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Abstract. On a complex manifold of dimension more than two which admits a
holomorphic conformal structure, we define conformal Weyl forms, a kind of char-
acteristic forms, by means of the holomorphic conformal Weyl curvature tensor, and
prove a formula which relates these forms with Chern forms.

Our result is a conformal analogue in the holomorphic case of our previous result
[Kt] on projective connections, and gives a more precise description of a theorem of
Kobayashi-Ochiai [KO, Theorem 3.20] in the case of dimension more than two. At
present, we do not know whether a similar formula exists in the general case where the
manifold admits only differentiable conformal structures.

In Section 1, we shall give the definition of holomorphic conformal structures and
holomorphic conformal connections. In Section 2, we shall calculate the conformal
Weyl curvature tensor explicitly. The process of the calculation will be used in Section
3. In Section 3, we shall prove our main result (Theorem 3.2). I would like to express
my sincere gratitude to Professor Tadashi Nagano who suggested to me that there
would be a conformal analogue of my previous result [Kt, Theorem 3.1].

1. Holomorphic conformal structures. In this section, we shall give the defini-
tions of holomorphic conformal structures and holomorphic conformal connections
together with some preparations for later sections. Let X be a complex manifold of
dimension n > 1 . Take a locally finite open covering ύlί ={ UΛ} of X so that on each UΛ9

there is a system of local coordinates zα = (z*, z^, . . . , z").
Put

and denote by τΛβ the Jacobian matrix of φaβ. On UΛ n Uβ, we consider an n x «-matrix-
valued holomorphic 1-form

and a scalar- valued holomorphic 1-form
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σΛβ = — Trace aaβ = —d log det τaβ .
n n

We write σΛβ as

σ*β = σ*βjdzβ

and define another n x w-matrix- valued holomorphic 1-form pΛβ = (pj

Λβk) by

lt is well-known and easy to check that the sets {aΛβ}, {σΛβ}, {pΛβ} are 1-cocycles which

define elements of

Hl(X, ΩHEndCΘ))) , H\X9 Ω1) , and H\X,

respectively.
We say that a complex manifold X of dimension n > 1 admits a holomorphic

conformal structure if the structure group of the tangent bundle reduces as a
holomorphic bundle to the conformal group CO(n, C). Let S<=GL(n, C)/C* be the set
of non-singular symmetric matrices factored by the non-zero scalar matrices. We form
a holomorphic fibre bundle

Z=(\JUxxs]
\ « /

on X with the typical fibre S by identifying (zα, SΛ) e UΛ x S with (zβ, sβ) e Uβ x S if and
only if zα = z/? and sβ =

 tτ(xβs0[τΛβ. Let π : Z->A^ be the natural projection. That X admits
a holomorphic conformal structure is equivalent to saying the π admits a holomorphic
section. A holomorphic section g of π is also called a holomorphic conformal structure

of JT.
Now suppose that X admits a holomorphic conformal structure g. Then on each

UΛ9 g is represented by a holomorphic symmetric (2, 0)-form

such that

(0 9β = fβ*9Λ on UanUβ9

where /^α is a nowhere vanishing holomorphic function defined on UΛ n Uβ and

(2) det(0βiχ*))*0 for all xeUΛ.

Let F be the holomorphic line bundle on X formed by the 1-cocycle {faβ}. Then
{gΛ} can be regarded as an element of Γ(X, &>2(Ωl) ® F\ where ^2(Ωi) indicates
the second symmetric power of Ω1. Note that two sections {ga} and {ha} in
Γ(X, t9

?2(Ω1) (x) F) represent the same conformal structure if and only if on each UΛ



HOLOMORPHIC CONFORMAL STRUCTURES 53

there is a nowhere vanishing holomorphic function /α such that g(X = f(Xh(X. Put

G. = (0.y),

where the (/,y)-component is given by gaij. By (1), we have

(3) 0βn = fβΛgΛij<βr^βS on UΛnUβ.

It follows easily from (2) and (3) that the first Chern class of X has a following
property.

PROPOSITION 1.1 (cf. [KO]). n

We put

or

where gj

β

k is the (7, fc)-component of Gβ

 1. Then on UΛr\Uβn UΓ we have

This implies that the set {p*β} defines a 1-cocycle in Z1(X, Ω1® End<9). Now we
shall define a 1-cocyle {cΛβ} by

Cα/ϊ = 0 α/ϊ - Paβ ~ Paβ ~ σaβl >

which is also an element of Z*(X, Ω1 ® End Θ). As we see by the following argument,

the cohomology class represented by {cΛβ} turns out to be zero.
By means of the representative {gΛ} of g, we can construct explicitly a 0-cochain

{CΛ} e C°( ,̂ Ω1 ® End Θ) whose coboundary coincides with the 1-cocycle {cΛβ}9 i.e.,

(4) Cβ = cΛβ + τ*βlcΛτΛβ.

The 0-cochain {CΛ} is called a holomorphic conformal connection of X. We define the

Christoffel symbols \ > associated with the symmetric tensor gΛ on UΛ by
l ί/Ία

I \ =^_ ιkfdgaik SgΛJk dgΛij

17 J. 2* β V&.' 34 a

The conformal connection {cα} associated with the conformal structure {gx} is defined

by
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, f M δ} ( a \ δ] ( a \ I lh (a]
<4H ..\ — M . > — M . > +—g?g*j\ . f -

U J « « U J α * UOα H l ^ J α

Then by a direct calculation, we have

LEMMA 1.1.

(5)

(6)

REMARK 1.1. In view of (7), we see easily that the cochain {CΛ} is determined by
g and is independent of the choice of {gΛ}.

2. Conformal Weyl curvature tensors. From this section, we assume that
n = dimX>3. Using the notation in Section 1, we shall calculate the conformal Weyl
curvature tensor WΛ on each UΛ associated with a holomorphic conformal structure g.
In the proof of Proposition 3.1 in the next section, we shall make use of the following
tensor calculation, which is due to Thomas [Tl], [T2]. Put

e*β = CβP*β + PaβCβ + dpΛβ + pΛβ Λ pΛ

Ϊβ Λ PΪ= CβPΪβ + P&β + dpϊβ + PΪ

and

(8) ΛΛβ = eΛβ + e%β + pΛβ Λ p*β + p*p Λ pΛβ .

Then from (4) and (7), if follows that

(9) dcβ + cβΛcβ = τ-β\dca + CΛ Λ cΛ)τΛβ - AΛβ .

Put

FΛ = dcΛ + CΛ Λ CΛ .

Then the equation (9) is equivalent to

(10) Fβ = τ^FΛτΛβ-ΔΛβ.

We denote the (/, ^-components of cΛ9 Fα, eΛβ and AΛβ by c^9 FJ

Λk, e(βk and AJ

uβk9

respectively. Put
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Then we have

klm
(7Z-

= δ{ ( σΛβrc
r

βkm —^4- σΛβmσΛβk } -δj

m ( σaβrc
r

βkl —^ + σΛβlσΛβ
\ 3zy / V dzj,

?*/Wm = cJ

βrmgr

β

sσΛβsgβlk - cJ

βrlg
r

β

sσΛβsgβmk + gj

βσaβrgβmsc
s

βkl - gj

β

rσΛβrgβlsc
s

βk

By a direct calculation, we have

LEMMA 2.1.

By Lemma 2.1, (12) can be written as

k\ σ<xβscSβrl ^~j~ + σaβrσaβl J ~~ 93β9βlk\ °'Λβs^βrm 7Γ~^ + σα/5rσα/?m 1
\ OZβ J \ OZo J

Put

Λβ '
( 1 3) 2έ?βA/k = σaβsc

s

βjk — -f- + σβ/ϊ/7β/Jk .
dzκ

β

Then we have

eaβklm = °leaβkm~δmeoιβkl ->

exβklm = 93β9βmkeΛβrl ~ 9Jβ9βlkeaβrm -

Note that p%b*pab = 0 (cf. (28)). By (8), it follows that
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(14) Δ{βklm = δ{eΛβkm - δίeaβkl + gj

β

rgβkmeΛβrl - gj

βgβkleΛβrm - δ{σΛβrg
r

β

sσΛβsgβk

+ δm

We set

From (14),

(19) ^α/ϊfc/ = -(n-2)e*βki

On the other hand, contraction of (10) gives

(20) F^ = Farsτ
r

Λβkτ
s

aβl - Δaβkl .

Hence we have

(n - 2)eΛβkl + gβklg
r

β

seaβrs = Fβkl - FΛrsτ
r

Λβkτ
s

Λβl + (n - l)gβklφΛβ .

Multiplying the above equation by g k

β , we obtain

(21) %n-l)fieaβld = Φβ-ΦJΛp + n(n-l)φΛβ .

Substitution from (21) in (19) gives

1 _ -Λ

ΔΛβkι =-(n- 2)eΛβkl - — - - gβkl(Φβ - ΦJΛβ) + -—-gβkι ΦΛβ -
2(n—l) 2

From this equality and (20), it follows that

1 _ Λ

Fβki = FΛrsτ
r

Λβkτ
s

Λβl + (n- 2)eΛβkl + — - - gβkl(Φβ - ΦJaβ) -- —gβkl φΛβ .2(n—\) 2

Thus, since «>3, we have

(22) eΛβkl = - - (Fβkl - FΛrsτ
r

Λβkτ
s

aβl) - — - — - - gβkl(Φβ - ΦJaβ) + — gβkl φΛβ .n — 2 2(n—\)(n — 2) 2

When eaβjk are eliminated from (14) by means of (22), φΛβ turns out to cancel out.
Therefore from (10), we see that the quantities
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FJ

βklm + — - (δ{Fβkm - δJ

mFβkύ + - - gjβr(gβkmFβrl - gβMFβrn—2 n—2

satisfy

(23)

Define an n x n-matrix-valued holomorphic 2-form W9 by

(24) Wf

Then (23) is written as

(25)

i.e., {W^ is an element of Γ ,̂ Ω2 (x) End Θ), which is called the conformal Weyl
curvature tensor associated with the holomorphic conformal structure g. For the
modern discription of the conformal Weyl curvature tensor in terms of Cartan
connections, see Kobayashi [Kb, page 137].

REMARK 2.1. By Remark 1.1, [W^ is defined independently of the choice of
{#α} which represents g.

3. Conformal Weyl forms and their relations with Chern forms. Let A" be a

complex manifold of dimension n > 3 which admits a holomorphic conformal structure
g. Let <% = {Ua} be an open covering of X and (z*, z*, . . . ,z") a system of local
coordinates on UΛ. The canonical line bundle Kx of X is represented by the 1-cocycle

{KΛβ}9 KΛβ = (detτaβ)-leΓ(UΛnUβ, (9$). On each UΛ9 there is a nowhere vanishing C°°
positive-valued function HΛ such that

hβ = \Kaβ\
2hΛ on UΛnUβ.

Suppose that the conformal structure g is represented by a holomorphic symmetric
(2, 0)-form

on each Ua with the relations

gβ = fβΛg* on UΛnUβ.

Using the metric Λα, we put σaj = (-l/n)(d\oghjdzί) and define a C°°-(l, 0)-form σα

by σΛ = σΛjdzί. Put ρ(k = σΛkdzJ

Λ and define a « x ^-matrix-valued C°°-(l, 0)-form pα whose
(7, fc)-component is ρ{k. Put p%= -G~ltρΛGΛ. Then we have
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σβ ~ σ* > P*β = Pβ~ τ*βlP*τ*β , Paβ = Pβ~ τ*β V* τ

Put

Then we have easily

Thus θ = {aΛ} gives an affine connection of the tangent bundle Θ. Let t be an
indeterminate and A an n x n matrix. Define polynomials φ0, φί9..., φn by

= Σ ψkW" -

First, the Chern forms ck(0), fc = 0, 1, ...,«, associated with the affine connection Θ is
defined by

where Λ = {^α} is the curvature tensor

(26) RΛ = daol-\-a0[Λaol

of the affine connection 0. Next, we shall define holomorphic 2k- forms %>k(g), k
0, 1 , . . . , n, associated with the holomorphic conformal structure g by

where WΛ is the conformal Weyl curvature tensor defined by (24). In view of (25), the
y>k(g) are indeed defined on the whole X.

THEOREM 3.1. The holomorphic Ik-forms Vk(g) are d-closed. The de Rham co-
homology classes [#k(0)], fc = 0, ...,«, are real and are independent of the choice of
the holomorphic conformal structure g.

This theorem follows as a corollary from the following main result.

THEOREM 3.2. Let X be a complex manifold of dimension n>3 which admits a
holomorphic conformal structure g on X. Then there exists a C™ -affine connection Θ on
X which satisfies the equality

= (\ -a2t2) Σ (1 -at)n-ktkck(θ),
fc=0

or equivalently,
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where a = (l/n)c1(θ) and ck(θ) (resp. ^k(g)) is the k-th Chern forms associated with θ
(resp. conformal Weyl form associated with g).

DEFINITION 3.1. The ^-closed holomorphic 2fc-form Ήk(g) is called the k-th con-

formal Weyl form associated with the holomorphic conformal structure g.

Note that we obtain the second equality of Theorem 3.2 by replacing t of the first
equality by //(I +at). Now we shall prove Theorem 3.2.

LEMMA 3.1.

(27) cΛΛpa

(28) pίΛp α =

PROOF. Proof of (27):

cίj Λ Pίk = c\jadzl Λ σΛkdzί = σΛkc\jadτ?Λ Λ dzJ

Λ = 0 .

The rest can be proved similarly.
Proof of (28):

P$ Λ Pik = - 9iaσ*adzΪ9*bj Λ σΛkdz]

Λ = - (^σΛaσΛk)gΛbjdzb

Λ Λ dzj

a = 0 .

The rest can be proved similarly.

The following proposition is useful to simplify our calculation.

PROPOSITION 3.1. Let {gy} be any representative of g. Let o be any point on X.
Choosing a suitable system of local coordinates (z*, . . . , z") on a neighborhood UΛ of o
with o = (0, . . . , 0), we have

(29) gΛ

(30) T
dz

(31) Fai

where φ is a certain constant.

PROOF. Choose any coordinate system zα = (z*, . . . , zJJ) on UΛ with o = (0, . . . , 0).
Let ga be a representative of g on UΛ. Write gΛ in terms of zα as

Since the nxn matrix (gΛij) is non-singular and symmetric, there is a non-singular
constant matrix A = (A j) such that

Define a new system of local coordinates zβ = (Zβ, . . . , zjj) by
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Then we have

Thus, if (z*, . . . , z") is replaced by (z\, . . . , zJJ), then the gΛij satisfy (29). Suppose that
the gΛij satisfy (29) with respect to a system of local coordinates (z£, . . . , z") with o =
(0, . . . , 0). Define a new system of local coordinates (z^, . . . , z£) by

where

Then 0α is written in terms of (z^, . . . , z£) as

Put

ί

Then using (29), we obtain

(32)

By

A'st = ̂ ~ ^=(β) + ̂ ϊ(β)-^=!(β)2 V δzl dz* dz'

and (32), we have easily

Thus, if (z.1, ...,zα

π) is replaced by (z£, . . . , z j f t 9 then the gfα0 satisfy (29) and (30).
Suppose that the ga satisfy (29) and (30) with respect to a system of local coordinates
(z*, . . . , z") with o = (0, . . . , 0). Define a new system of local coordinates (z^, . . . , z£) by

where
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By (13), (15), (18) and (19), we have

Si

Al

ljk - - - Al

lm

where / and m are summed. Since

we have

Δg.0 jk(o) = —— —— (o) — (o),
*βj 2 dzl, ' 2(n-2) dzί

where / and m are summed. On the other hand, by (11) and (16), we have

Therefore it follows from (20) that

F,^o) = Fαjk(o) - Δxβjk(o) = δjk

where / and m are summed. Thus (31) is satisfied for the system of local coordinates
(Zβ, . . . , Zβ). Obviously (29) and (30) are also satisfied for this system of coordinates, it
is enough to replace (z,1, . . . , z£) by (z/, . . . , zjj).

Let o be any fixed point on X. Suppose that o e UΛ. We fix a system of local
coordinates (z^, . . . , z") of Proposition 3.1, and omit the subscript α for simplicity. By
the definition of Christoίfel symbols, (29) and (30), we have

(33)

Hence the curvature tensor (26) is given at o by

R = δσl+ dp* + p* Λ p* + dc + p Λ p* + dp + p Λ p .

Using Proposition 3.1, at o we obtain

(34) R
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On the other hand, by (33), the conformal Weyl curvature tensor can be written as

W=dc + H+H* + J at 0,

where

n-2 v ^

'Λfl^fe*,

2Φ ' ir •
J=~< T^7 ™ W ' J] = 9jkdzk^dzl.

(Λ-l)(/ι-2)

Hence, using Proposition 3.1, we obtain

(35) W=dc + K at o,

where

K= (Kj), K] = -^— dzl Λ dzj.

LEMMA 3.2. dc]= —dc{ at o.

PROOF. By (29) and (30), we have

d
^ yJk J 2 V^z'δz* δz'δzj' dzldz

l m

2 \8zldzk dzldzj dzldzlj'

Hence we get

d ( a } 1 ̂  d2gnn d ( ,„ ( a ]\ 1 „ v d2gaa

Therefore

. j aa M δjk

dz1 2\dz'8zk 8z'dzJ dz'dz' In . dz'dz" 2n „ dzldzi 2n . dz'δz'

2 dzldzk 2n ^dzldzk ' 2 \dzldzj dzldzlj 2n ̂ \ ik dzldzj jk dzldzl

Hence we obtain
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dzl

LEMMA 3.3. ldρ/\dc = dc/\ K=0 at o.

PROOF. By Lemmas 3.1 and 3.2, t£dp*de) = dc*dp = Q. The equality dc/\K=Q
follows from dlc^ = dc}k and the equality

(dc Λ K)] = ̂ — dzj Λ rfcί, Λ ί/zfc Λ ί/zf .
n— 1

In view of the equations (34) and (35), we have by virtue of Lemmas 3.1 and 3.3 that

(36) /--^ Λ = //+_i- frfp-'p Λ'p)Y/-

2πiλ A 2πiλ

where

i

~2πi σ ?

and

(37) / — W=\I —dc](l —K
Λ \ Λ . / I Λ .2m \ 2m /\ 2m

We set

n 2πi

LEMMA 3.4.

1

2m J I-at

PROOF. The left hand side is equal to
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where / runs through all ^-tuples {j\J2, . . . Jq} with j\ <J2 < <jq, 1 <jλ<n, and
Qj is the # x ^-principal minor corresponding to /. Then

/ \«
(ί/σk-σkσ)Λί/zM = (dσ - σ Λ σ)4 = (

V /

since 5σ = 0. Hence the left hand side of 3.4 is equal to

— at

LEMMA 3.5.

1

V 2πι / l+at

PROOF. Taking the transpose of the matrix on the left hand side, we have

V 2πι / V 2πι

Hence the lemma follows from Lemma 3.4.

LEMMA 3.6.

det(/+— t —pΛ t p} = l .
V 2πi )

LEMMA 3.7.

detf /- /

2πι

The proofs of the two lemmas above are similar to that of Lemma 3.4.
By the four lemmas above, we have from (36) and (37) that

s
dc,

k=o 2πi

where s = t/λ, and

(38) Σ <tk(g)tk = άeil— dc .
k=o
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Combining these two equalities, we have Theorem 3.2.

THEOREM 3.3. Let X be a complex manifold of dimension n>3 with a holomorphic
conformal structure g. Then

- [τ]
PROOF. This follows immediately from Lemma 3.2 and (38).

By Theorems 3.2 and 3.3, the conformal Weyl forms are, for example,

3n2

_ ( n - l ) ( - ^

The following is a consequence of Theorem 3.2.

COROLLARY 3.1. The conformal Weyl forms are d-closed. The de Rham coho-
mology classes of the conformal Weyl forms are real cohomology classes and are

independent of the choice of holomorphic conformal structures.

For «>3, the following corollary gives a refinement of [KO, Theorem (3.20)].

COROLLARY 3.2. If a compact complex manifold with dimension n>3 admits a

holomorphic conformal structure, then all k-th conformal Weyl forms with 2k>n vanish.
If, further, the manifold is of Kάhler then all k-th, k>\, conformal Weyl classes are zero.

PROOF. All fc-th conformal Weyl forms are holomorphic 2£-forms. Therefore if
2k>n then the &-th conformal Weyl form vanishes. Since d-closed holomorphic
w-form represents a real de Rham cohomology class only if it represents a zero class,
we see that the «-th conformal Weyl class also vanishes. If the manifold is of Kahler
then we can apply Hodge theory. Since the conformal Weyl forms are holomorphic,
they are harmonic. On the other hand, the conformal Weyl classes are real by
Corollary 3.1. Therefore they vanish by Hodge theory.
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