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EXISTENCE AND UNIQUENESS OF SOLUTIONS
FOR THIRD ORDER NONLINEAR BOUNDARY

VALUE PROBLEMS
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Abstract. In this paper, we study the existence and uniqueness of the solutions of
the general boundary value problems for the third order nonlinear ordinary differential
equations. Our results improve some of the known results; moreover, these are very
convenient for applications.

1. Introduction. Since 1970, Jackson and several other authors [1]-[12] have
made a substantial study for the existence and uniqueness of the solutions for the
two-point boundary value problems for third order nonlinear ordinary differential
equations.

We discuss in the present paper the existence and uniqueness of the solutions of
some general two-point boundary value problems for third order nonlinear ordinary
differential equations by making use of third order differential inequalities and by the
method of constructing upper and lower solutions.

We consider the third order nonlinear differential equation

(1) /" = /(*,*/,/)

together with the boundary conditions

(2) ay'(ϋ)-by"(β) = A, y ( l ) = B, /(1) = C

or

(3) XO) = A , /(0) = B, α/(l) + &/(!) = C,

where A, B, C are constants, a, b are nonnegative constants, and
In Section 2, we state some preliminaries needed in the sequel.
We investigate, in Section 3, the existence and uniqueness of the solutions for the

third order nonlinear boundary value problems (1), (2) and (1), (3).
Finally, we give in Section 4 some examples to illustrate the applications of the

main results of this paper.
As far as the author knows, the technique of constructing upper and lower solutions
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to study the existence and uniqueness of the solutions for such general third order

nonlinear boundary value problems seems to be quite new. The results obtained in this
way are convenient for applications, and some known results obtained in [2]-[4],

[9]-[ll] are improved.

2. Preliminaries. In this section, we state some preliminaries which will be needed

in the sequel.
Innes and Jackson [4], and Howes [2] have given two kinds of Nagumo condition

for the third order differential equation (1).
We say that /(x, y, z, w) or the equation (1) satisfies the Nagumo condition on

[0, 1] x R3 (R is the real line) if one of the following two conditions holds:

(A) For any M>0, there exists h = h(M)>0 such that for (x, y, z, w) e [0, 1] x

where 0</?^1, #^0, /? + 2^^3, and for any

Φr(s) = max{ 1 , sr} (0 < s < oo) .

(B) For(x,j;,z)e[0, l]x^2,

/(x, y, z, w) = O(\ w\2) as | w | - » o o .

The Nagumo condition for the equation (1) on [0, 1] x R3 ensures that its solutions

either extend to [0, 1] or become unbounded on their maximal intervals of existence.

As Jackson and Schrader defined in [6], we call ώ(x) an upper solution of the
equation (1) on [0, 1] if ώ(»eC3[0, 1] and for

and we call ω(x) a lower solution of the equation (1) on [0, 1] if ω(.x)eC3[0, 1] and
for

LEMMA 1 (cf. [3]). Assume that f(x, y, z, w) is continuous on [0, 1] x R3 and that
solutions of the equation (1) extend to [0, 1] or become unbounded. Suppose {yn} is a

sequence of solutions of y'" = fn(x, y, y', y") which together with its derivative sequence
{y'n} is uniformly bounded on [0, 1], where fn are continuous functions on [0, I]x7?3

which converge uniformly to f on compact subsets of[Q, 1] x ̂ 3. Then there is a solution
y of the equation (1) on [0, 1] and a subsequence of {yn} which converges uniformly to y

on [0, 1].

LEMMA 2. Assume that f(x, y, z, w) is nondecreasing in y and continuous on

[0, 1] x R3 and satisfies the Nagumo condition on [0, 1] x R3. If there exist an upper
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solution ω(x) and a lower solution ω(x) of the equation (1) on [0, 1] such that

ώ(x) ^ ω(x) , ω'(x) < ώ'(x)

for 0 ̂  x < 1 , and

aω'(0) - bω"(ϋ) ^A^ aώ'(0) - bώ"(ΰ) ,

then the boundary value problem (1), (2) has a solution.

PROOF. For n= 1, 2, . . . , and (x, >>, z, w)e [0, 1] x Λ3, we define

f(x,y,z,w)9 | W | < H ,

.f(x,y,z, n sgnw), | w | > w ,

j

gn(x, y, z, w), q

z < ω'(x),

C/«\- -7 ./ 7 \ " X 7 X ' -, _ ; / χ ?

l+z-ω'O)

hn(x9 ώ(x)9 z, w), y < CU(Λ:) ,

hn(x9 y, z, w), ώ

z > ω'

fn(x9y,z9w)=

hn(x9 ω(x)9 z, w),

Then for each natural number n9 fn(x9 y, z, w) is continuous and bounded on [0, 1] x R3.
It is easily seen that Green's function of the boundary value problem

s

G(x,s) =

Thus, on applying Schauder's fixed point theorem to the operator

G(x, s)fn(s, y(s\ y'(s\ y"

it follows that the boundary value problem for the equation



548 W. ZHAO

y'"=f«(χ,y,y',y")
satisfying the conditions (2) has a solution y=yn(χ).

Let

L = max< max |ώ"(jc)|, max \ω"(x)\> .
(O^x^l O^x^l J

We now prove that for n > L,

(4) ω'(x) </„(*) <ώ'(x) (0<x<l).

Suppose to the contrary that (4) is not valid (without loss of generality, we may suppose
the right side inequality does not hold). It then follows from X,(l)<ώ'(l) (n= 1, 2, . . .)

that there exists n0>L such that the positive maximum value of the function y'no(x) — ώ'(x)
on [0, 1] must be attained at some x0e[Q, 1). If ;c0/0, then it is evident that

(5) X,'0(*0)-ώ"(x0) = 0

and

(6) X;o(*o)-

If Jt0 = 0, then, by

we see that 6^0, and hence y^^o^αJ'X ̂ o)- Then again, because x0 = 0 is a maximum

point of yf

no(x) — ώ'(x) on [0, 1], we know that (5) holds, and so does (6).

On the other hand, by y'no(x0) > CO'(XQ) and the monotonicity of f(x, y, z, w) in y,
we have

This contradicts (6), and (4) is established. It then follows from

(«=1,2, ...) that for n>L,

ώ(x) ^yn(x) ^ ω(x) (0 < x ̂  1) ,

and hence for n > L, ; = jμπ(X) is a solution of the boundary value problem for the equation

satisfying the conditions (2). The proof of Lemma 2 now follows as an application of
Lemma 1.

3. Main Results. In this section, we discuss the existence and uniqueness of the

solutions for the third order nonlinear boundary value problems (1), (2) and (1), (3).

For this, we need the following hypotheses:
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H!. The function f(x, y, z, w) and its first order partial derivatives with respect
to y, z and w are continuous on [0, I]x7? 3, and /(x, y, z, w) satisfies the Nagumo
condition on [0, 1] x R3.

H2. For 0<*<1, f(x, 0, 0, 0) = 0.

THEOREM 1. Assume that H^ andH2 hold. If there exist μ, σ>0 such that

0</y(x, y, 2, w)<μ , /z(x, 3;, z, w)^0 , /w(x, y, z, w)< -σ

/or (x, y, z, w) e [0, 1] x R3, and

(7) ^--<0,
4 27

ί/ze boundary value problem (1), (2) Aαί α unique solution.

PROOF. We prove first the existence. Let

where

(8) A =

φ — arccos I — -— 1 1 .
\2σ3

It then follows from (7) that λ < 0 satisfies

(9) ^3 + σ A2_μ = Q

Thus, by the assumptions and

ώ(x) < 0 < ω(x) , G)'(Λ:) < 0 < ώ'(x) , ώ"(x) ^ 0 < cor/

for 0<Λ:<1, we get

/(x, ω(x), ω'(x), φ"(x)) ^ μω(x) — σω"(x) = φ'"(

for O<Λ:^ 1. Moreover,

aω'(ϋ) - bω"(ϋ) ^A^ aώ'(0) - bώ"(fy ,
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Therefore, the existence of the solutions for the boundary value problem (1), (2) follows
by Lemma 2.

Now, we prove the uniqueness. If the assertion were false, then there would exist
two different solutions y=y\(x) and y=y2(x) fc>r the boundary value problem (1), (2).
Lety0(x)=y2(x)-y1(x). Then it will be seen by (2) that y'0(x)φO for 0^x< 1. Without
loss of generality, we may assume that yΌ(xo)<0 at some x0e[Q, 1).

It is not difficult to show that for any constant c, y = cy0(x) is a solution of the
boundary value problem

/" = N(x)y" + P(x)y' + Q(x)y ,

0°) */(O)-AJ/'(O)=O, χi)=o,
where

N(χ) = /w(χ, y,(χ)9 y\ (x),= f * /w(χ,
Jo

= ί ' f,(χ,
Jo

Let

where λ<Q is as in (8). Then, the set E={c cy'0(x)>ω'(x), O^x^l} is nonempty and
bounded from above. Let c0 = sup E. Then

(Π)

Evidently, c0^E, and hence there exists X j e [0, 1) such that

We maintain *!>(). In fact, if x1=0, then, by (11),

and so

Φo

This contradicts (10), and hence x1e(09 1). Therefore,

^o/ό(^ι) = ω//(^1).

Moreover, ω(l)>c0j0(l) and (11) imply
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c0yQ(x)<ω(x)

Then again, by the assumptions and (9),

ω'"(x) > N(x)ω'"(x) + P(x)ω'(x) + Q(x)ω(x) (0 < x < 1 ) ,

and so

Therefore, there exists <5e(0, 1 — x^ such that for x1 <x^x1 + δ,

This contradicts (11). Theorem 1 is thus proved.

THEOREM 2. Assume that H1 and H2 hold. If there exist μ, σ>0 swc/z that

0</y(χ,j;,z,w)<μ, fz(χ,y,z,w)^σ, /w(χ, y, z, w) < 0

for (x, y, z, w) e [0, 1] x R3, and

(12) ^-~<0,
4 27

exists a unique solution for the boundary value problem (1), (2).

PROOF. Let

where

2 v 3σ Λp =

 v cos - , ί/ — arccos, .
3 3 2σ2

Then we can show by (12) that p<0 satisfies

p3 — σp — μ = 0 .

The rest of the proof of Theorem 2 is similar to that of Theorem 1 .

THEOREM 3. Assume that H1 andH2 hold. If there exist μ, σ>0 such that

-μ<fy(x,y,z,w)^Q, fz(x9 y, z, w) ̂  0 , fw(x,y,z9w)2*σ

for (x, y, z, w)e[0, 1] x R3, and μ/4 — σ3/27<0, ίAβw ίAβ boundary value problem (1), (3)
/2<zy a unique solution.
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PROOF. Let /= 1 —x, and let

dy d2y\ ,Λ . dy d2

y
dt'dt1)' V dt' dt2

Then the boundary value problem (1), (3) is equivalent to the boundary value problem

dy d2y^
(13) —f =

^ i ^
(14)

dt dt ί = 0 dt

In addition, the function F(t, y, z, w) satisfies all the conditions of Theorem 1 on

[0, 1] x R3. Thus, there exists a unique solution y=y(t) for the boundary value problem
(13), (14). Therefore, the boundary value problem (1), (3) has a unique solution

y = y(\—x), and the theorem is proved.

By reasoning similar to the proof of Theorem 3 and by Theorem 2, we can deduce

the following:

THEOREM 4. Assume that H1 and H2 hold. If there exist μ, σ>0 such that

-μ<fy(x, y, z, w)^0 , /z(x, y, z, w)^σ , /w(x, y, z, w)^0

/6>r (x, j;, z, w) e [0, I]x7?3, and μ 2/4 — σ 3/27 < 0, r/z^« ί/z^ boundary value problem (1),

(3) //fls α unique solution.

4. Examples. The following examples with certain generality illustrate the

applications of the main results of this paper.

EXAMPLE 1 . Consider the equation

(15) ///

where m, n and p are nonnegative integers and Ff(x) (z=l,2) are nonnegative and

continuous on [0, 1]. Let

Then, /(x, 3;, z, w) and its first order partial derivatives with respect to y, z and w are

continuous on [0, 1] x R3, and for (x, y, z, w)e [0, 1] x R3,

Q<fy(x,y,z, w)<l , f2(x,y,z, w)^0, /w(x, y, z, w) ̂  - 2 ,

and
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f(x,y,z, w) = 0(|w|2) as | w | - > o o ,

and so /(x, y, z, w) satisfies the Nagumo condition. Moreover,

/(x,0,0,0)EEθ

for 0^x< 1. Therefore, the boundary value problem (15), (2) has a unique solution by
Theorem 1.

EXAMPLE 2. We consider the equation

(16) /"=

\2n

where w and « are nonnegative integers and Ft(x) (/=1,2) are nonnegative and
continuous on [0, 1], Let

,y9z,w) = — \ (^
π [ _ \ 2

f(x,y9z,w) = — + arctgHj>---
2

H

Then /(x, y, z, w) and its first order partial derivatives with respect to y, z and w are
continuous on [0, 1] x R3, and for (x, y, z, w) e [0, 1] x 7?3,

, y, z, w)< 1 , /z(x, j;, z, w)>2 , /w(x, 3;, z,

Let

Γ= max

Then for any M>0, choosing

we have for (x, y, z, w)e [0, 1] x [ — M, M] x Λ2,

|/(x,j; )z,w)K/zΦ 1(|z))Φ 1(|wD,

where

and hence /(x, y, z, w) satisfies the Nagumo condition. Moreover, for 0<x^ 1,

/(x,0,0,0)-0.
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It follows from Theorem 2 that there exists a unique solution for the boundary value

problem (16), (2).

It is not difficult to give some examples for the applications of Theorems 3 and 4

by making a few obvious modifications in Examples 1 and 2. However, for illustrating

that the results can be applied in wide range, we shall give more examples here.

EXAMPLE 3. Let us consider the equation

(17) /"' = 3/^yiT/\WO^+^2WCi + (/)2]
where Ft(x) (i= 1, 2, 3) are nonnegative and continuous on [0, 1] and m is a nonnegative

integer. By Theorem 3, we conclude that the boundary value problem (17), (3) has a

unique solution.

EXAMPLE 4. We now consider the equation

t p ( Ύ\( v"Λ^m ~\
i l Λ J J +f(JC)arctg(/)2" \y"
i + ' 4 " 1 J

where m, n and p are nonnegative integers and F^x) (i= 1, 2, 3) are nonnegative and
continuous on [0, 1]. From Theorem 4, we deduce easily that there exists a unique
solution for the boundary value problem (18), (3).
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