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Abstract. We define the Chow ring for a fi-factorial toric variety as the Stanley-
Reisner ring for the corresponding fan modulo the linear equivalence relation. We also
define the pull-back homomorphism and the push-forward homomorphism between the
Chow rings in terms of the combinatorial structure of fans and a map of fans, and prove
the projection formula without using algebro-geometric method. In the second part,
we apply the GKZ-decomposition to the β-factorial toric varieties and obtain some
information when the corresponding fans are confined to have one-dimensional cones
within a fixed set.

Introduction. Let TV be a free Z-module of rank r and M its dual. An r-dimensional
algebraic torus TN^C* x x Cx (r times) is defined by TN : = Homz(M, Cx), where
Cx is the multiplicative group of non-zero complex numbers. A toric variety X is a
normal algebraic variety containing TN as a Zariski open dense subset with an algebraic
action of 7^ on X which is an extension of the group law of TN. A toric variety X can
be described in terms of a certain collection A, which is called a fan, of cones in
NR : = N®ZR. From this fact, the properties of a toric variety have strong connection
with the combinatorial structure of the corresponding fan and the relations among the
generators. One of the purposes of this paper is based on this fact. For the precise
definitions of toric varieties, see [4], [18] and [19].

Let X: = T^emb(zl) be the toric variety corresponding to a simplicial fan A. Hence
Xis β-factorial, and has at most quotient singularities. This paper consists of two parts.
In Section 1, we first define the Chow ring A(N9 A) over the rational number field Q in
terms of the simplicial fan A. Namely, we define the Chow ring A(N, A) as the
Stanley-Reisner ring SR(7V, A) (cf. [27]) of A modulo the linear equivalence relation.
In Proposition 1.1 we see that for any 0<p<r the homogeneous part AP(N, A) of
degree p of the Chow ring A(N, A) is generated over Q by the equivalence classes υ(σ)
of the elements in SR(W, A) corresponding to σeA(p). The product satisfies

v(σ) - v(σ'} = v(σ + σ') whenever σ + σ'eA and σ n σ ' = {0} .

Note that Danilov [4] and Fulton [7] used different generators [FJ, σeA, which are
related to ours by

[FJ=mult(σ) ι;(σ),
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where mult(σ) is the multiplicity of σ which will be defined later. Hence the product
becomes

mult(σ) mult(σ')
<7

mult(σ + σ )

for σ, σ' eA satisfying σ + σ'ezl and σ n σ ' = {0}.Thus our generators are more natural
in describing the structure of the Chow rings.

We also state some properties of the Chow ring in Section 1, and relate the Chow
ring to Ishida's cohomology (cf. [12] and [19]) which is very useful in describing the

properties of the Chow ring.

Let Nf be a free Z-module of rank r', and A1 a fan for TV'. Let φ : (Nf, Δ') -> (TV, A)
be a map of fans. Then φ gives rise to an equivariant holomorphic map
φv\ TN,emb(A')-+ TNemb(A) between toric varieties. If the corresponding map φv is a

proper map, then there exists a push-forward homomorphism φ^ : A(N', A')->A(N, A)
between the Chow rings (cf. [6]). In Section 2, we describe φ^ explicitly in terms of
the combinatorial structure of the fans A, A' and a map φ of fans, whenever φ has finite
cokernel. We hope to come back to the problem of describing φ^ in the interesting case

where the cokernel of φ is not finite.

Also in Section 2, we describe the pull-back homomorphism φ* : A(N, A) -> A(N', A')
explicitly for an arbitrary map φ of fans. If φ : (TV', Δ')-+ (TV, A) is a map of fans with
finite cokernel, then we can prove directly that the induced homomorphisms φ^ and

φ* satisfy the projection formula (cf. Theorem 2.10), that is,

Φ*(Φ*(ω) ω') = ω φ+(ω') for ω e A(N, A), ω' e A(N', A') .

In Section 3, we consider equivariant fiber bundles over toric varieties. If

φ : (TV', A')-> (TV, A) induces an equivariant Pl(C)- (resp. C1-) bundle over a toric variety,
then by [19, Proposition 1.33], A' can be described explicitly. From this fact, we get a
direct description of the Chow ring A(N', A') in terms of A(N, A).

In the second part, we deal with the GKZ-decompositions for toric varieties, where
GKZ stands for Gelfand, Kapranov and Zelevinskij. In [8], [9] and [10] they obtained
some decompositions of RN by using regular triangulations of integral polytopes

corresponding to projective toric varieties. We have generalized and reformulated their
results in the context of R- vector spaces in [24]. Our present purpose is to modify the
definition in the context of Q- vector spaces and apply it to β- factorial toric varieties.

In Section 4, we define the β-linear Gale transform, and relate it to toric varieties.
This concept is very useful in dealing with toric varieties with small Picard numbers.
We use this notion in connection with the Chow ring of a toric variety.

Let Ξ be a finite subset of primitive elements in TV, such that Ξ spans NQ: = N®Z Q
over Q. Then, as we show in Theorem 4.1, there exists a simplicial and admissible fan
AQ in TV, which is full, i.e., every ξeΞ gives rise to a one-dimensional cone in A0. Each
simplicial fan A corresponding to a maximal dimensional GKZ-cone cpl(J) in the
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GKZ-decomposition can be obtained from A0 by a finite succession of flops or star
subdivisions as in [24, Theorem 3.12]. Furthermore, as we show in Theorem 4.5, the
union of the cpl(J)'s, with A obtained from A0 by finite successions of flops, also is a
convex polyhedral cone.

We describe the dual cone of cρl(zl) when A is full, simplicial and admissible for
a fixed (TV, Ξ) in Section 5. It is related to the Mori cone NE(X) of the corresponding
toric variety X: = TNemb(A).

In the last section, we apply the GKZ-decomposition to a fan which is a simplicial

subdivision of a fixed strongly convex cone π all of whose proper faces are simplicial.

We get some information on small simplicial subdivisions of π.
Throughout this paper, we fix a free Z-module TV of rank r over the ring Z of

integers, and denote by M : = Homz(7V, Z) its dual Z-module with the canonical bilinear
pairing

We denote the scalar extensions of N and M to the field R of real numbers by
NR \ = N®ZR and MR: = M®ZR, respectively. We follow definitions and notation in

[19].

DEFINITION. A finite collection A of strongly convex rational polyhedral cones in
NR is called a fan if it satisfies the following conditions:

(i) Every face of any σeA is contained in A.
(ii) For any σ, σ'e A, the intersection σ n σ ' is a face of both σ and σ'.

A fan A is said to be simplicial if every σ e A is simplicial, i.e., σ can be expressed as

for an /Minearly independent subset {nlyn2, . ..,«s} of N, where /?>0 is the set of
nonnegative real numbers. A fan A is said to be complete if \A \ '- = \JσeΔ^ = NR. It is
known that the toric variety corresponding to a simplicial fan has at most quotient

singularities and is (^-factorial. Also, the toric variety is compact if and only if the
corresponding fan is complete.

In this paper, we consider only those (finite) fans which are simplicial with
r- dimensional convex support.
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1. The Chow ring. Let A be a simplicial fan for 7V=Zr, which may not be
complete. In this section, we define the Chow ring A(N, A) in terms of a simplicial fan
A, describe its generators, and relate it to Ishida's cohomology.

Introduce the polynomial ring S over Q in the variables [x(p)\peΔ(\}}. We can
regard this ring as a graded β-algebra by letting deg;c(p)= 1 for any pe Δ(\). Let / be
the ideal in S generated by the set

{x(p1)x(ρ2)'' *(p,)|pι, , P sezl(l) distinct and pl + +psφA} .

Then the residue ring SR(ΛΓ, A) : = S/I is the Stanley-Reisner ring (or face ring in [27])
for the fan A.

On the other hand, we define another ideal J in S to be the one generated by the set

\θ(m):= Σ <m,«(p)
I peJ( l )

meM

where n(p) is the unique primitive element of N contained in pe A(l).

DEFINITION. In the notation above, we define the Chow ring over Q for a simplicial
fan A to be the ring

We simply write A(A) if there is no confusion. A(A) is a finite-dimensional graded

β-algebra of the form A(A)= ®r

k = QA\Δ) and is generated by A1 (A) over A°(A) = Q9

where Ak(A) is its homogeneous part of degree k. Especially, A(A) is a Gorenstein ring
if A is complete.

Let us denote by v(p)eA1(A) the image in A(Δ) of x(p) for peA(l). By the
construction of the Chow ring, we have

Σ <m, n(p)yv(p) = 0 for any meM ,
peJ( l )

or more symmetrically, we can write it as a single equality

Σ n(p)®v(p) = Q in
peJ(l )

which we call the defining relation.
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Since A is assumed to be simplicial, each σ e Δ(k) can be expressed as σ = p1 + + pk

for distinct p l5 . . . , pkεA(l). In this case, we denote by υ(σ)€Ak(A) the image in A(Δ)

of the monomial x(pι)x(p2)' ' 'χ(
For pairs σ, σ'eA, we have

^ / ^ ifι (σ) f (σ ) = <
σ + σ') if σ n σ ' = {0} and σ + σ'e J .

PROPOSITION 1.1. Leί zl 6e 0 simplicial fan for N=Zr. Then we have

A\A)= £ βι (σ) /0r α/iy 0</c<r.
σeJ(fc)

Especially, ifk = r, then we have

\ Q if A is complete

0 otherwise.

PROOF. By induction, it suffices to show that v(p0)v(τ) for τeA and
expressed as a linear combination of {υ(σ)\σeA, dimσ = dimτ+ 1}.

Since {n(p)\pεA(\}, p<τ} is a set of linearly independent elements in TV, there
exists m0 eM such that <m0, «(p0)> = l, while <m0, «(p)>=0 for all peJ(l), p=£p0 with

r. Hence we get

Multiplying t (τ) to this equality, we have

Σ <^o5 n(p)>v(p)v(τ) = 0 .

Since ι?(p)ι?(τ) = υ(p + τ) for p^τ with p + τ e / d , while t;(p)ι;(τ) = 0 if p + τφA, v(p0)v(τ)
can be written as a linear combination of {v(σ) \σeA9 dimσ = dimτ+ 1}.

Now we prove the second statement. If A is complete, then every τeA(r— 1) is an
internal wall. Let us fix σ0eA(r). Then for any σeJ(r), there exist σ l 5 . . . , σk = σeA(r)
such that σ ί nσ ί + 1 belongs to A(r—l) for any /=0, . . ., k— 1. From the defining relation,
we see that υ(σ) = bσv(σQ) for some bσeQ>0. Hence,

σeJ(r)

since ^4(zl) is Gorenstein.
If \A \¥^NR, we may assume that Δ(r)^0. Then there exists a σezl(r) having a

facet τ which is not an internal wall. Let σ = τ + pτ for some pτ e J(l). From the defining
relation, we obtain u(σ) = 0. Since zl is not complete, for any σ'eJ(r) there exist
σl9 . . . , σk = σ' E Δ(r) such that σ{ n σ ί+ x belongs to zl(r — 1) for any /= 1, . . . , k— 1 and
that σ x has a facet which is not an internal wall. We use the defining relation again to
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get v(σ') = bσ.υ(σl) = Q for some bσ>eQ>0. Consequently, we have Ar(A) = Q. q.e.d.

Let X : = TNemb(A) be the toric variety corresponding to a simplicial fan A. Then

For the proof, see [4], [7], and [14]. Especially, if Xis a nonsingular surface, there is

an easy proof in [1].
Now, we introduce the multiplicity of a simplicial cone σ in NR (cf. [7] and [15])

to relate the Chow ring to Ishida's cohomology. The multiplicity of a cone is also used
in Section 2 to define a push-forward homomorphism φ^ : A(N'9 A')^A(N, A) between
two Chow rings.

DEFINITION. Let σ : = p± + + ps be an ^-dimensional simplicial cone in NR ̂  Rr.
We define the multiplicity of σ as the index

mult(σ, N) : = [TVn Rσ : Zn(p^ + - - + Zn(ρJ\

of the submodule Zn(p^) + +Zn(ps) in 7Vn/?σ. We simply denote mult(σ) if there
is no confusion.

Let us introduce Ishida's cohomology which is very useful in describing the
properties of the Chow rings.

DEFINITION. Let Δ be a simplicial fan for N^Zr and M the dual Z-module of
N. For any p, q = 0, 1 , . . . , r, let

Cq(A,Ap):= 0 /
σeA(q)

and define a coboundary homomorphism

δ: C«-1Gd,Λ i '): = Θ /\p

τeA(q-l)

by defining the (τ, σ)-component as follows: For any τeA(q— 1) and σeA(q), define

to be δτ/σ = Q if τ is not a face of σ, while for τ-<σ, there exists a unique peA(l) such
that σ = p + τ. Moreover, M n σ1 is a Z-submodule of rank r — q in the Z-module M n τ1

of rank r — q+\, hence each element of ̂ p~ί + 1(M n τ 1) is a finite linear combination
of elements of the form

m1Λm2Λ - - Λmp_q + 1 with m1eMnτ-L and w2, . . .,

We define δτ/σ by

where «τ/σ is a primitive element of TV which is uniquely determined modulo NnRτ so
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that σ + ( — τ) = /?>0«τ/σ + /?τ. Then (C'(A, Ap), δ) becomes a complex of Z-modules for

(N, Δ).
We denote by H\A, Ap) the cohomology group of C\A, Ap) and call it Ishida's

cohomology group (cf. [12] and [19]).

REMARK. (1) Clearly, we have H9(A, AP) = Q unless Q<q<p.Ifp = q, then

Cp(Δ,Λ*) = 0 /\°(Mnσ^^ 0 Zx(σ) ,
σeΔ(p) σεΔ(p)

where x(σ) is the element 1 at the factor corresponding to σe A(p). If we denote by
y(σ) the image of x(σ) in H*(A, yip), then we have a natural isomorphism

HP(A,AP)®ZQ=AP(A)

sending (l/mult(σ))Xσ)e//%d, ΛP)®ZQ to ϋ(σ)
(2) Oda gave a direct proof for a vanishing theorem for a simplicial and complete

convex polyhedral cone decomposition, while Ishida generalized it to a simplicial one
which may not be complete (cf. [22, Proposition 4.1 and Theorem 4.2]): Let Δ be a
simplicial fan for TV, which may not be complete. If there exist a complete simplicial
fan Δ and pε J(l) such that A = J\{σe J|p<σ}, then

H«(Δ ΛΉ» O-\AP(Δ} ίf q=Pfj. ^zj , yi j \Q) z \j — \
[0 otherwise .

(3) If Δ is assumed to be complete and simplicial, then we have a perfect pairing
in the Chow ring for A (cf. [21] and [22, Proposition 4.1]):

Ar~\A) x A\Δ) - *Ar(A)-^-+Q for any 0</<r ,

where [ ] : Ar(Δ) -> Q is equivalent to the push-forward homomorphism/^ induced by
the structure morphism

as we see in Corollary 2.8.

2. Homomorphisms between the Chow rings. In this section, we define the
pull-back homomorphism and the push-forward homomorphism induced by a limited
class of maps of fans and prove directly (i.e., without recourse to algebraic geometry)
that they satisfy the projection formula.

DEFINITION. Let (N, A) and (N', Δ') be two fans for N=Zr and 7V'^Zr . A map
of fans φ: (N',A')->(N, A) is a Z-linear homomorphism φ:N'^>N whose scalar
extension φ : N'R-+NR satisfies the following property: For each σ' e A' there exists σ e A
such that (/>(σ')c=σ.
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DEFINITION. An R- valued function h on | A \ is called a Δ-lίnear support function
if h is Z-valued on TVn | A \ and if h is linear on each cone σeA. We denote by SF(TV, A)
the additive group consisting of all A -linear support functions (cf. [19]).

Throughout this section, we assume that A and A' are two simplicίal fans for N^Zr

and TV'^Z1"'. We also assume that φ : (TV', zl')->(TV, A) is a map of fans.

THEOREM 2.1. Lei J α^d zΓ be simplicial fans for N and TV', respectively. Then a
map of fans φ : (TV', Δ') -> (TV, J) g/ves πse to a pull-back homomorphism

which is a graded Q-algebra homomorphism. Moreover, it is functor ial, i.e., if Δ" is a
simplicial fan for N" and \j/\ (TV", Δ")-*(N', Δ'\ is another map of fans, then we get
ψ*oφ* = (0o^)*.

PROOF. We use the same notation as that in the definition of the Chow ring
A(N, Δ).

There exists an isomorphism from SF(TV, A)®zQto φpej(1) Qx(p) which is defined
by

SF(TV, Δ)®zQBh®q\^ £ q h(n(p))x(p)ε 0 Qx(p) .
peJ(l ) peJ( l )

Let us denote by x\ρ'\ S', Γ and /' those appearing in the definition of the
Chow ring A(N', Δ'). Then, similarly, we have an isomorphism SF(TV', A')

®'Qx'(pf\ Let us define

$* :

by sending ΛeSF(TV, Δ)®ZQ to φ*(h) :=h°φ. Then it induces a homomorphism

<?*: Θ

By extending it, we get a graded β-algebra homomorphism φ* : S-+S'.
More precisely, let us denote by εp the element in SF(TV, Δ)®ZQ corresponding

to x(p)e®pej(1}Qx(ρ). Hence εp(«(pι)) = ̂ p,pl for ρ,ρ1eA(l) under the above
isomorphism, where δptβί is Kronecker's delta. <?*(εp) = εp°</> is then an element in
SF(TV', Δ')®ZQ. For each p' eΔ'(\), there exists a unique cone

<V :=Pι+ +ρseA for some pl9 . . ., ρseΔ(\) ,

which contains φ(n'(ρ'J) in its relative interior, where w'(p') e TV' is the unique primitive
element contained in p'e^d'(l). Thus,

= Σ
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for some c(pf, p) > 0. In this notation, we have

if P<σp>

otherwise,

that is,

εp°Φ= Σ c(p',p)ε'p,,

where ε^ is the element in SF(N'9 Δ')®ZQ corresponding to x'(p'). Hence we get

Σ c(p',pK(p')

Now, we show 0*(/)<=/'. For any generator ^(PJ^PJ)' *(ps) of/,

Φ',PιW) Σ c(p',ps)x'(p')

Suppose that for each ph l<i<s, there exists p e/d'(l) with pf^<σp; such that

;c'(pί) 'x'(p's)φΓ. Recall that a monomial x'ίpίXCpi)" '^(Ps) is an element of /' if
and only if p[ + + p's φ A'. Thus we have ρ[ + + p's e A' . Since φ is a map of fans,

there exists a cone σeA which contains φ(pi + -hps') Since σp>. is the smallest cone
in A containing φ(n'(p'i)), we have

Pi<σp>. <σ , for any 1 <i<s ,

and as a result, p!+ - - +ps<σeA, a, contradiction. Consequently,

for any generator ^(piWp2)' ' 'x(ps) of/.
It is clear that φ*(J)c=J'. Therefore, φ induces a graded β-algebra homomorphism

0* : A(N, Δ)^>A(N', A') and the functoriality is clear. q.e.d.

For a map of fans φ : (Nf, A') -> (TV, A), let us denote L(σ) : = NnRσ and L'(σ') : =
N'nRσ' for σeA and σ'eA'.

By simple calculation, we obtain the following (cf. (1) and (2) are also found in

[7] and [15]):

LEMMA 2.2. In the same notation as above, we have:
(1) σc:NR^Rr is a nonsingular cone, that is, there exist a Z-basis [nί9 . . . , nr] of

N and s<r such that σ = /?>0λz1+ +/?>0«s, if and only z/mult(σ, Λ^)=l.
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(2) Letn0 : = 0ι«(pι) + + asn(ps) with positive rational numbers a^ ...,aseQ>0

be a primitive element contained in σ. If we denote

σi : = Po + Pι+ + v + + ps for

where p0 : = /?>0/20, then mult(σf, TV) = a{ - mult(σ, N).

(3) Let φ: (TV', Δ')-*(N, A) be a map of fans with finite cokernel. For
τ' e Δ'(p— 1), let us denote by στ, the smallest cone in Δ which contains φ(τ'). Suppose that

στ' = Pι+ +p feJ(0 with t: = (p-\)-(r'-r),

and that there exist p'ezl'(l) and peΔ(\) which satisfy p' + τ'eΔ(p) and σp,+τ> =
p + στ,eA(t+l). Then there exist positive integers α, b and nonnegative integers
cl9 . . ., ct such that

In this case, we have

mult(στ,, TV)

mult(τ', TV')

b mult(p + στ,, TV)
• I coker(7V'/L'(p' + τ') -* N/L(p + στ)) |,

a mult(p' + τ', TV')

where \ G\ stands for the order of a finite group G.

For τeJ(#), denote N:=N/L(τ). For σeΔ with τ<σ, let σ : = (σ + Rτ)/Rτ be the
image of σ in the quotient vector space TVR : = NR/Rτ. Then

A: = \

is a fan for JΫ and the toric variety Γ#emb(J) coincides with the closure V(τ) of orb(τ)
in X : = ΓNemb(J) (cf. [19, Corollary 1.7]). Let us denote by ϋ(σ) the generator of AP(Δ)
corresponding to σεΔ. Then we can prove the following:

PROPOSITION 2.3. In the same notation as above, define a Q-linear map

ctεΔ(p)

for 0<p<r — q by

tJ(ά)h->(mult(α, Λ0/mult(de,

ΓΛβw ί^ 'w well-defined.

Let 0 : (TV', J')-*(^V, A) be a map of fans. Then it is known that the equivariant
holomorphic map φv : TN, emb(J') -> ΓNemb(/d) is proper if and only if for each σeΔ,
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the set Δ'σ : = {σf e A' \ φ(σ') c σ} is finite and

φ-\σ) = \ A ' σ \ : = ]J σ'
σ' eΔ'σ

(cf. [19, Theorem 1.15]). We also say that a map φ of fans improper if the corresponding

equivariant holomorphic map φv is proper.

THEOREM 2.4. Let A and A' be simplicial fans and φ: (Nf, Δ')-*(N9 A) a proper
map of fans which has finite cokernel. Then φ gives rise to the push-forward Q-lίnear map

φ+\ AP(N\ A')-+Ap-(r'-r\N, A)

for all p. Moreover, the push-forward homomorphism is functor ial. Namely, let

be maps of fans which are proper maps between simplicial fans having finite cokernel.

Then the induced homomorphisms satisfy Φ*°ψ* = (Φ°ψ)*.

PROOF. Let ocΈA '(/?). Denote by σΛ, the smallest cone in A which contains φ(a').
Define

if dim σΛ> =p — (rf -r), while φ^(υ'(of)) : = 0 otherwise.

φ+\ AP(N', A'}^Ap-(r'-r\N, A)

is then the β-linear extension.

We can prove the functoriality easily because the smallest cone in A containing
φ(τ') is equal to the smallest cone in A containing (φoψ)(τ") for any τ"ezl", where τ'
is the smallest cone in A' containing ψ(τ").

It remains to show that this φ^ is well-defined. Let us fix a cone τ'ezΓ(/?— 1).
If ρ'eA'(l) satisfies p' + τ'e A'(p), then στ,<σp,+τ.. If dimσp,+τ,^p-(r'-r), then
Φ*(v'(p' + τ')) = Q. Hence we may restrict ourselves to the case where dimσp,+τ,=p —
(r'-r). Hence, ά\mστ,<p — (r' — r). If dim στ. < (p — 2) — (r' — r), then τ' cannot be a

(/?— l)-dimensional cone, a contradiction. Thus dimστ, = (p— 1) — (r' — r) or/7 — (r' — r).
The rest of the theorem is a consequence of the following three lemmas. q.e.d.

For τ' e A'(p — 1) and στ, which is the smallest cone in A containing φ(τ'), let us denote

N': = N'/L'(τf)

: = N/L(στ.)



120 H. S. PARK

where N'R: = N'®ZR and NR: = N®ZR. Then K'(τ') = T> emb(Z') and F(στO =
Γ# emb(J) are toric varieties of dimensions r' — (p— 1) and r — dimσt>, respectively.
For any p'e 3'(\) (resp. peJ(l)), we denote by v'(p') (resp. ϋ(p)) the generators of
A1(Nf

9 3') (resp. >41(JV, Z)), by n'(p') (resp. «(p)) the primitive element of TV' (resp. TV)

contained in p' (resp. p), and

L'(p') : = TV' n Rp' (resp. L(p) :=Nr\Rp).

LEMMA 2.5. If dim στ, = (p—\) — (r1 — r\ then rank TV' = rank TV. Hence the two toric
varieties K'(τ') and K(στ>) have the same dimension, and the induced map

<?:(τv',Z')^(τv,Z)

is also a proper map with finite cokernel. In this case, define

if $(p') = p for some peJ(l)φ .ϋΓ

* [θ otherwise

for p' e/d'(l). Then we get a well-defined Q-linear map

PROOF. Note that if <j>(p') = p for some pε 3(1), then

n ( M' n (

If we denote by ^* the map dual to <̂ , then for any m'0 e M' n (τ')1 there exists an
m0 e M n (σ^)1 such that

I coker(Mn (σ^)1 -> M ' n (τ')1) | m'0 = $*(m0) .

Hence, for m^eM' ^(τ')^, we have

</ι4 /ϊ'ίp')) I coker(TV7Γ(p'))

Since ̂  is proper, for any p e 3(1) there exists p' e zΓ(l) satisfying φ(p') = p. In particular,
such a p' is unique because φ has finite cokernel. Hence, the set Δ(V) is in ono-to-one
correspondence with the subset {p'ezΓ(l)| φ(ρf)e 3(1)} of 3'(l).

Combining these, we have for any wόeM' n(τ')1,

Σ <m'0,n'(p')y v'(p')]= Σ
p'6^'(l) / p e ^ ( l )

since m0 e M n (σ^)-1. q.e.d.

LEMMA 2.6. T/'dim στ/ = (/? — 1 ) — (r' — r), then the following diagram is commutative :
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AP(N', Δ') -±

A\Nf, A') - * A\N, A) ,

where ι^ is the map defined in Proposition 2.3.

PROOF. It is a consequence of the following easy equality:

I coker(7V7Z?(p') -> N/L(p)) \ = \ coker(N'/L'(p' + τ') -> N/L(p + στ,)) |

for any p'e J'(l) satisfying φ(p') = pe Δ(\). q.e.d.

LEMMA 2.7. If dimστ,=p — (rf — r), ί/ze« K'(τ') (res/?. K(στ<)) w α ίoπc variety of
dimension r'-(p-l) (resp. r'—p). In this case, define

p - if

(0 otherwise

for any p'ezί'(l). Then we get a well-defined Q-linear map

φ*:A\N',Z')^A\N,2).

Moreover, the following diagram is commutative:

A\N',Δ') AΌ(N,A),

where ι^ is the map defined in Proposition 2.3.

PROOF. Since φ: (Nf, A') -*> (N9 A) is a proper map with rank(ker ^) = 1, there exist
exactly two p[ and p'2 in A'(I) which are mapped to 0 by φ. In fact, p(= — p'2.

Consequently, for any rri e M' n (τ7)1, we have

Σ « ή'(P')>' V(P')} = {« π'(pi)> + W, "'(P2»}' I coker(7V' -,TV) |
p'eJ '( l) /

= 0.

The commutativity of the diagram is similar to that in Lemma 2.6. q.e.d

As important special cases of Theorem 2.4, we have the following two corollaries:

COROLLARY 2.8. Let X: = TN emb(J) be a compact toric variety which has at most
quotient singularities. Then the structure morphism /: λ^SpecίC) gives rise to the
push-forward homomorphism [ ] : =/„,: Ar(A) -> Q which is defined by
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: = l/mult(σ)eβ.

COROLLARY 2.9. Let A' be a sίmplίcial subdivision of a simplicial fan A. Then the
inclusion i : (TV, Δ')->(N, A) becomes a proper map and gives rise to the push-forward
homomorphism

such that for α'ezΓ,

r mult(σα,, TV) ,
v(σΛ,) if dim σa, = dim α

: = mult(α',ΛO

I 0 otherwise ,

where σΛ> is the smallest cone in A containing α'.

THEOREM 2.10. Let A and A' be simplicial fans and φ : (TV', A') -> (TV, A) a proper
map of fans with finite cokernel. Then the induced homomorphisms φ* and φ^, defined in
the above theorems satisfy the projection formula, that is,

for any ωeA(A) and ω'eA(A').

PROOF. Since φ^ and φ* are Q-linear maps, it is enough to prove

(*) Φ^Φ^(σ))'Vf(τ')) = v(σ)'φ^(vf(τf)) for any σeA and τ'eA'.

We prove (*) by induction on the dimension of σ e A .
If dim σ = 0, then the formula (*) is obviously true.
Assume that the equality holds for any σeA with dimσ<A:— 1.
Let dimσ = A;. Then σ = p + τ for some peA(l) and τεA(k— 1). Let τΈA'(p).

We may assume that σnσ τ , = {0}. Recall that t;(σ) = t;(p)t;(τ). Hence we have

by the induction hypothesis. If the formula (*) holds for σ=peΔ(\), that is,

(**) Φ*(Φ* (v(p)) v'(τ')) = v(p) φt(v'(τ')) for any peΔ(l) and τ'eJ'

holds, then

Φ*(Φ*(v(<r» v'(τ')) = t (τ) φ,(φ*(υ(p)) ι/(τ'))

Thus it is enough to prove the equality (**).
Note that dim στ. >p - (r1 - r). If dim στ. >(p + 2)- (r' - r), then we have φ*(v'(τ')) = 0



TORIC VARIETIES 123

and for any p'e/d'(l), we have dimσp' + τ'>(/? + 2) — (rr — r). Hence φ^(v'(pf)vf(τ')) = 0,
which implies that φ+(φ*(v(p)) v'(τ')) = Q. Thus, the equality (**) holds.

If dim στ, = (/?+!) — (r' — r), then φ+(v'(τ')) = Q. Now consider the commutative
diagram in Lemma 2.7:

Ap+1(A')

> A°(Q.

ί

Then we have for any pe Δ(\)

where oy is the smallest cone in A containing φ(p'). For any p'e A' (I) with p^σy, the
image of v'(p') under φ^ is not 0 only if dimσp' = 0. However, there is no cone p'e A' (I)
satisfying p<σy and dimσy = 0. Hence we have for peA(l)

</>*(</>* Wp)) ' »'(τ')) = 0 = ι?(p) Φ*(v'(τ')} .

If dimσ τ/=/7 — (rr — r), then we consider the diagram in Lemma 2.6:

Ap+1(A') - >A(p+l)-(r'-'\A)

i i
A\A') - > A\A).

From the above diagram, we have for pe A ( l ) with p + στ,eA((p+l) — (r' — r)),

^ ' I coker(7V'/Z/(p' + τ') - N/L(p + σtO) | ι<p + στ.) ,
mult(p +τ, ^V)

where p' e zΓ(l) satisfying pr -f τ' e jχ/7 + 1) and σp, +τ, = p + στ, e A((p + 1) - (V - r)). Note
that

* mult(τ , TV )

Thus, the projection formula (**) holds in this case by Lemma 2.2, (3). q.e.d.

3. Fibrations and the Chow rings. In this section, we calculate the Chow rings
of equivariant fiber bundles over toric varieties. Our calculation does not resort to
algebraic geometry. We rather interpret, in terms of fans, the standard algebro-geometric
proof found in Fulton [6]. We consider equivariant C*-bundles and P^CJ-bundles over
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toric varieties, and compare their Chow rings.
Throughout this section, we denote by A (resp. A') a simplicial fan for a lattice

The key point in considering the Chow rings for equivariant fiber bundles is the

following:

PROPOSITION 3.1. (cf. [19, Proposition 1.33]). Consider a map of fans φ : (TV', Δ') ->

(TV, Δ) and the corresponding equivariant holomorphic map

φv : X' : = TV emb(zΓ) -> X : = TN emb(zl)

of toric varieties. Denote by N" the kernel of the Z-homomorphism φ: Nf -> N and let

Δ" be a fan for N" . Then φv : X' -» X is an equivariant fiber bundle with X" : = TN,, emb(zΓ)
as typical fiber if and only if the following is satisfied: φ: N' -» TV is surjective and there
exists a subfan Δ^Δ such that

( i ) φ induces a homeomorphism \Δ\-^+\ Δ \

(ii) A = {σ + σ"\σe29σ"eA"} and
(ni) for each σe A, φ induces a Z-ίsomorphism N' nRσ-

REMARK. (1) We need to add (iii), which is missing in [19, Proposition 1.33].
(2) In particular, if X' : = TN, emb(zl') is a P'(C)-bundle over X, then there exist

equivariant line bundles L0, . . . , Lt such that

X1 : = TV emb(Λ') = P(LQ 0 0 L,) .

Let ht be the support function corresponding to the line bundle Li9 0</</. Denote by

{«'/, . . . , «'/} a Z-basis for N", and let ri$ : = — («ϊ+ " ' ' +"!')• F°r each σe J, we denote
by σ the image of σ under the /Minear map NR -> N'R

(cf. the minus sign in [19, p. 59] needs to be deleted.) Let A : = {σ | σe A}9 p'l : =
and

v

for 0</</. If we denote J": = {the faces of σ"|θ<ί</}, then TN,,emb(A") = Pl

and we have

A' = {σ + σ"\σeA,σ"eA"} .

Let {wj, . . . , m'ι} be the dual basis for the dual Z-module M" of N". By applying

nil to the defining relation Σp,eJ,(1)/ι'(p')® t/(p') = 0> we get

Σ Ao(Λ(p)X(p) = ϋ'(pί')+ Σ ^WP)X(P) for all !</



TORIC VARIETIES 1 25

For any 0</</, let us denote

ηϊ = Σ hi(n(p})v'(p)EA\Δ'}
peJ( l)

and

: = W) + Σ h0(n(p))v'(p)eA\A').
peJ(l)

Then we have

We also denote

nι'= Σ ΛoWp))^)^1^) for

(3) Similarly, we can express an equivariant C'-bundle X'0 : = TN, emb(zΓ0) °
ver a

toric variety X: = TN ernb(zl) as a direct sum of equivariant line bundles and obtain an
expression for the fan A'0 in terms of the cones in A and support functions corresponding

to the line bundles. Indeed, let X'0 be an equivariant C*-bundle over X. Then there exist
equivariant line bundles Ll9 . . . , L, over X such that Xf

0 = Ll 0 ®Lt. Let L0 be an

equivariant line bundle over X. Then P(L0 0 0L,) is an equivariant /^(Cj-bundle
over X. Let us use the same notation as above. Then we have

where we denote by AQ the collection of all the faces of σ'^A".

Let φv: TN> emb(/Γ) -> TN emb(/l) be an equivariant Pz(C)-bundle. From now on,
we use the same notation as above.

Note that the corresponding map φ: (Nf, A')->(N, A) is proper and surjective.
Hence we have the pull-back homomorphism φ* and the push-forward homomorphism
φ^ induced by φ. By construction, we easily see that

φ*(υ(σ)) = v'(σ) for any σeA .

Note that φ(σ + σ") = σ and dim(σ 4- σ") = dim σ -I- dim σ" for any σeJ, σ"e A".
Hence 05|c(ί;/(σ4-σ//)) = 0 whenever dimσ"^r' — r = l. On the other hand,

mult(σ, TV) = mult(σ -f σ", N') for any 0 < i < I ,

since φ induces a homeomorphism |J|-^>|J| and a Z-isomorphism

NnRσ. Thus, it follows that

v(σ) if σ" = σ'{ for some 0</</
Λ

V

 Λ -
0 otherwise
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for any σe A, σ"ezl".
Now following Fulton [6], let us define the Segre class operation

Si(A'):Ap(A)-+Ap+ί(A)

in the same notation as above, to be the homomorphism which sends <xeAp(A) to

for any /, where ξ : = ι/(p'ό) + Σ/*
By the projection formula, we can easily prove the following:

LEMMA 3.2 (cf. [6, Proposition 3.1, (a)]). For any oteAp(A),

(1) Si(A') a = Q for ί<0;

(2) S0(Λ') α = α

THEOREM 3.3. Let φυ: TN.emb(A')->TNemb(A) be an equivariant P\C)-bundle.
Then we have the following:

(1) The induced pull-back homomorphism

0

is a split monomorphίsm for all p.

(2) The induced push-forward homomorphism

is a split epimorphίsm for all p with φ^. o φ* = 0.

(3) In the same notation as the one in the remark above, we have a canonical
isomorphism

with the defining relation (ξ-η^ξ-η^)' ' •(ξ-ηl) = Q.

PROOF. (1) By construction, we have

φ*(v(σ)) = υ'(σ) for any σeΔ .

Define a homomorphism ζ : Ap(A')-> AP(A) by sending v'(σ') for any σ'eA'(p) to

Then ζ is a well-defined homomorphism and from the projection formula (cf. Theorem
2.10), we also see that ζ°φ* = idAP(A) and φ* is injective.

(2) Since

if σ" = σ" fθΓ S0me 0 < ϊ < /
. '

otherwise

for any σe A, σ" eA", φ^ must be surjective and
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Define a homomorphism y : Ap~l(A)-+Ap(A') by sending t (σ) for any σeΔ(p-l)

to

y(Kσ)) : = 0*(ι;(<7)) i/K) = v'

Then y is a well-defined homomorphism and from the projection formula, we also see
that φ*°γ = idAP-ι(A).

(3) Let q : = min{/>, /}. Define a homomorphism

ΘA : ®Ap-\A)
i = 0

by sending 0αf, with αfE^"'^), to

For any σ'ezΓ, we let σ' = σ + σ" for some σe A and σ"eJ". Since v'(p'l) = ζ — η'i =

ξ — φ*(ηi) for any 1 </</ and v'(σ) = φ*(σ)9 we have

!/(σ/')= Σ ^'0*fe)
i = 0

for some ocieAp~i(A). Hence ΘΔ, is surjective.
To show that ΘΔ> is injective, let us assume that there exists a nontrivial relation

β = Σq

i = ξί'φ*(aί) = Q. Let k be the largest index such that αk^0. Then by Lemma 3.2,i = Q

we get

= Φ^(ξί'k'β)= Σ

which is a contradiction.

Consequently, we have isomorphisms

A ) ' ξ j ) f o r

Furthermore, since p'ό + pϊ+ - +pί'#^', we have ^(poX(pϊ)* ' 'v'(ρϊ) = Q, that is

(ξ-ιy/o)«-ι/Ί) (ί-i7ί) = 0 in A(Δ*).

Thus we obtained the desired isomorphism

q.e.d.

Let us recall Ishida's cohomology. We have seen that AP(A)^HP(A, ΛP)®ZQ in
the remark at the end of Section 1. Even though we define the Chow ring only for
simplicial fans, Ishida's cohomology can be defined for a locally star closed subset A'
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of a fan A, that is, a subcollection of A which is required to contain σ whenever τ^<σ-<π
for τ, πeA'. In this case, C'(A',ΛP) with a coboundary map δ defined in Section 1
becomes a complex (cf. [12] and [13]). From this fact, Ishida's cohomology is a useful
tool in considering the Chow rings for simplicial fans.

Furthermore, if A0 is a subfan of a fan A9 then we get a cohomology long exact

sequence

•••^H>-\A09 Λ*) -> H*(Δ\Δ0, Λ*) -> /P(J, Λ") -> /P(J0, Λ*) -> 0 .

From this fact and the remark at the end of Section 1, we have the following:

PROPOSITION 3.4. Let Abe a simplicial fan for N and A0 a subfan of A. We denote
the corresponding inclusions by i: (N, A\A0)->(N9 A) and j: (N, A0)-*(N9 A), re-
spectively. Then we have an exact sequence

where /# is the induced homomorphism between Ishida's cohomology groups andj* is the
induced pull-back homomorphism. Namely, ker(/*) is the set of linear combinations ofv(σ)
with σeA\A0.

As we saw in the remark after Proposition 3.1, for any equi variant C'-bundle
X'0 : = TV emb(JΌ), there exist equivariant line bundles L l 9 . . . , L, over X : = TNemb(A)
such that XfQ = L1@"'®Ll. Let L0 be an equivariant line bundle over X. Then
P(L00 0L,) is an equivariant P*(C)-bundle over X. Let us use the same notation
as the one in Theorem 3.3. Then we have

where we denote by AQ the collection of all the faces of σ'όezl". Let us denote

Then there exists a cohomology long exact sequence

---- >/P~H^ό>Λ^®zβ^#p(Star^

as we have seen in Proposition 3.4.

THEOREM 3.5. If φv: TN. emb(Δ'0) -> TNemb(A) is an equivariant Cl-bundle, then
the induced full-back homomorphism φ* : A(N, Δ)^A(N', AQ) is an isomorphism.

PROOF. In the same notation as above, we have an exact sequence

Hence
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Notice that

A*(Δ'} = φ*(A*(Δ)) φ (i/ίp'cί) A*-\Δ')) .

From the above exact sequence, we see that

v'(p'ό) Άp- V) c: ker(/*) = im(/») cz !/(//<;) Ά

Thus, kerO'*) = i/(poM'- V) This implies that

since </>* is injective. q.e.d.

REMARK. We can apply these facts to equivariant P1- (resp. C1-, resp. Cx-)
bundles over a toric variety. We obtain more special facts, and relate them to the
strong Lefschetz theorem (cf. [21]). Indeed, let us fix a simplicial fan Δ for N^Zr and
a support function η for A with η(n(p))>Q for any ρeA(l). Then

ή:= Σ η(n(p))υ(p)
peA(l)

is an element in A1 (A), and we have a map

ή: AP~\A)^AP(A) for / > = ! , . . . , r ,

sending ι (τ), τeA(p— 1), to

ί Φ) = Σ fo(ι(p)) - <^τ, Λ(P)»(P + τ) .
peJ(l)

ρ + τeΔ(p)

For each σezl, we define

σ : = {(x, η(x)) \xeσ}aNRxR .

Since η is linear on σ, we see that σ is a strongly convex rational polyhedral cone with
dim σ = dim σ. Furthermore, we fix

and define the following fans for N': = N x Z associated with η:

Φb : = {σ\σεA}

Φ : = <

Φ : = <

where — p0 :=/?>0(0, — l)^NR xR. Then Γ^emb(Φ) (resp. ΓN,emb(Φ), resp.
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TV emb(Φb)) is an equivariant Pl(C)- (resp. C-, resp. Cx-) bundle over ΓNemb(zJ). We
have the following:

(1) The projection pr gives rise to a canonical isomorphism

pr*: AP(Δ}^+AP(Φ)

for any p = Q, 1, . . . , r.
(2) As we have seen in Theorem 3.3,

Ap(Φ)^Ap(Δ)®(ξΆp~1(Δ)) for any !</?</.

where ξeAl(Φ) with the defining relation ξ(ξ — ή) = Q.
(3) For any p= 1, . . . , r, we have an exact sequence

where the first map is the multiplication by ήeA1(A). Hence, we have

If A is simplicial and complete, then the above (3) is closely related to the strong
Lefschetz theorem. Oda showed that ή: Ap~l(Δ)->Ap(Δ) is surjective for r/2<p if and
only if (!') HP(Φ*9 AP) = Q for r/2<p (cf. [21, Corollary 4.5]).

4. The GKZ-decomposition. We have defined the linear Gale transform in the
context of R- vector spaces and stated some properties of it in [24]. In this second part
of the paper, we modify the definition in the context of (J-vector spaces and apply it
to β- factorial toric varieties.

Let Ξ be a finite subset of primitive elements in TV, such that Ξ spans NQ : = N®ZQ
over the field Q of rational numbers. Let Z be the Q- vector space with a basis {eξ \ ξ e Ξ},
which is in one-to-one correspondence with Ξ. By sending eξ to ξ e Ξ, we get a surjective
linear map Z-*NQ. Let Z* : = HomQ(Z, Q) be the dual space with the dual basis
{e%\ξeΞ}. Then we have the dual injective linear map MQ : = M®Z Q-^Z* which sends
m e MQ to Σξ€ * (m> O e* The cokernel GQ : = Z*/MQ of the injective map is a β-vector
space of dimension #Ξ — r, where tfΞ is the cardinality of Ξ. For each ξeΞ, we denote
by g(ξ)εGQ the image of e|eZ*. Then by definition, the defining relations among the
elements in g(Ξ) : = {g(ξ) \ ξ e Ξ} are

0 for all meMQ.
ξeΞ

More symmetrically, they can be written as a single equality

ξeΞ
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which we call the defining relation. We call the pair (Ge, g(ΞJ) the Q-linear Gale trans-

form of (NQ, Ξ).
We regard GQ as a subset of its scalar extension G \ = GQ®QR. Hence (G, g(Ξ)) is

the linear Gale transform of (NR, g(ΞJ) in the sense of [24]. We define a cone G>0 in G by

If Ξ positively spans NR over /?, that is, NR = ΣξeΞR>0ξ9 then we easily see that G>0

becomes a strongly convex cone (cf. [24, Proposition 1.3]).

EXAMPLE. Let A be a complete and simplicial fan with {w(p)|peJ(l)} = 2 and
^ : = Γ/vemb(zl) the corresponding compact toric variety. We use the same notation as
that in the definition of the Chow ring A(N9 A). If we denote by TNΌίv(X)Q the scalar

extension to Q of the group of ΓN-invariant divisors and by V(p) the closure of the
codimension-one ΓN-orbit orb(p) corresponding to each cone pezl(l), then from [19,
Proposition 2.1 and Corollary 2.5] we have

TNΌiv(X)Q = ® QV(p) and
peJ(l)

Note that we have a natural isomorphism

SS1^ 0 Qx(p).

As we have seen in Proposition 1.1, A1 (A) is generated over Q by the set (v(p) \ p e A(l)}.
By the definition of A1 (A) and the natural isomorphism T^DivίA^^S1 above, we see
that v(p) is the linear equivalence class of the 7^-in variant divisor V(p).

On the other hand, since A is assumed to be complete and simplicial, we have a
perfect pairing in the Chow ring for A (cf. Corollary 2.8 and [22, Proposition 4.1])

Ar~ \Δ) x A\A) — >Ar(A)^λQ ,

which enables us to identify Ar~1(A) with the dual space of A1 (A). Hence, we have
mutually dual short exact sequences of β-vector spaces

0— NQ+- (TNΌiv(X)Qr^Ar~\A)^ 0

0->Mfl-» TNΌiv(X)Q — A\A) —0,

where (TNΌiv(X)^)* denotes the dual space of TNΌi\(X)Q (cf. Example in Section 5).
Thus by the definition of the Q-linear Gale transform, the pair

(A\A\{v(p}\peA(\}}}

becomes the β-linear Gale transform of (NQ, {n(p) \ p e zl(l)}), and the defining relation
for the Q-linear Gale transform coincides with the defining relation for the Chow ring:
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n(p)®v(p) = Q n NQ®QA(A .
.peJ( l )

If a subset Ξ of TV is given, then it is known that there exists a convex polyhedral
cone decomposition of G, called the GKZ-decomposition (cf. [24]), with support G>0.

To describe it, let us introduce necessary concepts.
For the time being, we assume that A is a simplicial fan for TV such that the support

I A I is convex and spans NR over R. (Note that A may not be complete.)
Let us denote PL(J) : = SF(TV, A) ® ZR. A function η in PL(zl) is said to be convex if

η(w + w') < η(w) + f/(w') for all w, w' e | A \ .

A function ηεPL(A) is said to be strictly convex with respect to A if there exists an
mσ E MR for each σ e A such that

η(w) = <raσ, vv> if w e σ

η(w) > <wσ, w> otherwise .

A fan A is said to be quasi-projectile if there exists an τyePL(zl) which is strictly
convex with respect to A. If a fan A is complete and quasi-projective, then A is said to
be protective.

We denote by CPL(zl) the cone consisting of all convex functions in PL(J).

By using the toric Kleiman-Nakai criterion (cf. [24, Theorem 2.3]), we see that a
fan A is quasi-projective if and only if CPL(J) spans PL(zl) over R.

From now on, we fix a finite subset Ξ of primitive elements in N such that Ξ spans
NR over R.

DEFINITION. A fan A for N is said to be admissible for (TV, Ξ) if
( i ) A is quasi-projective,
(ii)

(iii)

We denote by Ξ(Λ) the subset consisting of those elements in Ξ which are of the
form n(p) for some p e A ( l ) . Note that Ξ(A) ΦΞ may happen. For any given Ξ, however,
there always exists a simplicial fan A such that A is admissible for (TV, Ξ) with Ξ(J) = Ξ,
as we now prove by using the concept of pulling (cf. [11]).

DEFINITION. Let P be a convex poly tope in Rr with the vertex set ver(P) = Ξ. For
ξeΞ and c> 1, the convex hull P^ : =conv((ver(P)\{ξ}) u {cξ}) is said to be obtained
from P by pulling ξ to cξ if (ξ, cξ~\Γ(H—0 for the hyperplane H determined by any
facet of P, where (ξ, cξ] : = {aξ \ 1 <a<c}.

Eggleston, Grϋbaum and Klee [5] described all the faces of P^. explicitly. Using
a similar concept of pushing instead of pulling of vertices, Klee [16] constructed a
simplicial convex polytope P^ from a given convex polytope P.
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THEOREM 4.1. Let Ξ be a finite subset of primitive elements in N such that Ξ spans

NR over R. Then there exists a simplicial and admissible fan Δ for N which is full, that
is, Ξ(Δ) = Ξ. In the two-dimensional case, such a fan Δ is unique.

In order to prove this theorem, we use the following lemma:

LEMMA 4.2. Suppose that Δ is a simplicial fan with r-dimensional convex support.
Then Δ is quasi-projective if and only if there exists cξ>Qfor each ξeΞ(Δ) such that the

convex hull conv({cξ - ξ \ ξ e Ξ(Δ)} u {0}) gives rise to the same fan as Δ by projection from 0.

PROOF. Suppose that Δ is quasi-projective. Then there exists an ηePL(Δ) which
is strictly convex with respect to Δ. Replacing η by η + m for a suitable raeΛf, we

may assume that η(ξ)>Q for any ξeΞ. Put cξ: = \/η(ξ). Let us denote P: =
conv({cξξ I ξ eΞ(A)} u {0}). Let ̂  be the set of all facets of P which do not contain 0.

For any σeΛ(r), let σ = R^.0ξi + - - - +/?>0£r for ξl9..., ξreΞ(A). We denote by Hσ

the hyperplane passing through the points cξίξl9..., cξrξr. Since η is strictly convex

with respect to A, PnHσ becomes a facet of P satisfying ΣxepπHσR>ox==σ and 0£
PnHσ. So we can find a facet PnHσG^ corresponding to each σezl(r).

On the other hand, for any facet Fe^ let HF be the hyperplane containing F.
Then there exists a linearly independent subset {£ls . . . , ξr}<=Ξ such that HFr\P=

conv{cξίξ1,..., cξrξr} and that /?>0£i + + R>0ξreA(r), because η is strictly convex
with respect to A. Thus there exists a one-to-one correspondence between the subset
&* of facets of P and the set of r-dimensional cones in Δ.

For the converse, we define a map η by η(ξ)= l/cξ for any ξeΞ and extend it to
I A I in such a way that η becomes piecewise linear with respect to A. This is possible,
because Δ is assumed to be simplicial. Obviously η is strictly convex with respect to Δ
by assumption. q.e.d.

THE PROOF OF THEOREM 4.1. Let us denote P0 : = conv(Ξ u {0}). If veτ(P0) Φ Ξ (or
Ξu {0}, if Δ is not complete), then we can find xξ>0 for each ξeΞ\ver(P0) such that

P : = conv(ver(P0) u {xξξ \ ξ eΞ\ver(P0)} u {0})

becomes a convex polytope with ver(P) = Ξ (or Ξu {0}, if Δ is not complete).
Note that this convex polytope P may have a facet which is not an (r— l)-simplex.

But if we use a method similar to that in [5, Theorem 2.1] and [16, Corollary 2.5], we
can find a cξ>0 for each ξeΞ such that every facet of the new convex polytope P^,
which is obtained from P by pulling ξ to cξξ for any ξeΞ, is an (r— l)-simplex. Let us
define

σF-= U ^>o*
xeF

for any facet F of P^ with 0 $ F. Then it is clear that σF is an r-dimensional cone. Now
we define
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A : = (the faces of σF \ F: a facet of P* with 0 φ F} .

Then A becomes a simplicial fan with Ξ(Δ) = Ξ. It is clear that A is quasi-projective by
Lemma 4.2.

The uniqueness in the two-dimensional case is clear. q.e.d.

Recall the exact sequence of Q- vector spaces

ξeΞ

For any simplicial and admissible fan A, we define the cone CPL~(zl) in Z£ : = Z* ®QR

to be the set of all elements x = ΣξeΞxξe*eZR satisfying the following: There exists an
ηeCPL(A) such that

xξ > η(ξ) for all ξeΞ and that xξ = η (ξ) for all ξ e Ξ(A ) .

CPL~(zl) contains the nontrivial vector subspace MR. We denote by cpl(zJ) the image
of CPL~(A) in G \ = GQ®QR. Then cpl(J) is a maximal-dimensional strongly convex
cone, that is,

and

dim cpl(J) = dim G = %Ξ — r ,

since A is assumed to be simplicial and quasi-projective.

REMARK. (1) We have proved the following in [24, Proposition 3.3 and Theorem
3.5]: Let Ξ be a finite subset of primitive elements in TV. Assume that Ξ spans NR over
R. Then we get

and

(***)
A £e£

where A runs through all the simplicial fans admissible for (N, Ξ).
(2) V. Batyrev pointed out that the above (***) can be regared as one on the

existence and uniqueness of the Zariski decomposition of effective divisors, and suggests
a possible nice formulation of the problem for general higher-dimensional algebraic

varieties and arithmetic varieties.
(3) In fact, the collection of all faces of cpl(χl)'s for all simplicial and admissible

fans A becomes a cone decomposition with support equal to G>0. We call this

decomposition the GKZ-decomposίtίon for (NR, Ξ) and call cpl(zl) the GKZ-cone for
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A. Furthermore, we can describe all the elements in this collection explicitly. Indeed,
by defining the GKZ-cones for any admissible convex polyhedral cone decompositions,
we see that GKZ-cones corresponding to nonsimplicial fans become faces of GKZ-cones
corresponding to some simplicial fans.

By [24, Theorem 3.12], we can describe a relation among the GKZ-cones in the
GKZ-decomposition as a relation among the corresponding fans. Namely, the cone

cpl(J) ncpl(zl') is a facet of both cpl(zl) and cρl(zl') if and only if one of A and Δ' is a
star subdivision or a flop of the other. For the definition of a star subdivision and a
flop, see [24].

It Δ is simplicial, by the definition of cpl(J) we have

Cpl(J)= Π ( Σ *;
σ e Δ(r) \ξe Ξ\(Ξ(Λ) n σ)

If A is simplicial with Ξ = Ξ(A)9 then the above expression is related with [26]. As we
have seen in [24, Corollary 2.4], η is strictly convex with respect to A if and only if

η-= Σ η(ξ)g(ζ)e Π ( Σ *
ξeΞ σe A(r) \ξeΞ\(Ξnσ)

where R>0: = {xeR\x>0}. This is the same result as [26, (3) Theorem].
By the property of the linear Gale transform, the set A c Ξ is an /?-basis of NR if

and only if g(Ξ\Λ) : = {g(ξ)\ξEΞ\Λ} is an /?-basis of G. Hence we see that every
GKZ-cone cpi(zl) can be written as an intersection of cones which are generated by

some j?-bases for G. Moreover, we get the converse correspondence as follows:

THEOREM 4.3 (cf. [3]). For an R-basis Ωag(Ξ)for G, we denote

CΩ:= Σ *>o0(O,
9(ξ)eΩ

which is a maximal dimensional cone, that is, dim CΩ = %Ξ — r. Let A be a ($Ξ — r)-
dimensional cone in G>0 of the form ^4 = p|βCΩ, where Ω<^g(Ξ) runs through some R-
basesfor G. Suppose that for any R-basis Ω' c= g(Ξ) for G, CΩ, contains A whenever CΩ,
meets the interior of A. Then there exists a unique simplicial and admissible fan Δ satisfy-
ing cp\(A) = A.

PROOF. Let Θ be the set of all /?-bases Q<^g(Ξ) for G satisfying CΩ^A. Choose
an element y from the interior of A. Let x be the pre-image of y in Z£ under the map

ZR -»G. Then x is contained in the set

MR+ Σ R>oe* = U {CPL~(zl) I A : simplicial and admissible} .
ξeΞ

Thus there exists a simplicial and admissible fan A satisfying xeCPL~(A). Namely,
there exists an mσGMR for any σeA(r) such that xξ>(mσ,ξy for ξeΞ and that
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xξ = (mσ9 ζ y for ξeΞ(A)nσ. We claim that x is contained in the interior of CPL~(zl).
To show this, suppose that x is contained in the boundary of CPL~(A). Then there

exist σ0eA(r) and ξ0€Ξ\(Ξ(A)nσ0) such that *5o = </wσo, ξ0> Let σ0 = /?>0^ι + ' ' ' +
/?>0ξ rfor anabasis {ξl9 ...9ξr}cΞ(A). Then the setQ : = {0(ξ)|ξe3,
(£) becomes an /?-basis for G. We have

By assumption, we have CΩ=>A. Hence y is contained in the interior of CΩ, a contra-
diction to the assumption Xξ0 = (mσo, £0>. Hence .x is contained in the interior of
CPL~(/I). Hence ^d is the unique fan satisfying xeCPL~(zl).

As we have seen above, any r-dimensional cone σezl(r) gives rise to an /?-basis

for G, satisfying CΩ=>A. Conversely, for any Ωe<9, the set

\*^ ,,

becomes an r-dimensional cone in A. Consequently, we have

= n ( Σ *,
ΩeΘ\g(ξ)EΩ

q.e.d.

COROLLARY 4.4. There exists a one-to-one correspondence between the set of
simplicial and admissible fans and the set of maximal dimensional cones f}ΩeΘCΩ which
are not separated by CΩ> for any R-basis Ωf ci g(Ξ) for G, where Θ runs through all the
possible subsets of all the R-bases Ω c= g(Ξ) for G.

PROOF. By what we stated before Theorem 4.3, a simplicial and admissible fan
gives rise to a cone of the form f}ΩCΩ. We get the converse correspondence by Theorem
4.3. q.e.d.

EXAMPLE. Let Ξ : = {«, «', —n, —n — ri, n — n'}^N^Z2, where {«, n'} is $ Z-basis
for N. Then there exist eight different simplicial admissible fans. Among those fans,
there is a unique fan A0 which is full (cf. Theorem 4.1). Let A be a fan consisting of

all the faces of the following three cones:

σ^ : =

Then the corresponding toric variety S : = TNemb(A) becomes the weighted projective
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plane P(l, 1, 2) (cf. [20]). The toric variety X0 : = TNQmb(A0) corresponding to A0 is
obtained from S by blowing-up at the following two Γ^-fixed points of S:

Pi ' = V(σ^ and p2 : = K(σ2) .

G>0 is a three-dimensional strongly convex cone spanned by the set

in A1(A0)R \ = Al(Δo)®QR. By choosing all the /?-bases for G = Al(ΔQ}R from the set
g(Ξ) = {v(p)\ρe A0(l)}, we get the GKZ-decomposition consisting of eight different
three-dimensional cones. Using Theorem 4.3, we can express the corresponding fans

immediately. The corresponding β-factorial toric varieties are
( i ) S=P(1, 1,2),
( ii ) (resp. (iii)) the equivariant blowing-up Xί (resp. X2) of S at the ΓN-fixed

point /?! (resp. p2\

(iv) X09

( v ) (resp. (vi)) the Hirzebruch surface Fί = : Yί (resp. Y2) obtained from X0 by
contracting K(/?>0 (n — n'J) (resp. K(/?>0( — « — «'))), and

(vii) (resp. (viii)) the projective plane P2(C) = : Zγ (resp. Z2) obtained from Y±

(resp. F2) by contracting K(/?>0( — «)) (resp. F(/?>0(«))) in Y1 (resp. Γ2)

It is clear that the GKZ-decomposition of G is uniquely determined by the given
set Ξ. From this, we obtain all possible fans and get information on the relations among
these fans.

Suppose that A is a complete fan for N. Then by the property of the linear Gale
transform, G>0 becomes a strongly convex cone. As the example above suggests, the

GKZ-decomposition of G has some core which is the union of the GKZ-cones
corresponding to fans which are full, simplicial and admissible. A becomes coarser as
cpl(zl) goes to the boundary of G>0. In fact, the core in the above sense also becomes
a cone in G>0, even if A is not complete, as we now show.

THEOREM 4.5. Let Ξ be a finite subset of primitive elements in N such that Ξ spans
NR over R. We denote by <$ the union ofCPL~(A) 's corresponding to all fans A which
are full, simplicial and admissible for (N, Ξ). Then <$ is equal to the set of those elements

x= Σ xξeξeMR + Σ
ξeS ξeΞ

which satisfy

whenever

ξ1,...,ξp,ξeΞ and a1ξ1 + +apξp = ξ for some ai9 . . . , ap>0 .
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So the image ^of^ in G becomes a convex polyhedral cone contained in G>0. If both
CPL~(Zl) and CPL~(/Γ) are contained in #, then A can be obtained from A' by a finite
succession of flops.

PROOF. Suppose that x = ΣξeΞxξe* ^s contained in ,̂ hence x is in MΛ +
Σ^es ̂ o^*- By assumption, there exists a fan A which is full, simplicial, admissible,
and satisfying ;ceCPL~(zl). Hence, there exists an ηeCLP(A) such that xξ = η(ξ) for
any ξeΞ. If aίξ1-{- - +apξp = ξ holds for ξ l 5 ..., ξp9 ξεΞ and for some al9 . ..,0p>0,
then

because */ is convex.
Conversely, suppose that ^ = XξeιS^^*eM|l + ̂ eS/?>0e| satisfies the assump-

tion. Recall that

where A runs through all the simplicial and admissible fans. Thus there exists a simplicial
and admissible fan A satisfying xeCPL~(A). Namely, there exists an ηeCPL(A) such
that xξ > η(ξ) for any ξ e Ξ and that the equality holds if ξ e Ξ( A). For any £ G Ξ\Ξ(A),
we can find an r-dimensional cone σ : = R>0ξι+ - - - +R>0ξreA(r) containing ξ. Thus,

ξ = alξl+ - +arξr for some al9...,ar>0 .

Hence we have

xξ>η(ξ) = η(a1ξ1+- ' ' +arξr) = a1η(ξι)+ - +aj(ξr) = a1xξί+ +arxξr>xξ9

by assumption. This implies that xξ = η(ξ) for all ξeΞ. We can find a subdivision zΓ
of A such that zΓ is full, simplicial and admissible as in Theorem 4.1. It is clear that
xεCPL~(A').

As for the last statement of the theorem, we just note that A and A' are full. So
J(l) = zΓ(l) and the case of a star subdivision in [24, Theorem 3.12] cannot occur in
the present situation. q.e.d.

5. Full and simplicial fans. In this section we consider only those fans which are
full, simplicial and admissible for a fixed (N, Ξ).

Recall that dimNR = r. An (r— l)-dimensional cone τeA(r— 1) is called an internal
wall if there exist σ and σ' in A(r) such that τ = σ n σ / . It is clear that every
(r— l)-dimensional cone is an internal wall when A is complete. We have described the
dual cone of the GKZ-cone cpl(J) in [24] for a convex polyhedral cone decomposition
A having convex r-dimensional support. If A is full and simplicial, we can describe it
more explicitly as follows:
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THEOREM 5.1 (cf. [24, Theorem 2.3]). Let A be a full and simplicial fan for N
with r-dίmensional convex support. Then for each internal wall τeA(r— 1), there exists
a nonzero element lτ e G * uniquely determined up to positive scalar multiple such that

τ: internal wall

PROOF. Let τeA(r— 1) be an internal wall. Then there exist ξl9 . . . , ζr + 1 eΞ and
σι(τ)> σ2(τ)e^(r) which depend on τ and satisfy τ = σ1(τ)nσ2(

τ) with

' ' ' +Pr+ι(τ) >

where we denote pf(τ) : = /?>0^ (τ)ezl(l) for /'= 1, . . . , r+ 1. By renumbering the indices
if necessary, we have a relation

Σ fl££f(τ)= Σ (-^+jXP+/τ) for some al9 ...9ap,(-ap+ί), ...,(-ap+q)>0
i=l j=l

among the elements in a minimal linearly dependent subset of {£ι(τ), . . . , ξr+ί(τ)}9 where
/?, ^ are intergers with/?>2, ^>0 and/? + ̂ <r+ 1. If we put

lτ:=Σ aieξi(τ}- Σ (-<*p+j)eξp+J(τ),

then by the definition of cpl(zl), we can deduce that cpl(J)v =Στ: internal waiι^>o4
q.e.d.

Let A be a complete simplicial fan which is full. Recall that there exists a perfect
pairing

in this case (cf. Example in Section 4), and that Ar~ 1(A) = Στe jo - i)(Mτ) ^y Proposition
1.1.

PROPOSITION 5.2. L^ί A be a complete simplicial fan which is full. Then

A'-\Δ)By^ Σ Lyv(p^epeZ= ® Qep
peJ(l) PE^(1)

induces an isomorphism

Ar-1(A)R: = A'-1(A)®QR^G* : = (GQ)*®QR

which sends cpl(J)v onto (A'-\Δ)R)ί0 : = Στe^-i)Λsof(τ).
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PROOF. Since A is complete, every wall τ 6 Δ(r — 1) is an internal wall, that is, there

exist p^ p2eA(l) such that

z!(r), σ2 : = τ + ρ2eA(r),

satisfying a relation

for some aί9 a2>Q and apεQ. Recall that (cf. Theorem 5.1) cpl(J)v =

and that we can put

in this case. If we regard cpl(J)v cG* as a subset of ZR := Θp6j(1)^p, then we have

^(resρ.02) if p-p1(resp.p2)

ap if p<τ

0 otherwise.

On the other hand, we have an isomorphism

by identifying y e Ar~ l(A) with a map which sends v(ρ) e A1 (A) to [y - v(p)~] e β, in view

of the perfect pairing

Ar-\A) x A1 (A)—>Ar(Δ)^\Q .

Hence by the map

Ar'\Δ)^Z= ® Qep, y^ Σ [7

we have isomorphisms Ar~l(A)R^+G* as well as

for any τeΔ(r— 1) by Corollary 2.8. q.e.d.

EXAMPLE. Let X : = Γ/vemb(J) be the toric variety corresponding to a complete
simplicial fan A which is full. The above isomorphism Ar~1(A)R^^G* induces the mu-
tually dual short exact sequences (cf. Example in Section 4)

peA(l)
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G>Q = (A1(A)R)>0 is equal to the cone spanned by the linear equivalence classes of
Testable effective divisors, and cpl(zl)c=(^1(J)Jl)^0 becomes the cone spanned by the

linear equivalence classes of numerically effective divisors. By the isomorphism
Ar~ί(Δ)R-!^->G* in Proposition 5.2, we have the identification of the dual cone

Thus cpl(zl)v becomes the cone of effective one-cycles modulo linear equivalence, that

is, the Mori cone NE(X) :=Στ6A(r_ί}R>0υ(τ) (cf. [19] and [25]).

REMARK. Batyrev [2, Theorem 2.15] expressed the Mori cone in a different way,

when Δ is complete and nonsingular. He used a new concept of primitive collections. If

A is complete and nonsingular, then cpl(J)v =Στ6 j ( r_1)^>o4 If ^>o4 is an extremal

ray (i.e., a one-dimensional face) of cpl(zl)v, then τ gives rise to a primitive collection.

We see that not all of the primitive collections come from the extremal rays of cpl(zl)v

in this way. The total cone cpl(zl)v itself, however, is equal to the cone Pr(Jf) generated
by the primitive relations for primitive collections, and coincides with the Mori cone
NE(X).

Coming back to the general case where A may not be complete but has r-dimensional
convex support, we have another proof of a result in Reid [25].

PROPOSITION 5.3 (cf. [25, Corollary 2.10]). Let dim7VR = r>3, and let Δ be full,
simplicial and admissible for (TV, Ξ). Let us denote

τ0 = σ 1 n σ 2 :=p3+ +p r + 1e J(r-

τ

k :=p3

Furthermore, let

τ

k : = p 3 + . - . + v + +p r + 1eJ(r-2) for any fc = 3, . . . ,

Σ 0i*(Pί) = Σ ap7=1

for some al9 . . . , ap+q > 0, be a relation among the elements in a minimal linearly dependent

subset 0/{«(Pι)> . . . , n(pr+1)}. Suppose that R>0lτo is an extremal ray ofcp\(Δ)y. Then
we have the following:

(1) For any fc = 3, . . . ,/?, let

τ2 : = τk + p2eA(r-l) .

Then lτ^lτ2eR>QlτQ

(2) For any k=p + q+ 1, . . ., r, if there exists a n(p') e Ξ = {n(p)\ p e Δ(l)} distinct
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from n(pι), . . ., n(ρr+ί) such that τ' : = p' + τkeA(r-\), then /τ,e/?>0/τ o and

PROOF. For any k = 3, . . ., r+1, it is clear that τk + pfc, -f + pl9 τk + p2εA(r — 1).
Suppose there exists a p0e J(l)\{pl5 . . . , pr+i} such that p0 + τ f cezl(r— 1). Since
Ml is convex, we may assume that σ : = τk + p0 + p1eA(r). For any xeCPL~(/4)c=

Θpej(i)^*> we can express x as

* = zσ + X xpe* for some zσeMR and ;cp>0.
peJ( l ) , p-<σ

Recall that /?>040 *
s an extremal ray of cpl(zl)v if and only if

is a facet of CPL~(Λ). We may take 7τo : =Σί= i <¥?,,- Σ?= i aP+jePP+j (cf Theorem 5.1).
Hence we have for x e F,

Σ V? ,
(\),p^σ »=

«
«i«(Pi)- Σ <*p+j

7=1

(1) If 3<k<p, then β2, α fc>0. So F cannot be a facet of CPL~(,d). Hence for
any pe/d(l) distinct from p l 5 . . . , pr+1, we have p + τ k^zl(r— 1). Since | Zl | is convex,
we have τfc + p1+p2ez!(r), and clearly /τι, / t2e/?>0/ to.

(2) If /? + r̂ + 1 < k < r + 1 , then <;c, /τo> = xp2 α2. So c e F implies xp2 = 0. If there is

another pezl(l) distinct from p0, . . . , pr + 1 such that p + τkεA(r— 1), then xp = 0 for the
same reason, which contradicts the fact that F is a facet of CPL~(zl). So we have

Hence we are done, if we take p' : = p0. q.e.d.

6. Application to isolated singularities. As another application of the GKZ-

decomposition, we consider a toric variety which has at most one bad isolated singu-
larity and possibly some quotient singularities.

Choose and fix an r-dimensional strongly convex rational polyhedral cone π in NR

such that any proper face of π is simplicial.
Let ΔQ be the fan consisting of all the faces of π. Then the corresponding toric

variety X0 has one possible bad isolated singularity at the point orb(π) and Jf0\orb(π)
has at most quotient singularities.

Let Ξ : = (n(p) | p e z!0(l)} and consider the Q-linear Gale transform of (TV, Ξ). Since
π is strongly convex, G>0 becomes the whole space G (cf. [24, Proposition 1.4]). For
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any maximal dimensional GKZ-cone cpl(zl) in the GKZ-decomposition, the cor-
responding fan A is a quasi-projective simplicial subdivision of ΔQ with A ( l ) = A0(l) (cf.
[24, Corollary 3.8]). The corresponding toric variety X = TNemb(A) has at most quotient
singularities. We also see that for any pair of maximal dimensional GKZ-cones, the
corresponding fans can be obtained from each other by a finite succession of flops.

DEFINITION. A fan A is called a small simplicial subdivision of π if it satisfies the
following:

( i ) A is simplicial.
(ii) \A\ = π.

(Hi) Any proper face of π is contained in A.
(iv) dimσ for any cone pezl is greater than r/2 whenever σ meets the interior

int(π) of π.

Such a small simplicial subdivision may not exist and may not be unique. In fact,
we have examples of π which do not have any small simplicial subdivision.

PROPOSITION 6.1. Let π be an even-dimensional strongly convex cone and Ξ =
{n(p) |p-<π, dimp= 1}. Suppose that there exists a small and quasi-projective simplicial
subdivision A of π. Ifcp\(A') is a GKZ-cone such that F: = cpl(/d)ncpl(zΓ) is a facet of
both cpl(zl) and cpl(zΓ), then A' cannot be small.

PROOF. Let R: = R>0lτ be the extremal ray (cf. Theorem 5.1) of cpl(zl)v cor-
responding to the facet F. Then there exist a minimal linearly dependent set {«(Pι)>...,
n(pp+q)} and a relation

f q
<V*(Pi) = Σ ap+jn(pp+j) for some ah ap+j>ΰ ,

i = l j = l

where pi9pp+jeA(l) are one-dimensional faces of σl9σ2eA(r) satisfying σ 1 n σ 2 = τ,
while p and q are intergers such that p + q<r+ 1 and p,q>2.

Without loss of generality, we may assume that Pι+τ = σ± and p2 + τ = σ2. Then,
by the construction of a flop A' of A, we see that

Pi+ "+PPΦA , Pp+ι+ '+Pp+q€A ,

Pι+'-+PPeΔ', pp+i+- +pp+qφA'.

Thus, Pi + +Pp and ρp + 1 + +pp+q are not proper faces of π, and these cones
intersect the interior of π. Since A is small, we have q>r/2, hence p + r/2<p + q<r+ 1.
Thus p<r/2, which implies that A' cannot be small. q.e.d.

If we cut this cone π by a hyperplane not passing through the origin, then the
intersection becomes an (r— l)-dimensional simplicial convex polytope. Thus, by
considering combinatorial types of simplicial convex poly topes (cf. [19, Appendix]),
we have some information in lower dimensional cases.
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Recall that a simplicial subdivision A of π is said to be non-divisorial if it does not

introduce any one-dimensional cones other than the one-dimensional faces of π (cf.

[23]). As we have seen in [24, Corollary 3.8], for any π there always exists a non-divisorial

quasi-projective simplicial subdivision A of π.

PROPOSITION 6.2. (1) Ifr = 3, then every non-divisorial simplicial subdivision ofπ

is small.

(2) Ifπ with r = 4 has a small simplicial subdivision, then it is unique.
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