_{j}(M, L)$ so that $\chi(t L)=$ $\sum \chi_{j}(M, L) t^{[j \mathrm{j}} / j!$, where $t^{[0]}:=1$ and $t^{[\mathrm{jj}}:=t(t+1)(t+2) \cdots(t+j-1)$ for $j>0$. The sectional genus of (M, L) is defined as

$$
g(M, L):=1-\chi_{n-1}(M, L) .
$$

If $n=1$, the sectional genus of (M, L) is equal to the genus of M. If $n=2$ and M is non-singular, the sectional genus of (M, L) is equal to the virtual genus of L. The Δ-genus of (M, L) is defined as

$$
\Delta(M, L):=n+L^{n}-h^{0}(M, \mathcal{O}(L)) .
$$

If a divisor $R \in|L|$ is prime, R is called a rung of (M, L). If $r_{R}: H^{0}(M, \mathcal{O}(L)) \rightarrow$ $H^{0}\left(R, \mathcal{O}\left(L_{\mid R}\right)\right)$ is surjective, $\left(\{|L|\}_{\mid R}=\left|L_{\mid R}\right|\right.$, for short $)$, then R is said to be regular. If R is regular, then we have $g(M, L)=g\left(R, L_{\mid R}\right)$. A rung R is regular if and only if $\Delta(M, L)=\Delta\left(R, L_{\mid R}\right)$.

Lemma 1. If (M, L) has a regular rung, then $\mathrm{Bs}|L|=\mathrm{Bs}\left|L_{\mid R}\right|$.
Proof. By definition, we have $\{|L|\}_{\mid R}=\left|L_{\mid R}\right|$. For all $R^{\prime} \in\left|L_{\mid R}\right|$, there exists $L^{\prime} \in|L|$ such that $L^{\prime} \cap R=R^{\prime}$. Hence we have $\mathrm{Bs}\left|L_{\mid R}\right| \supset \mathrm{Bs}|L|$. Consequently, we have $\mathrm{Bs}|L|=\mathrm{Bs}\left|L_{\mid R}\right|$.

As to the existence of a regular rung, Fujita gave the following theorem:
Theorem 1 (Fujita [1], [5]). Let (M, L) be a non-singular polarized variety. Assume that $\mathrm{Bs}|L|$ is finite and that $\Delta(M, L) \leq g(M, L)$. Then we have:
(1) (M, L) has a nonsingular regular rung, if $L^{n} \geq 2 \Delta(M, L)-1$.
(2) $\mathrm{Bs}|L|=\varnothing$, if $L^{n} \geq 2 \Delta(M, L)$.
(3) $\Delta(M, L)=g(M, L)$ and L is very ample, if $L^{n} \geq 2 \Delta(M, L)+1$.
3. Liftings of $\boldsymbol{\Phi}_{\boldsymbol{L}}$. In this paper from this section on we assume following two assumption.

Assumption 1. $\Delta(M, L)=3, L^{2}=5, g(M, L) \geq 3$ and $\mathrm{Bs}|L| \neq \varnothing$.
This assumption implies $h^{0}(M, \mathcal{O}(L))=4$. We now eliminate the base points in Bs $|L|$ of the rational map $\Phi_{L}: M \rightarrow \boldsymbol{P}^{3}$ defined by the complete linear system $|L|$. Let p be a base point of $|L|$.

Assumption 2. Φ_{L} is not birational to its image.

Proposition 1. Bs $|L|$ consists of the single point p. Moreover, any two general members of $|L|$ intersect each other transversely at \dot{p}.

Proof. Since $\Delta(M, L)=3, L^{2}=5$ and $g(M, L) \geq 3$, the surface (M, L) has a nonsingular regular rung R by Theorem 1, (1). By Lemma 1 , it is sufficient to show that Bs $\left|L_{\mid R}\right|=\{p\}$. We set L_{R} be a divisor on the curve R which satisfies $\left|L_{\mid R}\right|=\left|L_{R}\right|+p$. We have $\operatorname{deg}\left(L_{\mid R}\right)=\operatorname{deg} L_{R}+1$. Hence we obtain $\Delta\left(R, L_{R}\right)=\Delta\left(R, L_{\mid R}\right)-1=2$, since $\Delta(M, L)=\Delta\left(R, L_{\mid R}\right)$ and $\operatorname{deg} L_{R}=\operatorname{deg}\left(L_{\mid R}\right)-1=L^{2}-1=4$. Consequently, we have $\operatorname{deg} L_{R}=2 \Delta\left(R, L_{R}\right)$. Moreover, we have $g\left(R, L_{R}\right) \geq \Delta\left(R, L_{R}\right)$ by the Riemann-Roch theorem applied to the algebraic curve R. It follows that $\mathrm{Bs}\left|L_{R}\right|=\varnothing$ by Theorem 1, (2). Hence we have $\mathrm{Bs}\left|L_{\mid R}\right|=\{p\}$, and the coefficient for p of $L_{\mid R}^{\prime}-p$ is equal to 0 for any general member L^{\prime} of $|L|$. Therefore two general members of $|L|$ intersect each other at p with the local intersection number one. q.e.d.

Let $\pi: \tilde{M} \rightarrow M$ be the blowing up at p, and denote by E the exceptional curve over p. We denote by \tilde{L} the proper transform of a general member of $|L|$. Two general members of $|L|$ intersect each other at p transversely by Proposition 1. Thus we have $\pi^{*} L=\tilde{L}+E$, and two general members of $|\tilde{L}|$ do not intersect each other on E. Hence $|\tilde{L}|$ has no base point because $|L|$ has only one base point p. Therefore the rational $\operatorname{map} \Phi_{\tilde{L}}: \tilde{M} \rightarrow \boldsymbol{P}^{3}$ is a morphism such that $\Phi_{\tilde{L}}=\Phi_{L} \circ \pi$.

We set $W_{0}:=\Phi_{\tilde{L}}(\tilde{M})$. Since \tilde{L} has no fixed components and $\tilde{L}^{2}=4>0$, we have $\operatorname{dim} W_{0}=2$. For a point $x \in W_{0}$, we denote by $\Lambda(x)$ the linear system of hyperplane sections on W_{0}. Then $\Phi_{\tilde{L}}{ }^{1}(x)$ is the base locus of $\Phi_{\tilde{L}}^{*} \Lambda(x)$. Since we assume that Φ_{L} is not birational, W_{0} is a quadric surface in \boldsymbol{P}^{3}, and \tilde{L} is the pullback of a hyperplane section of W_{0}. Then there are the following two cases.

Case (I) W_{0} is a nonsingular quadric surface in \boldsymbol{P}^{3}.
Case (II) W_{0} is a quadric cone in \boldsymbol{P}^{3}.
Now we study each of these cases.
Case (I) Let $W:=\boldsymbol{P}_{1}^{1} \times \boldsymbol{P}_{2}^{1}$, and denote $H=H_{1}+H_{2}$, where $H_{1}:=\{\mathrm{pt}\} \times \boldsymbol{P}_{2}^{1}$ and $H_{2}:=\boldsymbol{P}_{1}^{1} \times\{\mathrm{pt}\}$. There exists a morphism $f_{0}: \tilde{M} \rightarrow W$ such that $\Phi_{\tilde{L}}=\Phi_{H} \circ f_{0}$. Thus we have $\tilde{L} \sim f_{0}^{*} H$. By exchanging the indices if necessary, we may assume that $\left(f_{0}^{*} H_{1}\right) \cdot E=0$ and $\left(f_{0}^{*} H_{2}\right) \cdot E=1$ because $1=\tilde{L} \cdot E=\left(f_{0}^{*} H_{1}\right) \cdot E+\left(f_{0}^{*} H_{2}\right) \cdot E$, and $f_{0}^{*} H_{i}$ $(i=1,2)$ are nef. Hence \tilde{M} is a fiber space over \boldsymbol{P}^{1} through $\Phi_{f_{0}^{*} H_{1}}: \tilde{M} \rightarrow W \rightarrow \boldsymbol{P}_{1}^{1}$. Moreover, $\Phi_{f_{0}^{*} H_{1}}(E)$ consists of a point because $f_{0}^{*} H_{1} \cdot E=0$. Thus E is a component of a fiber of $\Phi_{f_{0}^{*} H_{1} .} . \Phi_{\tilde{L}}(E)$ is not a point since $\tilde{L} \cdot E>0$. Hence $f_{0}(E)$ is not a point. $\Gamma=f_{0}(E)$ is a fiber of $\Phi_{H_{1}}: W \rightarrow \boldsymbol{P}_{1}^{1}$. Consequently, we obtain $\Gamma \sim H_{1}$.

Case (II) We can lift $\Phi_{\tilde{L}}$ to a morphism to the Hirzebruch surface Σ_{2} by the method in [7, p. 46] as follows. Let v be the singular point of W_{0}. We can choose a basis $\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ of $H^{0}\left(\tilde{M}, \mathcal{O}_{\tilde{M}}(\tilde{L})\right)$ satisfying $\varphi_{2}^{2}=\varphi_{0} \cdot \varphi_{1}$. Let $\left(\varphi_{i}\right)$ be the divisor defined by φ_{i}. Then we have $2\left(\varphi_{2}\right)=\left(\varphi_{0}\right)+\left(\varphi_{1}\right)$. Hence we have $0 \sim\left(\varphi_{2}\right)-\left(\varphi_{1}\right)=$ $\left(\varphi_{0}\right)-\left(\varphi_{2}\right)=\delta_{0}-\delta_{1}$, where δ_{0} and δ_{1} are mutually prime effective divisors. Let G be the common part of $\left(\varphi_{0}\right)$ and $\left(\varphi_{1}\right)$.

Lemma 2. In the above notation, we have

$$
\left(\varphi_{0}\right)=G+2 \delta_{0}, \quad\left(\varphi_{1}\right)=G+2 \delta_{1}, \quad\left(\varphi_{2}\right)=G+\delta_{0}+\delta_{1} .
$$

Proof. Let $\left(\varphi_{0}\right)=G+A_{0}$, and let $\left(\varphi_{1}\right)=G+A_{1}$. We have $A_{0}-A_{1}=\left(\varphi_{0}\right)-\left(\varphi_{1}\right)=$ $2 \delta_{0}-2 \delta_{1}$. Hence $A_{0}+2 \delta_{1}=A_{1}+2 \delta_{0}$. It follows that $A_{0}=2 \delta_{0}$ and $A_{1}=2 \delta_{1}$, because A_{0} and A_{1} are mutually prime and so are δ_{0} and δ_{1}.
q.e.d.

Note that $\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}\right\}$ is a basis of the linear subspace of $H^{0}\left(\tilde{M}, \mathcal{O}_{\tilde{M}}(\tilde{L})\right)$ corresponding to $\Phi_{\tilde{L}}^{*} \Lambda(v)$, where $\Lambda(v)$ is the linear system consisting of the hyperplane sections of W_{0} which contain v. Since Bs $|\tilde{L}|$ is empty, so is $G \cap\left(\varphi_{3}\right)$. Hence we have $\tilde{L} \cdot G=0$. On the other hand, since δ_{0} and δ_{1} are linearly equivalent and mutually prime, we have $\delta_{i} \cdot E \geq 0$. Suppose that E is a component of G. Since \tilde{L} is nef and $\tilde{L} \cdot E=1$, we have $\tilde{L} \cdot G>0$, a contradiction. Hence we have $G \cdot E \geq 0$. Consequently, we have $\delta_{i} \cdot E=0$ and $G \cdot E=1$, because $1=\tilde{L} \cdot E=2 \delta_{i} \cdot E+G \cdot E$ and $\delta_{i} \cdot E$ and $G \cdot E$ are integers. In particular, G is not zero. G is irreducible and reduced, since $L \cdot G=(\tilde{L}+E) \cdot G=1$.

Lemma 3. The variable part $|\tilde{L}-G|$ of $\Phi_{\tilde{L}}^{*} \Lambda(v)$ has no base point.
Proof. Since $4=\tilde{L}^{2}=\tilde{L} \cdot\left(2 \delta_{i}+G\right)=2 \tilde{L} \cdot \delta_{i}$, we have $\tilde{L} \cdot \delta_{i}=2$. Hence we have $2 \delta_{i}^{2}+G \cdot \delta_{i}=2$. Since $\delta_{i}^{2}=\delta_{0} \cdot \delta_{1} \geq 0$ and $\delta_{i} \cdot G \geq 0$, we have the following two cases: $\delta_{i}^{2}=1, \delta_{i} \cdot G=0$ and $\delta_{i}^{2}=0, \delta_{i} \cdot G=2$. However, the first case does not occur, since it implies $G=0$ by the Hodge index theorem. Hence we have $(\tilde{L}-G)^{2}=\left(2 \delta_{i}\right)^{2}=0$, and then $|\tilde{L}-G|$ has no base point.

In Case (II), we denote by W the Hirzebruch surface Σ_{2}, by H_{1} a fiber and H_{2} the section with the self-intersection number -2 , and we set $H=2 H_{1}+H_{2}$. The morphism $\Phi_{H}: \Sigma_{2} \rightarrow W_{0} \subset \boldsymbol{P}^{3}$ is equal to the blowing up at $v \in W_{0}$. By Lemma 3, the inverse image of v by $\Phi_{\tilde{L}}$ is the effective divisor G. Thus there exists a morphism $f_{0}: \tilde{M} \rightarrow W$ such that $\Phi_{\tilde{L}}=\Phi_{H} \circ f_{0}$ by the universality of the blowing up. Then we get $f_{0}^{*} H_{2}=G$ and $\tilde{L} \sim f_{0}^{*} H$, and hence we have $f_{0}^{*} H_{1} \sim \delta_{i}$ by $\tilde{L} \sim 2 \delta_{i}+G$. Thus $f_{0}^{*} H_{1} \cdot E=\delta_{i} \cdot E=0$ and $f_{0}^{*} H_{2} \cdot E=G \cdot E=1$. Hence it follows that \tilde{M} is a fiber space over \boldsymbol{P}^{1} through $\Phi_{f_{0}^{*} H_{1}}: \tilde{M} \rightarrow W \rightarrow \boldsymbol{P}^{1}$. Since $f_{0}^{*} H_{1} \cdot E=0$, the exceptional curve E is a component of a fiber. Since $\tilde{L} \cdot E=1, \Phi_{\tilde{L}}(E)$ is not a point. Hence $\Gamma=f_{0}(E)$ is a fiber of $\Phi_{H_{1}}: W \rightarrow \boldsymbol{P}_{1}^{1}$. Consequently $\Gamma \sim H_{1}$.

Note that we use common symbols in Cases (I) and (II) because of the similarity of the situation. We describe over result in this common notation when we do not need to distinguish the two cases.
4. Classification of the fiber containing E. The pull-back of Γ by the morphism $f_{0}: \tilde{M} \rightarrow W$ defined in Section 3 can be written as $f_{0}^{*} \Gamma=: \varepsilon E+E^{*}+D$, where ε is the multiplicity of E in $f_{0}^{*} \Gamma, E^{*}$ is the sum of those other components which are not contracted by f_{0}, while D is the sum of the components which are contracted by f_{0}.

The following proposition is a special case of [4, Lemma 1.5].
Proposition 2. Let x be a smooth point of W_{0} such that $X=\Phi_{\bar{L}}{ }^{1}(x)$ is of positive dimension. Then X is irreducible and reduced with $E \cdot X=1$. Moreover, X is a component of D.

Proof. Let \tilde{L}_{x} be a general member of $\Phi_{\tilde{L}}^{*} \Lambda(x)$. We can write $\tilde{L}_{x}=X+C$, where C is a divisor such that $|C|$ has no fixed component. Since $\pi^{*}(t L)-E$ is ample for sufficiently large t, it follows that $t \tilde{L} \cdot X^{\prime}+(t-1) E \cdot X^{\prime}=\left(\pi^{*}(t L)-E\right) \cdot X^{\prime}>0$ for any divisor X^{\prime} which is contracted by $\Phi_{\tilde{L}}$. Hence we have $E \cdot X^{\prime}>0$ because $\tilde{L} \cdot X^{\prime}=0$. Moreover, we have $X^{\prime} \cdot E=1$ and $C \cdot E=0$ by $C \cdot E \geq 0$. If $X=X^{\prime}+X^{\prime \prime}$, then $X \cdot E>1$, because $X^{\prime} \cdot E>1$ and $X^{\prime \prime} \cdot E>1$, a contradiction. Consequently, X is irreducible and reduced. On the other hand, we have $0=f_{0}^{*} \Gamma \cdot X=\varepsilon+E^{*} \cdot X+D \cdot X$. Since $E^{*} \cdot X \geq 0$, we have $D \cdot X<0$. Consequently, X is a component of D.
q.e.d.

By the above proposition, we can write $D=\sum X_{i}$, where X_{i} is an irreducible reduced curve. Let $\left\{\tilde{x}_{i}\right\}:=f_{0}\left(X_{i}\right) \in W$ and $\left\{x_{i}\right\}:=\Phi_{\tilde{L}}\left(X_{i}\right) \in W_{0}$. Let $\tilde{\Lambda}\left(\tilde{x}_{i}\right)$ be the linear system which consists of those divisors of the linear system $\left|(1+e) H_{1}+H_{2}\right|$ on W which contain \tilde{x}_{i}, where $e=0$ in Case (I) and $e=1$ in Case (II).

Lemma 4. Let C^{\prime} and $C^{\prime \prime}$ be general members of the linear system $\left|\tilde{L}-X_{i}\right|$ which is the variable part of $\Phi_{\tilde{L}}^{*} \Lambda\left(x_{i}\right)=f_{0}^{*} \tilde{\Lambda}\left(\tilde{x}_{i}\right)$.
(i) If $\left(\tilde{L}-X_{i}\right)^{2}=2$, then C^{\prime} and $C^{\prime \prime}$ do not intersect each other on $f_{0}^{*} \Gamma$. In particular, $\mathrm{Bs}\left|\tilde{L}-X_{i}\right|=\varnothing$.
(ii) If $\left(\tilde{L}-X_{i}\right)^{2}=3$, then C^{\prime} and $C^{\prime \prime}$ intersect each other at one point on $f_{0}^{*} \Gamma$ transversely. Moreover, a base point of $\left|\tilde{L}-X_{i}\right|$, if it exists, is necessarily the point of intersection.

Proof. Case (I) Let S^{\prime} and $S^{\prime \prime}$ be general members of $\Lambda\left(x_{i}\right)$. By ($\left.\Phi_{H}^{*} S^{\prime}\right)$. $\left(\Phi_{H}^{*} S^{\prime \prime}\right)=2, \Phi_{H}^{*} S^{\prime}$ and $\Phi_{H}^{*} S^{\prime \prime}$ intersect each other transversely at \tilde{x}_{i} and another point \tilde{x}_{i}^{\prime}. Moreover, \tilde{x}_{i}^{\prime} is not on Γ because $\Gamma \cdot\left(\Phi_{H}^{*} S^{\prime}\right)=\Gamma \cdot\left(\Phi_{H}^{*} S^{\prime \prime}\right)=1$. Let Γ^{\prime} be the fiber which contains \tilde{x}_{i}^{\prime}. Since the curves which are contracted by f_{0} are components of $f_{0}^{*} \Gamma$ by Proposition 2, the morphism $\left.f_{0}\right|_{\tilde{M} \backslash f_{0}^{-1} \Gamma}: \tilde{M} \backslash f_{0}^{-1} \Gamma \rightarrow W \backslash \Gamma$ is a finite double covering. Hence C^{\prime} and $C^{-} C^{\prime \prime}$ which are variable parts of $\Phi_{\tilde{L}}^{*} S^{\prime}$ and $\Phi_{\tilde{L}}^{*} S^{\prime \prime}$, respectively, intersect each other transversely at two points on $f_{0}^{-1} \Gamma^{\prime}$. Therefore if $\left(\tilde{L}-X_{i}\right)^{2}=2$, then C^{\prime} and $C^{\prime \prime}$ do not intersect each other on $f_{0}^{*} \Gamma$. If $\left(\tilde{L}-X_{i}\right)^{2}=3$, then C^{\prime} and $C^{\prime \prime}$ intersect each other at one point on $f_{0}^{*} \Gamma$ transversely. Since \tilde{x}_{i}^{\prime} moves according to the choice of S^{\prime} and $S^{\prime \prime}$, the inverse image of \tilde{x}_{i}^{\prime} is not a base point of $f_{0}^{*} \tilde{\Lambda}\left(\tilde{x}_{i}\right)$.

Case (II) Since X_{i} is a component of $f_{0}^{*} \Gamma$, we have $X_{i} \neq G=f_{0}^{*} H_{2}$. Thus we have $\tilde{x}_{i} \notin H_{2}$. Let S^{\prime} and $S^{\prime \prime}$ be general elements of $\Lambda\left(x_{i}\right)$. Since $\left(\Phi_{H}^{*} S^{\prime}\right) \cdot H_{2}=$ $\left(\Phi_{H}^{*} S^{\prime \prime}\right) \cdot H_{2}=0$, we have $\left(\Phi_{H}^{*} S^{\prime}\right) \cap H_{2}=\left(\Phi_{H} S^{\prime \prime}\right) \cap H_{2}=\varnothing$. Thus H_{2} is not a component of $\left(\Phi_{H}^{*} S^{\prime}\right)$ nor $\left(\Phi_{H}^{*} S^{\prime \prime}\right)$. The rest of the proof is similar to that in Case (I). q.e.d.

Now we classify the fiber containing E.

Theorem 2. In both Cases (I) and (II), we have the following four types, where E^{*} is an irreducible reduced curve in (c) and (d):
(a) $f_{0}^{*} \Gamma=2 E+X_{1}+X_{2}$.
(b) $f_{0}^{*} \Gamma=2 E+2 X_{1}$.
(c) $f_{0}^{*} \Gamma=E+E^{*}+X_{1}, \quad \tilde{L} \cdot E^{*}=1, \quad E \cdot E^{*}=0$.
(d) $f_{0}^{*} \Gamma=E+E^{*}, \quad \tilde{L} \cdot E^{*}=1, \quad E \cdot E^{*}=1$.

Proof. Case (I) Since $2=\tilde{L} \cdot f_{0}^{*} H_{1}=\varepsilon+\tilde{L} \cdot E^{*}$, there are two cases (i) $\varepsilon=2$, $\tilde{L} \cdot E^{*}=0$ and (ii) $\varepsilon=1, \tilde{L} \cdot E^{*}=1$. We first treat the former case (i). If $E^{*} \neq 0$, then $\Phi_{\tilde{L}}\left(E^{*}\right)$ is a point by $\tilde{L} \cdot E^{*}=0$, a contradiction. Hence $E^{*}=0$. Since $0=f_{0}^{*} H_{1} \cdot E=$ $-2+D \cdot E$, we have $D \cdot E=2$. By Proposition $2, D \cdot E$ is equal to the number of irreducible components of D. Therefore we have (a) $D=X_{1}+X_{2}$ or (b) $D=2 X_{1}$. Let us treat the latter case (ii). If $E^{*}=E_{1}^{*}+E_{2}^{*}$, then we have $\tilde{L} \cdot E_{1}^{*}>0$ and $\tilde{L} \cdot E_{2}^{*}>0$, because any component of E^{*} is not contracted by f_{0}, a contradiction to $\tilde{L} \cdot E^{*}=1$. Thus E^{*} is irreducible and reduced. On the other hand, we have $D \cdot E=1-E^{*} \cdot E$ by $0=f_{0}^{*} H_{1} \cdot E=-1+E^{*} \cdot E+D \cdot E$. Consequently, there are two cases (c) $E \cdot E^{*}=0$, $D=X_{1}$ and (d) $E \cdot E^{*}=1, D=0$ by Proposition 2.

The proof in Case (II) is similar.
q.e.d.
5. Classification of Type (a). From this section on, we use the same notation for a divisor and its total transform, when it does not cause confusion. In this section, we assume that $f_{0}^{*} \Gamma$ is of Type (a). Then the morphism $f_{0}: \tilde{M} \rightarrow W$ is not finite. Hence we lift it to a finite morphism. We first study the inverse image of \tilde{x}_{i} by f_{0}.

Lemma 5. The variable part $\left|\tilde{L}-X_{i}\right|$ of $f_{0}^{*} \tilde{\Lambda}\left(\tilde{x}_{i}\right)$ has no base point.
Proof. The curves X_{1} and X_{2} are contracted to distinct points by f_{0}. Thus we have $X_{1} \cap X_{2}=\varnothing$, and we get $X_{1} \cdot X_{2}=0$. Therefore we have $0=f_{0}^{*} \Gamma \cdot X_{i}=$ $\left(2 E+X_{1}+X_{2}\right) \cdot X_{i}=2+X_{i}^{2}$, and hence $X_{i}^{2}=-2$. Thus we get $\left(\tilde{L}-X_{i}\right)^{2}=2$. Then the linear system $\left|\tilde{L}-X_{i}\right|$ has no base point by Lemma 4.
q.e.d.

Let $\sigma: \tilde{W} \rightarrow W$ be the blowing up at $\tilde{x}_{1}=f_{0}\left(X_{1}\right)$ and $\tilde{x}_{2}=f_{0}\left(X_{2}\right)$, and let Z_{1} and Z_{2} be the exceptional curves over \tilde{x}_{1} and \tilde{x}_{2}, respectively. We denote by $\tilde{\Gamma}$ the proper transform of Γ. The inverse image of \tilde{x}_{i} by f_{0} is X_{i}. Hence by the universality of the blowing up, there exists a morphism $f: \tilde{M} \rightarrow \tilde{W}$ such that $f_{0}=\sigma \circ f$ and $f^{*} Z_{i}=X_{i}$. Then f is a finite double covering. Since $\operatorname{Pic}(\tilde{W})=\boldsymbol{Z} H_{1} \oplus \boldsymbol{Z} H_{2} \oplus \boldsymbol{Z} Z_{1} \oplus \boldsymbol{Z} Z_{2}$, the branch locus is linearly equivalent to $2 \alpha H_{1}+2 \beta H_{2}-2 \gamma_{1} Z_{1}-2 \gamma_{2} Z_{2}$ for a unique quadruple $\left(\alpha, \beta, \gamma_{1}, \gamma_{2}\right)$ of integers.

Theorem 3. Let $\sigma: \tilde{W} \rightarrow W$ be the blowing up at the two points $\tilde{x}_{1}=f_{0}\left(X_{1}\right)$ and $\tilde{x}_{2}=f_{0}\left(X_{2}\right)$ with the exceptional curves Z_{1} and Z_{2} over \tilde{x}_{1} and \tilde{x}_{2}, respectively. Then \tilde{M} is a finite double covering of \tilde{W}. The branch locus B is linearly equivalent to $2 \alpha H_{1}+2 \beta H_{2}-2 \gamma_{1} Z_{1}-2 \gamma_{2} Z_{2}$. The integers $\alpha, \beta, \gamma_{1}, \gamma_{2}$, satisfy the following conditions:

Case (I) $\quad \alpha \geq \gamma_{i}, \quad \alpha+\beta \geq 4, \quad \gamma_{i} \geq 1, \quad \beta=\gamma_{1}+\gamma_{2}-1$.
Case (II) $\quad \alpha>2 \beta, \quad \alpha \geq 4, \quad \gamma_{i} \geq 1, \quad \beta=\gamma_{1}+\gamma_{2}-1$.
Conversely, for each quadruple ($\alpha, \beta, \gamma_{1}, \gamma_{2}$) satisfying these conditions, there exists a polarized surface (M, L) giving rise to the quadruple.

Case (I) Let $F=\alpha H_{1}+\beta H_{2}-\gamma_{1} Z_{1}-\gamma_{2} Z_{2}$. Then clearly $B \in|2 F|$. Since $f^{*} \tilde{\Gamma}=$ $f^{*} \Gamma-f^{*} Z_{1}-f^{*} Z_{2}=2 E$, the curve $\tilde{\Gamma}$ is a component of B. Then we have $B=B^{\prime}+\tilde{\Gamma}$, where B^{\prime} is a nonsingular curve. Since the branch locus B is nonsingular, we have $B^{\prime} \cap \tilde{\Gamma}=\varnothing$. Hence we have $B^{\prime} \cdot \tilde{\Gamma}=(2 F-\tilde{\Gamma}) \cdot \tilde{\Gamma}=2\left(\beta-\gamma_{1}-\gamma_{2}+1\right)=0$, and obtain $\beta=\gamma_{1}+\gamma_{2}-1$. Let \tilde{H}_{2} be the unique member of $\left|H_{2}-Z_{1}\right|$. If this is a component of B^{\prime}, then $B^{\prime} \cdot \tilde{H}_{2}=\tilde{H}_{2}^{2}=-1$, since B^{\prime} is nonsingular. Otherwise, $B^{\prime} \cdot \tilde{H}_{2} \geq 0$, so in either case we have $-1 \leq B^{\prime} \cdot \tilde{H}_{2}=\left\{(2 \alpha-1) \tilde{H}_{1}+\left(2 \gamma_{1}-1\right)\left(H_{2}-Z_{1}\right)+\left(2 \gamma_{2}-1\right)\left(H_{2}-Z_{2}\right)\right\}$. $\left(H_{2}-Z_{1}\right)=2\left(\alpha-\gamma_{1}\right)$, hence $\alpha-\gamma_{1} \geq 0$. Similarly we have $\alpha \geq \gamma_{2}$. Since $Z_{i} \cdot \tilde{\Gamma}=1$, we have $H_{2} \cap Z_{i} \neq \varnothing$. Hence Z_{i} is not a component of B^{\prime}. Thus we have $B^{\prime} \cdot Z_{i}=2 \gamma_{i}-1 \geq 0$. Consequently, we obtain $\gamma_{i} \geq 1$ since γ_{i} is an integer. By the assumption $g(M, L) \geq 3$, we have $\alpha+\beta \geq 4$, since $g(M, L)=\alpha+\beta-1$ by the virtual genus formula.

Case (II) Similarly we have $\beta=\gamma_{1}+\gamma_{2}-1$ and $\gamma_{i} \geq 1$. By $H_{1} \cdot H_{2}=1, H_{2}$ is not a component of B^{\prime}, and so we have $B^{\prime} \cdot H_{2}=2 \alpha-4 \beta-1 \geq 0$. By the assumption $g(M, L) \geq 3$, we have $\alpha \geq 4$, since $g(M, L)=\alpha-1$ by the virtual genus formula.

In the rest of this section, we prove the existence part of this theorem. We take two distinct points $\tilde{x}_{1}, \tilde{x}_{2}$ on a fiber Γ of W. Let $\sigma: \tilde{W} \rightarrow W$ be the blowing up at these points with the exceptional curves Z_{1} and Z_{2} over \tilde{x}_{1} and \tilde{x}_{2}, respectively. We denote by $\tilde{\Gamma}$ the proper transform of Γ.

Proposition 3. Let $\alpha, \beta, \gamma_{1}, \gamma_{2}$, be the integers satisfying the conditions, and let $F:=\alpha H_{1}+\beta H_{2}-\gamma_{1} Z_{1}-\gamma_{2} Z_{2}$. The linear system $|2 F|$ has a nonsingular member.

Proof. Case (I) The divisor $2 F-\tilde{\Gamma}$ is linearly equivalent to $(2 \alpha-1) H_{1}+$ $\left(2 \gamma_{1}-1\right)\left(H_{2}-Z_{1}\right)+\left(2 \gamma_{2}-1\right)\left(H_{2}-Z_{2}\right)$. Since Bs $\left|H_{1}+H_{2}-Z_{i}\right|=\varnothing$ and $\alpha \geq \gamma_{i}$, we have Bs $\left|(2 \alpha-1) H_{1}+\left(2 \gamma_{i}-1\right)\left(H_{2}-Z_{i}\right)\right|=\varnothing$. Thus we get $\mathrm{Bs}|2 F-\tilde{\Gamma}| \in\left(H_{2}-Z_{i}\right)$. It follows that $\mathrm{Bs}|2 F-\tilde{\Gamma}|=\varnothing$ by $\left(H_{2}-Z_{1}\right) \cap\left(H_{2}-Z_{2}\right)=\varnothing$. Then the general member B^{\prime} of $|2 F-\tilde{\Gamma}|$ is nonsingular. Moreover, since $B^{\prime} \cdot \tilde{\Gamma}=(2 F-\tilde{\Gamma}) \cdot \tilde{\Gamma}=0$, we get $B^{\prime} \cap \tilde{\Gamma}=\varnothing$. Thus the divisor $B=B^{\prime}+\tilde{\Gamma}$ is a nonsingular member of $|2 F|$.

Case (II) The divisor $2 F-\tilde{\Gamma}$ is linearly equivalent to $(2 \alpha-4 \beta-1) H_{1}+$ $\left(2 \gamma_{1}-1\right)\left(2 H_{1}+H_{2}-Z_{1}\right)+\left(2 \gamma_{2}-1\right)\left(2 H_{1}+H_{2}-Z_{2}\right) \cdot|2 F-\tilde{\Gamma}|$ has no base point, since $2 \alpha-4 \beta-1 \geq 0$ and $\mathrm{Bs}\left|H_{1}+H_{2}-Z_{i}\right|=\varnothing$. For a general member B^{\prime} of $|2 F-\tilde{\Gamma}|$, the divisor $B=B^{\prime}+\tilde{\Gamma}$ is a nonsingular member of $|2 F|$.
q.e.d.

Hence there is a finite double covering $f: \tilde{M} \rightarrow \tilde{W}$ branched along B, where B is a nonsingular member of $|2 F|$. Since $\tilde{\Gamma}$ is a component of the branch locus, we set $f^{*} \tilde{\Gamma}:=2 E$. By $\tilde{\Gamma}^{2}=-2$, we get $E^{2}=-1$. Hence we obtain a surface M and a morphism $\pi: \tilde{M} \rightarrow M$ by the blowing down of $E \subset \tilde{M}$.

We now show the existence of an ample divisor L.

Lemma 6. Let M_{1} be a nonsingular algebraic surface, and let L_{1} be a divisor on M_{1}. Denote by $\pi: \tilde{M}_{1} \rightarrow M_{1}$ the blowing up of M_{1} at a point p_{1} with the exceptional curve $E_{1} \subset \tilde{M}_{1}$. Suppose that L_{1} satisfies $\pi^{*} L_{1}=\tilde{L}_{1}+E_{1}$ and $\mathrm{Bs}\left|\tilde{L}_{1}\right|=\varnothing$. If any exceptional curve \tilde{C}_{1} on \tilde{M}_{1} for $\Phi_{\tilde{L}_{1}}$ satisfies $\tilde{C}_{1} \cdot E_{1}>0$, then L_{1} is ample.

Proof. Let \tilde{C}_{1} be any curve on \tilde{M}_{1} other than E_{1}. If \tilde{C}_{1} is not contracted by $\Phi_{\tilde{L}_{1}}$, then $\tilde{L}_{1} \cdot \tilde{C}_{1}>0$. On the other hand, we have $\tilde{C}_{1} \cdot E_{1} \geq 0$. If \tilde{C}_{1} is contracted by $\Phi_{\tilde{L}_{1}}$, we have $\tilde{L}_{1} \cdot \tilde{C}_{1}=0$. Let C_{1} be any curve on M_{1}. We can write $\pi^{*} C_{1}=\tilde{C}_{1}+\mu E_{1}$ with $\tilde{C}_{1} \neq E_{1}$. Hence it follows that $L_{1} \cdot C_{1}=\pi^{*} L_{1} \cdot\left(\tilde{C}_{1}+\mu E_{1}\right)=\pi^{*} L_{1} \cdot \tilde{C}_{1}=\tilde{L}_{1} \cdot \tilde{C}_{1}+$ $\tilde{C}_{1} \cdot E_{1}>0$. On the other hand, we have $\left(\tilde{L}_{1}+E_{1}\right)^{2}=\left(\tilde{L}_{1}+E_{1}\right) \cdot \tilde{L}_{1}=\tilde{L}_{1}^{2}+1>0$. Consequently, the divisor L_{1} is ample by the Nakai criterion.

Proposition 4. Let $\tilde{L}:=f^{*} H$ and $L:=\pi_{*} \tilde{L}$. Then the divisor L is ample.

Proof. Case (I) From $2 \tilde{L} \cdot E=\left(f^{*} H_{1}+f^{*} H_{2}\right) \cdot f^{*} \tilde{\Gamma}=1$, we have $\tilde{L} \cdot E=1$. Hence $\pi^{*} L=\tilde{L}+E$. By the construction of \tilde{M}, the curves which are contracted by $\Phi_{\tilde{L}}$ are components of $f^{*} Z_{i}$. The curves Z_{i} and $\tilde{\Gamma}$ intersect each other transversely by $Z_{i} \cdot \tilde{\Gamma}=1$. On the other hand, B^{\prime} intersects Z_{i} transversely because B^{\prime} is a general member of $|2 F-\tilde{\Gamma}|$. Thus $f^{*} Z_{i}$ is irreducible. Moreover, by $\tilde{\Gamma} \cdot Z_{i}=1$, we have $\left(f^{*} Z_{i}\right) \cdot E=1$. Consequently, L is ample by Lemma 6.

Case (II) By construction, the curves which are contracted by $\Phi_{\tilde{L}}$ are components of $f^{*} H_{2}$ or $f^{*} Z_{i}$. The rest of the proof is similar to that in Case (I). q.e.d.

We calculate the invariants. The canonical divisor $K_{\tilde{M}}$ of \tilde{M} is linearly equivalent to $(\alpha-2) f^{*} H_{1}+(\beta-2) f^{*} H_{2}-\left(\gamma_{1}-1\right) X_{1}-\left(\gamma_{2}-1\right) X_{2}$. Hence we have

$$
K_{M}^{2}=K_{\tilde{M}}^{2}+1=4(\alpha-2)(\beta-2)-2\left(\gamma_{1}-1\right)^{2}-2\left(\gamma_{2}-1\right)^{2}+1
$$

in Case (I), and

$$
K_{M}^{2}=K_{\tilde{M}}^{2}+1=4(\alpha-4)(\beta-2)-4(\beta-2)^{2}-2\left(\gamma_{1}-1\right)^{2}-2\left(\gamma_{2}-1\right)^{2}+1
$$

in Case (II).
Lemma 7. We have

$$
H^{i}(\tilde{W}, \mathcal{O}(-F))=0 \quad \text { for } \quad i<2
$$

Proof. By Kawamata's vanishing theorem, it is sufficient to show that $F-(1 / 2) \tilde{\Gamma}$ is nef and big. The divisor $B^{\prime} \sim 2 F-\tilde{\Gamma}$ is nef since $\left|B^{\prime}\right|$ has no base locus. Hence $F-(1 / 2) \tilde{\Gamma}$ is nef. Moreover, it is big because $(F-(1 / 2) \tilde{\Gamma})^{2}=(\beta-2)^{2}+2 \gamma_{1} \gamma_{2}-3 / 2>0$.
q.e.d.

Since the morphism f is a finite double covering branched along $B \sim 2 F$, we have

$$
H^{i}\left(\tilde{M}, \mathcal{O}_{\tilde{M}}\right)=H^{i}\left(\tilde{W}, \mathcal{O}_{\tilde{W}}\right) \oplus H^{i}\left(\tilde{W}, \mathcal{O}_{\tilde{W}}(-F)\right)
$$

Since \tilde{W} is a rational surface, we have by Lemma 7

$$
p_{g}(M)=h^{2}\left(\tilde{W}, \mathcal{O}_{\tilde{W}}(-F)\right), \quad q(M)=0 .
$$

By Lemma 7 and the Riemann-Roch theorem for algebraic surfaces, we have

$$
p_{g}(M)=\frac{1}{2}\left(F^{2}+F \cdot K_{\tilde{W}}\right)+1 .
$$

Hence we have

$$
p_{g}(M)=(\alpha-2)(\beta-2)-\frac{1}{2}\left(\gamma_{1}-1\right)^{2}-\frac{1}{2}\left(\gamma_{2}-1\right)^{2}+\alpha+\frac{1}{2} \beta-\frac{5}{2}
$$

in Case (I), and

$$
p_{g}(M)=(\alpha-4)(\beta-2)+(\beta-2)^{2}-\frac{1}{2}\left(\gamma_{1}-1\right)^{2}-\frac{1}{2}\left(\gamma_{2}-1\right)^{2}+\alpha+\frac{1}{2} \beta-\frac{5}{2}
$$

in Case (II).
6. Classification of Type (b). In this section, we treat Type (b) namely the case $f_{0}^{*} \Gamma=2 E+2 X_{1}$. We lift the morphism $f_{0}: \tilde{M} \rightarrow W$ to a finite covering. We first study the inverse image of \tilde{x}_{1} by f_{0}.

Lemma 8. The variable part $\left|\tilde{L}-X_{1}\right|$ of $f_{0}^{*} \tilde{\Lambda}\left(\tilde{x}_{1}\right)$ has a base point, which is on X_{1}. Moreover, two general members of $\left|\tilde{L}-X_{1}\right|$ intersect each other transversely at this point.

Proof. Since $0=f_{0}^{*} H_{1} \cdot X_{1}=\left(2 E+2 X_{1}\right) \cdot X_{1}$, we have $X_{1}^{2}=-1$. Thus $\left(\tilde{L}-X_{1}\right)^{2}=$ 3. Let C_{0}, C_{1} and C_{2} be general members of $\left|\tilde{L}-X_{1}\right|$. By Lemma $4, C_{i}$ and C_{j} intersect each other transversely at a point on $f_{0}^{-1} \Gamma$. Since $C_{i} \cdot E=\left(\tilde{L}-X_{1}\right) \cdot E=0$, we have $C_{i} \cap E=\varnothing$. Thus the point of intersection of C_{i} and C_{j} on $f_{0}^{-1} \Gamma$ is on X_{1}. If the point of intersection of C_{0} and C_{1} is different from that of C_{0} and C_{2}, then we have $C_{0} \cdot X_{1} \geq 2$, a contradiction to $C_{0} \cdot X_{1}=\left(\tilde{L}-X_{1}\right) \cdot X_{1}=1$.
q.e.d.

Thus the inverse image of \tilde{x}_{1} by f_{0} has an isolated part. Let y be the base point of $\left|\tilde{L}-X_{1}\right|$. Denote by $\rho: \hat{M} \rightarrow \tilde{M}$ the blowing up at y with the exceptional curve Y over y. Let \tilde{X}_{1} be the proper transform of X_{1}. By Lemma 8, the fixed part of $\rho^{*} \circ f_{0}^{*} \tilde{\Lambda}\left(\tilde{x}_{1}\right)$ is $\rho^{*} X_{1}+Y=\tilde{X}_{1}+2 Y$, and the variable part is $\left|\rho^{*} \tilde{L}-\tilde{X}_{1}-2 Y\right|$. Moreover, $\left|\rho^{*} \tilde{L}-\tilde{X}_{1}-2 Y\right|$ has no base point. Thus the inverse image of \tilde{x}_{1} by $f_{0} \circ \rho$ is the divisor $\tilde{X}_{1}+2 Y$. Let $\sigma_{1}: \tilde{W} \rightarrow W$ be the blowing up at \tilde{x}_{1}, and let Z_{1} be the exceptional curve over \tilde{x}_{1} and $\tilde{\Gamma}$ the proper transform of Γ, respectively. By the universality of the blowing up, there exists a morphism $f_{1}: \hat{M} \rightarrow \tilde{W}$ satisfying $f_{0} \circ \rho=\sigma_{1} \circ f_{1}$ and $f_{1}^{*} Z_{1}=\tilde{X}_{1}+2 Y$.

Proposition 5. The image of \tilde{X}_{1} by f_{1} is equal to the intersection z of Z_{1} and $\tilde{\Gamma}$, and the morphism $f_{1 \mid Y}: Y \rightarrow Z_{1}$ is an isomorphism.

Proof. Let q be a point on $Z_{1} \simeq \boldsymbol{P}^{1}$. Since $\operatorname{deg}\left(f_{1 \mid Y}\right)^{*} q=\operatorname{deg}\left(f_{1 \mid Y}\right)^{*}\left(-Z_{1}\right)_{\mid Z_{1}}=$ $-f_{1}^{*} Z_{1} \cdot Y=1$, we see that $f_{1 \mid Y}: Y \rightarrow Z_{1} \simeq \boldsymbol{P}^{1}$ is an isomorphism. On the other hand, since $\operatorname{deg}\left(f_{1 \mid \tilde{X}_{1}}\right)^{*} q=\operatorname{deg}\left(f_{1 \mid \tilde{X}_{1}}\right)^{*}\left(-Z_{1}\right)_{\mid Z_{1}}=-f_{1}^{*} Z_{1} \cdot \tilde{X}_{1}=0$, the image of \tilde{X}_{1} by $f_{1 \mid \tilde{X}_{\tilde{X}}}: \tilde{X}_{1} \rightarrow Z_{1} \simeq \boldsymbol{P}^{1}$ is a point. Moreover, since $f_{1}^{*} \tilde{\Gamma}=f_{1}^{*} \Gamma-f_{1}^{*} Z_{1}=2 E+\tilde{X}_{1}$, we have $f_{1}\left(\tilde{X}_{1}\right) \in \tilde{\Gamma}$. Hence $f_{1}\left(X_{1}\right) \in \tilde{\Gamma} \cap Z_{1}$.
q.e.d.

Consequently, the morphism f_{1} is not finite. Hence we carry out the same operation again. Let $\sigma_{2}: \hat{W} \rightarrow \tilde{W}$ be the blowing up at z, and let Z_{2} be the exceptional curve over z. We denote by $\hat{\Gamma}$ and \tilde{Z}_{1} the proper transforms of $\tilde{\Gamma}$ and Z_{1}, respectively. By Proposition 5, the inverse image of z is \tilde{X}_{1}. Thus by the universality of the blowing up, there exists a morphism $f: \hat{M} \rightarrow \hat{W}$ such that $f_{1}=\sigma_{2} \circ f$ and $f^{*} Z_{2}=\tilde{X}_{1}$. Then f is a finite double covering.

Let $B \in \hat{W}$ be the branch locus of f. There exists a divisor $F=\alpha H_{1}+\beta H_{2}-\gamma_{1} Z_{1}-$ $\gamma_{2} Z_{2}$ such that $B \in|2 F|$.

Theorem 4. Let $\rho: \hat{M} \rightarrow \tilde{M}$ be the blowing up at the base point y of the linear system $\left|\tilde{L}-X_{1}\right|$. Let $\rho: \tilde{W} \rightarrow W$ be the blowing up at $\tilde{x}_{1}=f_{0}\left(X_{1}\right)$, and let Z_{1} be the exceptional curve over \tilde{x}_{1}, and $\tilde{\Gamma}$ the proper transform of Γ, respectively. The intersection of $\tilde{\Gamma}$ and Z_{1} is a point z. Let $\sigma_{2}: \hat{W} \rightarrow \tilde{W}$ be the blowing up at z, and let Z_{2} be the exceptional curve over z. Then \hat{M} is a finite double covering over \hat{W}. The branch locus $B \sim 2 \alpha H_{1}+2 \beta H_{2}-2 \gamma_{1} Z_{1}-2 \gamma_{2} Z_{2}$ satisfies the following conditions, respectively:

Case (I) $\quad 2 \alpha>\beta, \quad \alpha+\beta \geq 4, \quad \beta=2 \gamma_{1}=2 \gamma_{2}-2 \geq 0$.
Case (II) $\quad \alpha>2 \beta, \quad \alpha \geq 4, \quad \beta=2 \gamma_{1}=2 \gamma_{2}-2 \geq 0$.
Conversely, for a quadruple ($\alpha, \beta, \gamma_{1}, \gamma_{2}$) satisfying these conditions, there exists a polarized surface (M, L) giving rise to the quadruple.

Case (I) Since $f^{*} \hat{\Gamma}=f^{*} \Gamma-f^{*} Z_{1}-f^{*} Z_{2}=2 E$ and $f^{*} \tilde{Z}_{1}=f^{*} Z_{1}-f^{*} Z_{2}=2 Y$, it follows that $\hat{\Gamma}$ and \tilde{Z}_{1} are components of the branch locus. We can write $B=$ $B^{\prime}+\hat{\Gamma}+\tilde{Z}_{1}$, where B^{\prime} is a nonsingular curve. Since the branch locus B is nonsingular, we have $B^{\prime} \cap \hat{\Gamma}=\varnothing$ and $B^{\prime} \cap \tilde{Z}_{1}=\varnothing$. Hence we have $0=B^{\prime} \cdot \hat{\Gamma}=\left\{(2 \alpha-1) H_{1}+2 \beta H_{2}-\right.$ $\left.2 \gamma_{1} Z_{1}-\left(2 \gamma_{2}-2\right) Z_{2}\right\} \cdot \hat{\Gamma}=2\left(\beta-\gamma_{1}-\gamma_{2}+1\right)$ and $0=B^{\prime} \cdot \tilde{Z}_{1}=\left\{(2 \alpha-1) H_{1}+2 \beta H_{2}-2 \gamma_{1} Z_{1}-\right.$ $\left.\left(2 \gamma_{2}-2\right) Z_{2}\right\} \cdot \tilde{Z}_{1}=2\left(\gamma_{1}-\gamma_{2}+1\right)$. Thus we have $\beta=\gamma_{1}+\gamma_{2}-1$ and $\gamma_{1}=\gamma_{2}-1$. On the other hand, by $\tilde{Z}_{1} \cdot Z_{2}=1, Z_{2}$ is not a component of B^{\prime}. Hence we have $\leq B^{\prime} \cdot Z_{2}=\left\{(2 \alpha-1) H_{1}+2 \beta H_{2}-2 \gamma_{1} Z_{1}-\left(2 \gamma_{2}-2\right) Z_{2}\right\} \cdot Z_{2}=2 \gamma_{2}-2 \geq 0$. Thus $\gamma_{2} \geq 1$ and $\gamma_{1} \geq 0$. Similarly, we have $\alpha>\gamma_{1}$, since $\tilde{Z}_{1} \cdot\left(H_{2}-Z_{1}\right)=1$ and since α and γ_{1} are integers. We have $g(M, L)=\alpha+\beta-1$. Hence $\alpha+\beta \geq 4$ by the assumption $g(M, L) \geq 3$.

Case (II) Similarly we have $\beta=\gamma_{1}+\gamma_{2}-1, \gamma_{1}=\gamma_{2}-1$ and $\gamma_{2} \geq 1$. Since $H_{2} \cdot \tilde{\Gamma}=1$, and since H_{2} is not a component of B^{\prime}, we have $0 \leq H_{2} \cdot B^{\prime}=2 \alpha-4 \beta-1$. Since α and β are integers, we have $\alpha>2 \beta$. By the assumption $g(M, L) \geq 3$, we have $\alpha \geq 4$.

In the rest of this section, we prove the existence part of this theorem. We take a point of W and we obtain \hat{W} by the blowing up of W at this point and an infinitely near point. We first show the existence of the branch locus B on \hat{W}.

Proposition 6. Let $F=\alpha H_{1}+\beta H_{2}-\gamma_{1} Z_{1}-\gamma_{2} Z_{2}$. Then the linear system $|2 F|$ has a nonsingular member.

Proof. Case (I) The divisor $2 F-\hat{\Gamma}-\tilde{Z}_{1}$ is linearly equivalent to $(2 \alpha-\beta-1) H_{1}+$ $\beta\left(H_{1}+2 H_{2}-Z_{1}-Z_{2}\right)$. By $2 \alpha>\beta$, it suffices to show that $\left|H_{1}+2 H_{2}-Z_{1}-Z_{2}\right|$ has no base locus.

Let us first show that $\left|H_{1}+2 H_{2}-Z_{1}-Z_{2}\right|$ has no fixed component. We take a divisor $H_{1}+2 \tilde{H}_{2}+\tilde{Z}_{1} \in\left|H_{1}+2 H_{2}-Z_{1}-Z_{2}\right|$, where $\tilde{H}_{2} \in\left|H_{2}-Z_{1}\right|$. It suffices to show that \tilde{H}_{2} and \tilde{Z}_{1} are not fixed components. By the exact sequences

$$
0 \rightarrow \mathcal{O}_{\tilde{W}}\left(H_{1}+2 H_{2}-Z_{1}\right) \rightarrow \mathcal{O}_{\tilde{W}}\left(H_{1}+2 H_{2}\right) \rightarrow \mathcal{O}_{Z_{1}}\left(H_{1}+2 H_{2}\right) \rightarrow 0
$$

and

$$
0 \rightarrow \mathcal{O}_{\hat{W}}\left(H_{1}+2 H_{2}-Z_{1}-Z_{2}\right) \rightarrow \mathcal{O}_{\hat{W}}\left(H_{1}+2 H_{2}-Z_{1}\right) \rightarrow \mathcal{O}_{Z_{2}}\left(H_{1}+2 H_{2}-Z_{1}\right) \rightarrow 0,
$$

we have $h^{0}\left(H_{1}+2 H_{2}-Z_{1}-Z_{2}\right) \geq h^{0}\left(H_{1}+2 H_{2}\right)-2=4$. On the other hand, by the exact sequence

$$
0 \rightarrow \mathcal{O}_{\hat{W}}\left(\tilde{H}_{2}+H_{1}\right) \rightarrow \mathcal{O}_{\hat{W}}\left(2 \tilde{H}_{2}+H_{1}\right) \rightarrow \mathcal{O}_{\tilde{H}_{2}}\left(2 \tilde{H}_{2}+H_{1}\right) \rightarrow 0
$$

and $H^{1}\left(H_{1}+H_{2}-Z_{1}\right)=H^{1}\left(K_{\tilde{W}}+3 H_{1}+3 H_{2}-2 Z_{1}\right)=0$, we have $h^{0}\left(\left(H_{1}+2 H_{2}-Z_{1}-\right.\right.$ $\left.\left.Z_{2}\right)-\tilde{Z}_{1}\right)=3$. Hence \tilde{Z}_{1} is not a flxed component. Similarly \tilde{H}_{2} is not a fixed component.

If there exists a base point of the system $\left|H_{1}+2 H_{2}-Z_{1}-Z_{2}\right|$, it is either on \tilde{H}_{2} or on \tilde{Z}_{1}. However, the general members do not intersect \tilde{H}_{2} and \tilde{Z}_{1}, since $\left(H_{1}+2 H_{2}-Z_{1}-Z_{2}\right) \cdot\left(H_{2}-Z_{1}\right)$ and $\left(H_{1}+2 H_{2}-Z_{1}-Z_{2}\right) \cdot \tilde{Z}_{1}$ are easily calculated to be zero. Hence the linear system $\left|H_{1}+2 H_{2}-Z_{1}-Z_{2}\right|$ has no base point. Consequently, $B=B^{\prime}+\hat{\Gamma}+\tilde{Z}_{1}$ is a nonsingular member of $|2 F|$ for a general member B^{\prime} of $\left|H_{1}+2 H_{2}-Z_{1}-Z_{2}\right|$.

Case (II) The divisor $2 F-\hat{\Gamma}-\tilde{Z}_{1}$ is linearly equivalent to $(2 \alpha-4 \beta-1) H_{1}+$ $\beta\left(4 H_{1}+2 H_{2}-Z_{1}-Z_{2}\right)$. Since $\alpha>2 \beta$ and $\hat{\Gamma}+H_{2}+\left(3 H_{1}+H_{2}\right) \in\left|4 H_{1}+2 H_{2}-Z_{1}-Z_{2}\right|$, we can show that $B=B^{\prime}+\hat{\Gamma}+\tilde{Z}_{1}$ is a nonsingular element of $|2 F|$, as in Case (I).
q.e.d.

By this proposition, there exists a finite double covering $f: \hat{M} \rightarrow \hat{W}$ branched along B. Moreover, we can set $f^{*} \hat{\Gamma}=2 E$ and $f^{*} \tilde{Z}_{1}=2 Y$. Since $\hat{\Gamma}^{2}=-2$ and $\tilde{Z}_{1}^{2}=-2$, we have $E^{2}=-1$ and $Y^{2}=-1$. By $\hat{\Gamma} \cdot \tilde{Z}_{1}=0$, we have $E \cdot Y=0$. We set $f^{*} Z_{2}=\tilde{X}_{1}$. By blowing down Y and E successively, we obtain a surface M and morphisms $\rho: \hat{M} \rightarrow \tilde{M}$ and $\pi: \tilde{M} \rightarrow M$. Set $\rho_{*} \tilde{X}_{1}=X_{1}$.

We now show the existence of an ample divisor L on M. Since $\left(\sigma_{1} \circ \sigma_{2} \circ f\right)(Y)=$ $\left\{\tilde{x}_{1}\right\}$, there exists a morphism $f_{0}: \tilde{M} \rightarrow W$ such that $f_{0} \circ \rho=\sigma_{1} \circ \sigma_{2} \circ f$.

Proposition 7. We choose a divisor $\tilde{L} \sim f_{0}^{*} H$ and set $L \sim \pi_{*} \tilde{L}$. Then the divisor L is ample.

Proof. Case (I) In a way similar to that in the case of Type (a), we have $\pi^{*} L=\tilde{L}+E$. By construction, the curve contracted by $\Phi_{\tilde{L}}$ is a component of X_{1}. Since $2 \tilde{X}_{1} \cdot Y=f^{*} Z_{2} \cdot f^{*} \tilde{Z}_{1}=2$, we have $\tilde{X}_{1} \cdot Y=1$. Hence $\rho^{*} X_{1}=\tilde{X}_{1}+Y$. On the other hand, since B^{\prime} is a general member of $\left|(2 \alpha-1) H_{1}+2 \beta H_{2}-\beta Z_{1}-\beta Z_{2}\right|$ and $Z_{2} \cdot \hat{\Gamma}=$ $Z_{2} \cdot \tilde{Z}_{1}=1$, we obtain that Z_{2} intersects $B^{\prime}, \hat{\Gamma}$ and \tilde{Z}_{1} transversely, and that \tilde{X}_{1} is irreducible and reduced. Hence X_{1} is irreducible and reduced. Since $2 \tilde{X}_{1} \cdot E=f^{*} Z_{2}$. $f^{*} \hat{\Gamma}=2 Z_{2} \cdot\left(H_{1}-Z_{1}-Z_{2}\right)=2$ and $4 Y \cdot E=f^{*} \tilde{Z}_{1} \cdot f^{*} \hat{\Gamma}=2\left(Z_{1}-Z_{2}\right) \cdot\left(H_{1}-Z_{1}-Z_{2}\right)=0$, we have $X_{1} \cdot E=\left(\tilde{X}_{1}+Y\right) \cdot E>0$. Thus by Lemma 6 , the divisor L is ample.

Case (II) By construction, the curves contracted by $\Phi_{\tilde{L}}$ are components of $f^{*} H_{2}$ or $f^{*} Z_{1}$. The rest of the proof is similar to that in Case (I). q.e.d.

We can calculate the invariants.
Case (I) $\quad K_{M}^{2}=4(\alpha-2)(\beta-2)-4(\beta-2)^{2}-\beta^{2}+6 \beta-8$,

$$
\begin{aligned}
& p_{g}(M)=(\alpha-2)(\beta-2)+\alpha-\frac{1}{4} \beta^{2}+2 \beta-7, \\
& q(M)=0 .
\end{aligned}
$$

Case (II) $K_{M}^{2}=4(\alpha-4)(\beta-2)-4(\beta-2)^{2}-\beta^{2}+6 \beta-8$,

$$
\begin{aligned}
& p_{g}(M)=(\alpha-4)(\beta-2)-(\beta-2)^{2}+\alpha-\frac{1}{4} \beta^{2}+2 \beta-7, \\
& q(M)=0 .
\end{aligned}
$$

7. Classification of Type (c). In this section, we treat Type (c), namely the case $f_{0}^{*} \Gamma=E+E^{*}+X_{1}$. We divide surfaces of this type to two subtypes. We have $X_{1} \cdot E^{*}+C_{1} \cdot E^{*}=1$ for a general element $X_{1}+C_{1}$ of $f_{0}^{*} \tilde{\Lambda}\left(\tilde{x}_{1}\right)$, because $\tilde{L} \cdot E^{*}=1$. Since X_{1} is not a component of E^{*}, we have $X_{1} \cdot E^{*} \geq 0$. On the other hand, since $\left|\tilde{L}-X_{1}\right|$ has no fixed component, we have $C_{1} \cdot E^{*} \geq 0$. Consequently, there are the following two subtypes.
(c-1) $\quad X_{1} \cdot E^{*}=1, \quad C_{1} \cdot E^{*}=0$.
(c-2) $\quad X_{1} \cdot E^{*}=0, \quad C_{1} \cdot E^{*}=1$.
7.1. Classification of Subtype (c-1). In this subsection, we treat Subtype (c-1) with $X_{1} \cdot E^{*}=1, C_{1} \cdot E^{*}=0$. The morphism $f_{0}: \tilde{M} \rightarrow W$ is not a finite morphism. We lift it to a finite double covering. Let $\rho: \tilde{W} \rightarrow W$ be the blowing up at \tilde{x}_{1}, and let Z_{1} be the exceptional curve over \tilde{x}_{1} and $\tilde{\Gamma}$ the proper transform of Γ, respectively. There exists a double covering $f: \tilde{M} \rightarrow \tilde{W}$ such that $f_{0}=\rho \circ f$ and $f^{*} Z_{1}=X_{1}$ by the universality of the blowing up. Moreover, f is a finite double covering.

Theorem 5. Let $\rho: \tilde{W} \rightarrow W$ be the blowing up at $\tilde{x}_{1}=f_{0}\left(X_{1}\right)$, and let Z_{1} be the exceptional curve over \tilde{x}_{1}. Then \tilde{M} is a finite double covering of \tilde{W} branched along $B \sim 2 \alpha H_{1}+2 \beta H_{2}-2 \beta Z_{1}$, where the coefficients satisfy the following conditions, respectively:

Case (I) $\quad \alpha \geq \beta, \quad \beta \geq 1, \quad \alpha+\beta \geq 4$.

Case (II) $\alpha \geq 2 \beta, \quad \beta \geq 1, \quad \alpha \geq 4$.
Conversely, for any pair (α, β) satisfying the conditions, there exists a polarized surface (M, L) giving rise to the pair.

Case (I) Let B be the branch locus and let $F=\alpha H_{1}+\beta H_{2}-\gamma_{1} Z_{1}$ be the divisor with $B \in|2 F|$. Since $f^{*} \tilde{\Gamma}=E+E^{*}$ and $E \cdot E^{*}=0, f$ is not branched along $\tilde{\Gamma}$. Hence we have $B \cdot \tilde{\Gamma}=2 \beta-2 \gamma_{1}=0 . \tilde{H}_{2}^{2}=-1$ for the unique member \tilde{H}_{2} of $\left|H_{2}-Z_{2}\right|$. Hence \tilde{H}_{2} is not a component of B and $0 \leq B \cdot\left(H_{2}-Z_{1}\right)=\left(2 \alpha H_{1}+2 \beta H_{2}-2 \beta Z_{1}\right) \cdot\left(H_{2}-Z_{1}\right)=$ $2 \alpha-2 \beta$. Since $\tilde{\Gamma} \cdot Z_{1}=1, Z_{1}$ is not a component of B. Thus we have $B \cdot Z_{1} \geq 0$. If $B \cdot Z_{1}=0$, then we have $B \cap Z_{1}=\varnothing$. Thus f is not branched along Z_{1}. Consequently, $f^{*} Z_{1}$ is a union of two curves, a contradiction to the fact that $X_{1}=f^{*} Z_{1}$ is irreducible and reduced. Hence $B \cdot Z_{1} \geq 0$, and so we have $B \cdot Z_{1}=2 \gamma_{1}>0$. Moreover, by the assumption $g(M, L) \geq 3$, we have $\alpha+\beta \geq 4$.

Case (II) Similarly we have $\gamma_{1}>0$ and $\beta=\gamma_{1}$. Since $\tilde{\Gamma} \cdot H_{2}=1, H_{2}$ is not a component of B. Then we have $0 \leq H_{2} \cdot B=2 \alpha-4 \beta$. It follows that $\alpha \geq 4$ by the assumption $g(M, L) \geq 3$.

In the rest of this section, we prove the existence part of this theorem. We obtain \tilde{W} by the blowing up of W at an arbitrary point in Case (I) and an arbitrary point not on H_{2} in Case (II). We first show the existence of the branch locus $B \in|2 F|$.

Proposition 8. Let $F:=\alpha H_{1}+\beta H_{2}-\beta Z_{1}$. Then the linear system $|2 F|$ has a nonsingular member.

Proof. Case (I) We have $2 F \sim(2 \alpha-2 \beta) H_{1}+2 \beta\left(H_{1}+H_{2}-Z_{1}\right)$. Since $\alpha \geq \beta$ and Bs $\left|H_{1}+H_{2}-Z_{1}\right|=\varnothing,|2 F|$ has no base point. Hence the general member B of $|2 F|$ is nonsingular.

Case (II) We have $2 F \sim(2 \alpha-4 \beta) H_{1}+2 \beta\left(2 H_{1}+H_{2}-Z_{1}\right)$. Thus $|2 F|$ has no base point, because $\alpha \geq 2 \beta$ and $\mathrm{Bs}\left|2 H_{1}+H_{2}-Z_{1}\right|=\varnothing$.
q.e.d.

Hence there is a finite double covering $f: \tilde{M} \rightarrow \tilde{W}$ branched along B. Since $B \cdot \tilde{\Gamma}=0$, we have $B \cap \tilde{\Gamma}=\varnothing$. Hence $f^{*} \tilde{\Gamma}=E+E^{*}$ and $E \cdot E^{*}=0$. Moreover, we have $E^{2}=E^{* 2}=-1$ by $\left(f^{*} \tilde{\Gamma}\right)^{2}=-2$. Consequently, we obtain a surface M and a morphism $\pi: \tilde{M} \rightarrow M$ by blowing down $E \subset \tilde{M}$.

We can show the existence of an ample divisor L on M similarly as in Section 5. Moreover, we have

Case (I) $\quad K_{M}^{2}=4(\alpha-2)(\beta-2)-2(\beta-1)^{2}+1$,

$$
\begin{aligned}
& p_{g}(M)=(\alpha-2)(\beta-2)-\frac{1}{2}(\beta-1)^{2}+\alpha+\beta-\frac{5}{2} \\
& q(M)=0
\end{aligned}
$$

Case (II) $\quad K_{M}^{2}=4(\alpha-4)(\beta-2)-4(\beta-2)^{2}-2(\beta-1)^{2}+1$,

$$
p_{g}(M)=(\alpha-4)(\beta-2)-(\beta-2)^{2}-\frac{1}{2}(\beta-1)^{2}+\alpha-\frac{5}{2}
$$

$$
q(M)=0 .
$$

7.2. Classification of Subtype (c-2). In this subsection, we treat Subtype (c-2), namely the case $X_{1} \cdot E^{*}=0, C_{1} \cdot E^{*}=1$. We now lift $f_{0}: \tilde{M} \rightarrow W$ to a finite double covering $f: \hat{M} \rightarrow \tilde{W}$.

Lemma 9. The variable part $\left|\tilde{L}-X_{1}\right|$ of the linear system $f_{0}^{*} \tilde{\Lambda}\left(\tilde{x}_{1}\right)$ has one base paint on E^{*}. Moreover, two general members of $\left|\tilde{L}-X_{1}\right|$ intersect each other at this point transversely.

Proof. Since $0=f_{0}^{*} H_{1} \cdot X_{1}=E \cdot X_{1}+E^{*} \cdot X_{1}+X_{1}^{2}$, we have $X_{1}^{2}=-1$, and so $\left(\tilde{L}-X_{1}\right)^{2}=3$. By Lemma 4, general members C^{\prime} and $C^{\prime \prime}$ of $\left|\tilde{L}-X_{1}\right|$ intersect each other transversely at only one point on $f_{0}^{-1} \Gamma$. Because $f_{0 \mid E^{*}}: E^{*} \rightarrow \Gamma$ is an isomorphism, we consider $y \in E^{*}$ corresponding to \tilde{x}_{1}. Obviously any member of $f_{0}^{*} \tilde{\Lambda}\left(\tilde{x}_{1}\right)$ contains y. Thus $y \in \operatorname{Supp}\left(X_{1}+C^{\prime}\right)$. Hence we have $y \in C^{\prime}$, since $X_{1} \cap E^{*}=\varnothing$. Therefore $y \in \mathrm{Bs}\left|C^{\prime}\right|=\mathrm{Bs}\left|\tilde{L}-X_{1}\right|$.
q.e.d.

Let $\rho: \hat{M} \rightarrow \tilde{M}$ be the blowing up at the base point y of $\left|\tilde{L}-X_{1}\right|$, and let Y be the exceptional curve over y. We denote by \tilde{E}^{*} the proper transform of E^{*}. Let $\sigma: \tilde{W} \rightarrow W$ be the blowing up at \tilde{x}_{1}, and let Z_{1} be the exceptional curve over \tilde{x}_{1}. We denote by $\tilde{\Gamma}$ the proper transform of Γ. By an argument similar to that for Type (b), we get a morphism $f: \hat{M} \rightarrow \tilde{W}$ such that $f_{0} \circ \rho=\sigma \circ f$ and $f^{*} Z_{1}=X_{1}+Y$. Let q be a point of $Z_{1} \simeq \boldsymbol{P}^{1}$. We have $\operatorname{deg}\left(f_{\mid X_{1}}\right)^{*} q=\operatorname{deg}\left(f_{\mid X_{1}}\right)^{*}\left(-Z_{1}\right)_{\mid Z_{1}}=-f^{*} Z_{1} \cdot X_{1}=1$. Thus $f_{\mid X_{1}}: X_{1} \rightarrow$ Z_{1} is surjective. Similarly, $f_{\mid Y}: Y \rightarrow Z_{1}$ is surjective. Thus f is a finite double covering.

We study the branch locus $B \in|2 F|$, where $F=\alpha H_{1}+\beta H_{2}-\gamma_{1} Z_{1}$. Since $f^{*} \tilde{\Gamma}=$ $E+E^{*}$ and $E \cdot E^{*}=0, f$ is not branched along $\tilde{\Gamma}$, and we have $B \cdot \tilde{\Gamma}=2 \beta-2 \gamma_{1}=0$. Moreover, since $f^{*} Z_{1}=X_{1}+Y$ and $X_{1} \cdot Y=0, f$ is not branched along Z_{1}, either. Hence we have $B \cdot Z_{1}=2 \gamma_{1}=0$. By the assumption $g(M, L) \geq 3$, we get $\alpha \geq 4$.

Theorem 6. Let $\rho: \hat{M} \rightarrow \tilde{M}$ be the blowing up at the base point y of the linear system $\left|\tilde{L}-X_{1}\right|$, which is the variable part of $f_{0}^{*} \tilde{\Lambda}\left(\tilde{x}_{1}\right)$, and let $\rho: \tilde{W} \rightarrow W$ be the blowing up at $\tilde{x}_{1}=f\left(X_{1}\right)$. Then \hat{M} is a finite double covering of \tilde{W} branched along $B \sim \alpha H_{1}$ with an integer $\alpha \geq 4$. Conversely, for each integer $\alpha \geq 4$, there exist a polarized surface giving rise to the α.

The existence of such a surface is proved in a way similar to that in the previous sections. We can also calculate the invariants:

Case (I) $\quad K_{M}^{2}=-4(\alpha-2)$.
Case (II) $K_{M}^{2}=-4(\alpha-4)$.
General fibers of $\Phi_{H_{1}}: W \rightarrow \boldsymbol{P}^{1}$ do not intersect the branch locus $B \sim 2 \alpha H_{1}$. Thus the general fiber of $\Phi_{f^{*} H_{1}}: \hat{M} \rightarrow \boldsymbol{P}^{1}$ consists of two components, which are isomorphic to \boldsymbol{P}^{1}. We consider the Stein factorization

$$
\Phi_{f^{*} H_{1}}: \hat{M} \xrightarrow{g} C \xrightarrow{h} P^{1} .
$$

Since any fiber of $g: \hat{M} \rightarrow C$ is equal to a connected component of the fiber of $\Phi_{f^{*} H_{1}}$, the general fiber of g is \boldsymbol{P}^{1}. Hence \tilde{M} is a ruled surface, and we get

$$
p_{g}(M)=0 .
$$

Since the branch locus B is linearly equivalent to $2 \alpha H_{1}, h: C \rightarrow \boldsymbol{P}^{1}$ is a finite double covering branched at 2α distinct points. Then by the Hurwitz formula, we have $g(C)=\alpha-1$, and

$$
q(M)=\alpha-1
$$

8. Classification of Type (d). In this section, we treat Type (d), namely the case $f_{0}^{*} \Gamma=E+E^{*}$. The morphism $f_{0}: \tilde{M} \rightarrow W$ is a finite double covering. Hence we study the branch locus $B \in|2 F|$, where $F=\alpha H_{1}+\beta H_{2}$. Since $f_{0}^{*} \Gamma=E+E^{*}$ and $E \cdot E^{*}=1$, B and Γ intersect each other at $f_{0}\left(E \cap E^{*}\right)$ with multiplicity 2 . Thus we have $2=B \cdot \Gamma=2 \beta$, and so we have $\beta=1$. By the assumption $g(M, L) \geq 3$, we have $\alpha \geq 3+e$, where $e=0$ in Case (I) while $e=1$ in Case (II). Thus we have the following theorem:

Theorem 7. The surface \tilde{M} is a finite double covering of W branched along $B \sim 2 \alpha H_{1}+2 H_{2}$ where $\alpha \geq 3+e$. Conversely, for α and e satisfying $\alpha \geq 3+e$, there exist such surfaces giving rise to α and e.

The existence of such a surface is checked as follows: A general member B of $|2 F|$ is non-singular and irreducible. By $B \cdot H_{1}=2$, we see that $\left(\Phi_{H_{1}}\right)_{\mid B}: B \rightarrow \boldsymbol{P}^{1}$ is a finite double covering. Since B is irreducible, $\left(\Phi_{H_{1}}\right)_{\mid B}$ has branch points. Let Γ be a fiber of $\Phi_{H_{1}}$ which contains one of the branch points. There exists a finite double covering $f: \tilde{M} \rightarrow W$ such that $f^{*} \Gamma=E+E^{*}$ and $E \cdot E^{*}=1$. Moreover, we have $E^{2}=-1$. Thus we obtain a surface M by blowing down $E \subset \tilde{M}$. It is easy to see that there exists an ample divisor L of M satisfying the conditions. Moreover, we have

Case (I) $\quad K_{M}^{2}=-4 \alpha+9, \quad p_{g}(M)=0, \quad q(M)=0$.
Case (II) $\quad K_{M}^{2}=-4 \alpha+13, \quad p_{g}(M)=0, \quad q(M)=0$.
The general fiber of $f_{0}: \tilde{M} \rightarrow W \rightarrow \boldsymbol{P}^{1}$ is a double covering of \boldsymbol{P}^{1} branched at two points, thus is \boldsymbol{P}^{1}. Therefore \tilde{M} is a rational surface.

References

[1] T. Fuilta, Defining equations for certain types of polarized varieties, in: Complex Analysis and Algebraic Geometry (W. Baily and T. Shioda, eds.), Iwanami Shoten, Publishers, Tokyo and Cambridge Univ. Press, 1977, 165-173.
[2] T. Fuitit, On hyperelliptic polarized varieties, Tôhoku Math. J. 35 (1983), 1-44.
[3] T. Fuilta, On the structure of polarized manifolds with total deficiency one, III, J. Math. Soc. Japan 36 (1984), 75-89.
[4] T. Fuilta, Polarized manifolds of degree three and Δ-genus two, J. Math. Soc. Japan 41 (1989), 311-331.
[5] T. Fusita, Classification Theories of Polarized Varieties, London Math. Soc. Lec. Notes 155,

Cambridge Univ. Press, 1990.
[6] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 20, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
[7] E. Horikawa, On deformations of quintic surfaces, Invent. Math 31, (1975), 43-85.
Mathematical Institute
Faculty of Science
Tohoku University
Sendai, 980
Japan

