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Abstract. The oscillatory behavior of the solutions of a Volterra type equation
with delay is investigated. Sufficient conditions on the kernel are given which guarantee
that the oscillatory character of the forcing term is inherited by the solutions.

1. Introduction and preliminaries. In this paper we investigate when the oscillatory

character of the forcing term / of the Volterra integral equation with delays of the form

(1.1) x(t)

is inherited by the solutions.
As we can see from [2], [6], [27] and the references cited therein, the equations

of the type (1.1) arise, for example, in certain applications to impulsive theory. It has
also been a very interesting subject to study how the behavior (e.g., boundedness,
convergence, periodicity, asymptotic periodicity, slow (or almost slow) varyingness) of
the forcing term / produces the same property of the solutions of a Volterra integral
equation under certain conditions on the kernel K (cf. [8], [9], [12], [13], [15], [16],
[17], [18], [19]). Therefore it is natural to investigate how oscillation of the forcing
term / can be inherited by the solutions of (1.1). Our aim here is to establish conditions
on the nonlinear (in general) kernel K under which if the function / is oscillatory,

strongly, quickly, moderately or slowly oscillatory, then every solution of (1.1) is
oscillatory, strongly, quickly, moderately or slowly oscillatory, respectively.

Before giving the definitions of various types of oscillations mentioned above, we
have to present some preliminaries needed in the sequel.

Let C: = C([ — r, 0], R) denote the Banach space of all continuous functions
mapping the interval [ — r, 0] into R endowed with the sup-norm || ||. For any function

c: R\-^R and teR+, we define xt by xt(ff):=x(t + θ), θe[-r, 0].
The following assumptions will be used throughout this chapter without any further

mention.
(Ax) /: R+ h-» R is continuous.

(A2) K maps the set {(ί, s): 0 < s < t, t > 0} x C into R.
(A3) The function φ \-+ K(t, s, φ) is continuous, and maps bounded sets into
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bounded sets. Moreover for each bounded subset B^C the function s*-+supφeB K(t, s, φ)
is measurable in s for fixed t.

(A4) The function t\- *>K(t, s, φ) is continuous for each fixed (s, φ}.
(A5) For all (£, 5) the following holds:

(1.2) Λ:(ί,s,φ)>0 i f φ > 0 and Λ{f,s,φ)<0 i f φ < 0 .

By a solution of (1.1) with initial function φeC, we mean a function x which is
continuous on [0, +00), satisfies (1.1) and <p(0) = /(0) and x(s) = φ(s) hold, where
JG[-r,0].

For existence, uniqueness and continuous dependence of solutions of (1.1), we refer
to the papers [3], [4], [6] and for some other related results we refer to [1], [2], [3],
[4], [14], [20], [27], [28].

We use the following definitions of oscillations.
A function x is said to be oscillatory if for any tl >0

A function x is said to be strongly oscillatory if

lim inf χ(t ) < 0 < lim sup x(t) .
f-» + oo ί-» + 00

A function x is said to be quickly oscillatory if there exists a sequence of points
{tn} such that

x(O = 0, «=1,2,3,. . .

and

and lim ( t + - t ) = Q .

The phenomenon of quick oscillations can be simulated by a bouncing ball under
the force of gravity. Each bounce will be progressively shorter until the ball comes to
rest (cf. [5], [22], [25]).

The following two definitions can be found in [23], [24].
A function x is said to be moderately oscillatory if there exists a sequence of points

{tn} such that

and

tn + ι>tm lim ίπ=+oo and sup{rn + 1 -r n ,/i=l, 2, 3, ...}< +00 .
n-> + oo

A function x is said to be slowly oscillatory if for any large positive numbers Γ,
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M, there exist two consecutive zeros ̂  and t2 of x(t)9 t?>t1> Γ, such that t2 — tι > M.
The following notion is an example of slow oscillation. The trajectory of a point,

moving with a constant velocity v along the path p: (x, y), where

x(ί) = eθ(t)cosθ(t), X0 = eβ(ί)sin0(0, and 0(0 = In ( 1 +

has a projection

(P(t\ β(0) = -U (cos θ(t), sin 0(0),

through (0,0) on the unit circle χ2+y2 = l. Then the functions P and β are slowly

oscillatory.
From the above definitions it is clear that if x is quickly oscillatory, then it is

moderately oscillatory. Also if x is slowly oscillatory, then it is not moderately oscillatory.

For example, sin^/ / is slowly oscillatory, sin/ is moderately oscillatory and sinί2 is
quickly oscillatory.

New we define the following classes of functions.
• Sq is the class of all continuous functions / : R+ »-> J? for which there exists an

η>0 such that for any ε>0 there exists a Γ>0 such that for every t> T there exist two
points sί and s2 in the interval [0, ε] with the property that

f(t + sl)<-η and f(t + s2)>η .

• Sm is the class of all continuous functions /: R+\-+R for which there exist
positive numbers η, ζ, T such that for every t> T there exist two points Si and s2 in
the interval [0, ζ] such that

f(t + sl)<-η and f(t + s2)>η .

• Ss is the class of all continuous and strongly oscillatory functions /: R+ \-+R
for which there exists an η > 0 and for any real numbers p > 0 and T> 0 there exists a
τ>Γsuch that

for all te[0,p}.

From the above definitions we observe that feSq (resp. Sm, resp. Ss) implies that
/ is continuous, strongly and quickly (resp. moderately, resp. slowly) oscillatory.
However, the converse is not always true. For example, the function

ί e ' s inf , /e[(2«)2π,(2«+l)2π)

- l)2π, (

n = 0,1,2,. . . , is continuous, strongly and moderately oscillatory. However fφSm.

Similarly, one can easily find functions which are continuous, strongly and slowly (resp.
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quickly) oscillatory but they do not belong to Ss (resp. Sq).

LEMMA 1.1. Sq^Sm and Sq^Sm, SmnSs = 0 (the empty set) and SmuSs is the
class of all strongly oscillatory continuous functions.

The following result is also obvious by the definitions of Sq, Sm and Ss.

LEMMA 1.2. Ifx belongs to the set Sq (resp. Sm, resp. Ss), then any shifting function
xc along ceRofx belongs to the set Sq (resp. Sm, resp. Ss).

A function x is said to be eventually positive (resp. nonnegative) if there is a large
Γ>0 such that jc(/)>0 (resp. >0) for t>T. A function x is said to be eventually
negative (resp. nonpositive) if x(t)<0 (resp. <0) for t>T.

2. Oscillation and asymptotic behavior. As we know, oscillation criteria for
functional differential equations can be obtained by using asymptotic results on the
solutions of functional differential inequalities (cf. [10], [11], [26]). We study the
oscillatory behavior of the solutions of (1.1) through the asymptotic results on the
solutions of the following two Volterra integral inequalities

(2.1) x(t)>f(t}-\ K(t,s,xs)ds,
o

(2.2) x(t)<f(ί)-\ K(t,s,xs)ds, t>0.
Jo

For the sake of convenience, we define a quantity L(k, T, 6), which depends on
two positive constants k, T and a function b, as follows:

(2.3) L(k, Γ,6): = limsupΓ sup \b(t)\\K(t, s, φ)\ds ,
t-+ + ™ Jo «>eβ(0,k)

where b: [0, +00)1— >/? is a measurable and eventually positive function and
<k}.

THEOREM 2.1. (i) Assume that

(2.4) lim sup b(t)f(t) > L(k, Γ, b)
ί-» + oo

for every real number k>0 and every large number 7T>0. Then (2.1) has no eventually

nonpositive solutions.
(ii) Assume that

(2.5) lim inf b(t)f(t) < - L(k, Γ, b)
t-+ + oo

for every real number k>0 and every large number T>Q. Then (2.2) has no eventually
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nonnegative solutions.
(\\\) Assume that both (2.4) and (2.5) are satisfied for every real number k>Q and

every large number T>0. Then every solution of (I. I) is oscillatory.

PROOF. First consider Case (i). Assume, for the sake of contradiction, that x is
an eventually nonpositive solution of (2.1). Then there exists a sufficiently large number
T such that x(t)<Q, t>T. Since the function b is eventually positive, there exists a
number 7\ > Γ such that

So we have

(2.6)

For this number 7\, there exists a positive real number k such that

(2.7) \xs(θ)\<k, for 0e[-r,0] and se[0, 7\ + r].

By (2.1), (1.2) and (2.6), we have

0 > b(t)x(t) = b(ί)f(t) - ί ' 6(0*(f , 5, xjώ
Jo

= b(t)f(t)- \ 'b(t}K(t, s, xs)ds- \ b(t)K(t, s, xs)ds
Jo J r i + r

- f Γ l + Γ

Jo
>b(t)f(t}

Jo

In view of (2.7), the last inequality yields

sup \b(t)\\K(t,s,φ)\ds,
Λ

J00

Taking limit superior on both sides of this inequality, we have
Γ

Jo
sup \b(t)\\K(t, s, φ)\ds .

φeB(Q,k)

Also, in view of (2.3) and (2.6), we obtain

lim sup b(t)f(t) < L(k, T, + r, b) ,
f-» + 00

which contradicts (2.4). The proof of (i) is complete.
Case (ii) can be proved similarly.
Case (iii) is a combination of Case (i) and Case (ii).

COROLLARY 2.1. Assume that
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lim Γ
<^ + «> Jo

sup \K(t, s,
0 φeB(0,k)

for every k>Q and every large number Γ>0, and that f is strongly oscillatory. Then
every solution of(\Λ) is oscillatory.

PROOF. Here we have L(k, Γ, b) = 0, where b is a positive constant, and / is strongly
oscillatory. Therefore both conditions (2.4) and (2.5) are satisfied and so the result in

Theorem 2.1 (iii) holds.

EXAMPLE 2.1. For the integral equation

t Γ s2Γ
ί-

Jo
x(t) = - cosί- - x(s — n)ds ,

t + π

all conditions of Corollary 2. 1 are satisfied. Therefore all solutions of this equation

oscillate. For example

sin t
x(t) = -

t + π

is an oscillatory solution.

COROLLARY 2.2. Assume that (2.4) and (2.5) hold for any large Γ>0 and some

k>0. Then every solution x of (I. I) with \x(t)\<k, />0, is oscillatory.

PROOF. Take such a solution x of (1.1). If x is not oscillatory, then there exists

a sufficiently large Γ>0 such that either x(t)>0 or ;c(0<0 for all t>T. First let us
consider the case x(ί)>0, t>T. Since the function b is eventually positive, there exists

a 7\ > T such that 6(/)>0 for t> T±. So we have b(t)x(t)>Q, for t> 7\.

By (1.1), and taking (1.2) into account, we have

-b(t}f(t)<-
o

,s,xs}ds< \Tl*r

Jo
ΓTι+r

<\ 1
Jθ

1 sup \K(t,s,φ)\ds.
φeB(0,k)

Taking limit superior of both sides of this inequality, we obtain

lim sup (-ft(* )/(*))= ~lim mfb(t)f(t)£L(k, T^+r, b) .

In view of (2.5), we have a contradiction.

For the case where x(t) < 0 eventually, we can follow the same way.

EXAMPLE 2.2. Consider the following equation
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p _
x(t) = f(t)—\ e sx(s — π)ds,

Jo

where

1 1 _ r . / π \
f(t):=cost + — + —=e r s ιn l/— Γ ) .

It is easy to check that (2.4) and (2.5) hold for b= 1, k= 1 and any large Γ>0. Indeed,

L(&, 3Γ, !) = *(! -έΓ1), liminf/(0=-— , lim sup /(/) = — .
t-» + oo 2 f-» + oo 2

Thus, any solution x, with the condition \x(t)\<l, />0, is oscillatory. For example,
= cost, t> — π, is an oscillatory solution of this equation.

As we can see from Corollary 2.2 and Example 2.2, the oscillation of solutions of
(2.1) can be affected by k and Γin the quantity L(k, Γ, b). The following theorem gives
us some results when the quantity L(k, Γ, b) does not depend on k and T.

THEOREM 2.2. Assume that the quantity L(k, Γ, fo), say L(b), does not depend on k

and T.

(i) //

(2.8) li
ί~* + 00

then every solution x of (2 A) satisfies lim

(ϋ) //

r-* + oo

then every solution of (2.2) satisfies limmft^ +

(iϋ) //

(2.9) min jlim supb(t)f(t), -lim iofb(t)f(t)\>L(b) ,
[ ί-> + oo ί-» + oo J

then every solution of (I. I) is oscillatory;

(iv) //

(2.10) -lim mfb(t)f(t)>\im supb(t)f(t)>L(b) ,
ί-* + oo f-» + oo

then every nonoscillatory solution x of (I. I) satisfies lim supt^ +

(v) //
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lim sup b(ί)f(t) > - lim inf b(i)f(i) > L(b) ,
f-> + oo f-> + oo

then every nonoscillatory solution x of ( I . I) satisfies lim mft^ + aob(ί)x(t) = Q.

PROOF, (i) For the sake of contradiction, assume that x is a solution of (2.1)
such that

Then there exists a sufficiently large Γ>0 such that

O > b(t}f(t) -\ sup 16(/) 1 1 K(t, s, φ) | ds .
B(0,k)

for t> T. From (2.1), in view of (1.2) and the last inequalities, we obtain

b(t}x(t)>b(t)f(t)- (T+rb(t}K(t, s, xs)ds , t> T+r .
Jo

Suppose A: is a bound of xs(θ), for θ e [ — r, 0] and s e [0, Γ+ r]. Then the last inequality
yields

ί
Γ + r

si

3 φel

Taking limit superior on both sides of this inequality, we have

Λ Γ + r

0 > lim sup b(t)x(t) > lim sup b(t)f(t) — lim sup sup | b(t) \ \ K(t, s, φ) \ ds
f-> + oo f-> + σo t-> + oo J0 φeB(0,k)

= limsupb(t)f(t)-L(b),
ί-* + 00

which contradicts (2.8). The proof of (i) is complete.
Case (ii) can be proved similarly.
Case (iii) is an immediate consequence of Case (iii) of Theorem 2.1.
For Case (iv), from (2.10) we see that (2.8) holds. Thus every solution x of (2.1)

has the property that

(2.11) lim sup b(t)x(t) > 0 .
ί-* + 00

On the other hand, (2.10) implies (2.5), so every solution x of (2.2) satisfies

(2.12) Iimsup6(/χ/)<0.
f-» + oo

Take a nonoscillatory solution x of (1.1); then x satisfies (2.1) and (2.2) and therefore
from (2.11) and (2.12), we get lim supr^ + 00 b(t)x(t) = Q.



OSCILLATIONS OF VOLTERRA INTEGRAL EQUATIONS WITH DELAY 591

Case (v) can be proved as Case (iv).
The proof of the theorem is complete.

Now assume that K(t, s, φ) satisfies the following conditions.

There exists a function α( , •): R+ xR+ \-+R+, such that a(t, s) = 0 for
t<s and for every large number Γ>0, a(t, )eZ/[0, Γ] and for every
positive number k there exists a function mk( )eLq[Q, T~\ such that

(2.13)

\K(t,s,φ)\<a(t,s) mk(s)

for all φeB(Q,k). Here !//?+ 1/0=1, !</?<+oo, !<#<+oo.

THEOREM 2.3. Assume that (2.13) holds and

rr
(2.14) limsup ap(t, s)ds = 0 .

^ + 0° Jo

(i) //

lim sup f(t) > 0 (resp. lim inf f(t) < 0),
ί-» + oo f-» + αo

then (2.1) ((2.2)) A&s no eventually nonposίtίve (resp. nonnegative) solutions.
(ii) If f is strongly oscillatory then every solution 0/(l.l) is oscillatory.

(in) //

lim sup f(t} > 0 > lim inf f(t) (resp. lim sup f(t) > 0 > lim inf/(/)),
f-» + oo ί-> + oo ί-» + oo f-* + oo

then for every nonoscillatory solution x of (I.I), we have

lim sup ;c(0 = 0 (resp. lim inf *(0 = 0).
f-» + 00 f-> + 00

PROOF. Let 6(0= 1- Then from (2.3), using (2.13) and the Holder inequality, we
obtain

ΓΓ

L(k, Γ, 1): = lim sup sup | K(t, s, φ) \ ds
*-> + *> Jo <PeB(0,fc)

ΓΓ

< lim sup α(ί, s)mk(s)ds
^ + 0° Jo

QΓ \1 / p/ Γτ \llq

ap(t,s)ds\ ml(s)ds] .
0 / \ J θ /

In view of (2.14), we obtain L(k, Γ, 1) = 0 for every £>0 and Γ>0. Observe now that
(i) follows from Case (i) (resp. Case (ii)) of Theorem 2.1; (ii) follows from Case (iii) of
Theorem 2.2 and (iii) follows from Case (iv) (resp. Case (v)) of Theorem 2.2.
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In order to investigate how the strong oscillation of the forcing term / affects the
strong oscillation of the solutions of (1.1), we make the following assumptions.

There exists a function a: R+ xR+ ι-»/?+, such that α(ί, s) = 0 for t<s
and for every ε > 0 there exists a δ > 0 with the property that

\ K ( t 9 s 9 ξ ) \ £ ε a(t9s)

(2.15) holds for all constant functions ξ with |f |<δ, t>s>T0 and for some
μ>0,

p(t): = b(t)a(t9 s)ds<μ9 t>T09

where Γ0 is a sufficiently large real number.

THEOREM 2.4. Assume that (2.9) and (2.15) hold. Assume further that ΛΓ( , ,φ)
depends only on φ( — r), namely,

(2.16) K(t, s, φ): = K(t, s, φ( — r))

and that

(2.17) lim inf &(/) = : β>Q .
t—* + oo

Then for every solution x of (1.1), the function b x is strongly oscillatory.

PROOF. We have to prove that for every solution x of (1.1), it holds

lim inf b(t)x(t) < 0 < lim sup b(t}x(t).
f-» + oo f-+ + oo

From Case (iii) of Theorem 2.2, it follows that x is oscillatory. By (2.17), we see that
the function b x is also oscillatory. Therefore we have

lim infb(t)x(t) < 0 < lim sup b(t)x(t).
ί-» + oo f-» + oo

For the sake of contradiction, suppose that x is a solution of (1.1) such that

(2.18) lim sup b(t)x(t) = 0 .
f-* + oo

Since x is oscillatory, the following two sets

?: T<s<t, x(s)>U] ,

?: T<s<t,.

are nonempty for Γand t— T sufficiently large. It is clear that for Γand t— T sufficiently
large it holds
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ί, Γ) = [Γ, 0 , E+(t, Γ)n£-(ί, Γ) = 0 .

From (2.9), there exists a number 7V>0 such that

lim sup b(t)f(t) - L(b) > N .
t~* + 00

Take an ε>0 such that ε<N/μ (see (2.15)); then, by (2.15), there exists a <5>0 such that

(2.19) \K(t,s,ξ)\£ε a(t9s) for \ξ\<δ, t>s>T0>T.

On the other hand, for such a δ >0, from (2.17) and (2.18), there exists a sufficiently
large number 7\ > Γ0 such that

on

Therefore

I K(t, 5, x(s — r) I <ε a(t, s), for

Now from (1.1), in view of (1.2) and (2.16), we obtain

b(t)x(t) = -fJo

ΛT!+r Λr

- *(0 (̂ί, s, x(s - r))ds - b(t)K(t, 5, x(s - r))ds
Jo JTi+r

- I
Jθ

, 5, x(s - r))ds - I b(t)K(t, s, x(^ - r))ds

b(t)K(t,s,x(s-r))ds
/£-(ί,Tι+r)

> b(t)f(i) - b(t)K(t, s, x(s - r))ds
f ϊ t+r

HJo

J £

b(t)K(t, 5, x(s - r))ds , for t>Tl-\ r .

Since φ — r) is bounded for se [0, 7^ + r], there exists a number fc>0 such that

\x(s-r)\<k for je[0, Γ!+r].

By using (2.19) and (2.15), from the last inequality, we have

b(t)x(t}>b(t)f(t)- Γ1 ' sup |6(OI|Λ:(ί,s,ξ)|Λ-6 b(t}a(t,s)ds- Γ1 ' sup |6(OI|Λ:(ί,s,ξ)|Λ-6 Γ
Jo l ^ l ^ f c Jr 1 +r
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>b(t)f(t)-\ f sup \b(ί)\\K(t,s,ζ)\ds-ε μ.
J o l « l * *

So we have, by (2.18), that

f ϊ Ί + Γ

0 = lim sup b(t)x(t) > lim sup b(t)f(t) - lim sup sup | b(t) \ \ K(t, s, ξ) \ds - ε μ
t-* + ao f-* + oo f-» + co Jo l£l^fc

= lim sup b(t)f(t) — L(b) — ε μ>N—ε μ,
t-* + oo

which contradicts the choice of ε. Therefore lim supt_ + 00b(t)x(t)>0.

In a similar way, we can prove that lim mft-+ + 00 b(t)x(t)<0.

The proof is complete.

REMARK 2.1. In Theorem 2.4, assume that L(l) = 0 and that the forcing function

/ is strongly oscillatory. Then every solution of (1.1) is strongly oscillatory. For example,

all conditions of Theorem 2.4 are satisfied for the integral equation

cos t-i , .
x(s—π)ds,

ost— 1 f* 1

1 -hi Jo 1 +

Thus all solutions of this equation are strongly oscillatory. For example, x(t) = sin t is

a strongly oscillatory solution. Note, however, that in Example 2.1, there are solutions

which are not strongly oscillatory, though the forcing term / is strongly oscillatory.

This is due to the fact that the function /?(•) in (2.15) is not bounded. Indeed.

Γt
=\

JΓo

p(t)= - ds = - - -- > + oo, as ί
π + t 3(π + ί)

THEOREM 2.5. Suppose that (2.13) holds where we now assume that wk( )E

L«[0, +00). //

(2.20) lim ap(t,s)ds = 0,
ί^ + oo J0

then for any bounded solution x 0/(l.l), we have

lim infjc(ί), lim supjc(/) p lim inf/(ί), lim sup/(f) .
|_ί-* + oo f-> + oo J [ _ ί - ^ - ί - o o f-» + oo J

PROOF. Take a bounded solution x of (1.1) and let δ be a number in the interval

[lim inf t_ + 00/(09 Km sup^.^ /(/)]- For the sake of contradiction, assume that either

δ < lim inf χ(t) , or δ > lim sup χ(t) .
t-* + oo ί-» + oo

This is equivalent to saying that there exist positive numbers T and η such that
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either x(t)>δ + η or x(t)<δ — η for t>T.

Let us consider the first case. In view of boundedness of x and (2.13), by (1.1), we have

a t \llpί Γ
ap(t,s)ds]

o / V Jo
mq

k(s)ds
> J

for t> Γ, where k is a bound of x on [0, + oo). Taking (2.20) into account, we have

δ + η < lim inf χ ( t ) < lim inf f(t) < 5 ,

a contradiction. In a similar way, we can see that x(t)<δ — η does not hold for t> T
and the proof is complete.

Note that if all conditions in Theorem 2.5 hold and / is strongly oscillatory, then
x is strongly oscillatory. Indeed,

lim inf x(t) < lim inf f(t) < 0 and lim sup x(t) > lim sup f(t) > 0 .

Observe that the results in Theorems 2.1, 2.2, 2.4 and 2.5 are valid when the delay
r is zero. So it is interesting to look for conditions which involve the delay r.

Define a set C as follows:

Γ° Γ° 1f

r σ < lim inf K(t, s + r, φ(s))ds < lim sup K(t, s + r, φ(s))ds < ρ > ,
t-» + αo J_ r ί-+ + oo J_ r J

where <7 = L(l) + lim inff^ + 00 /(/), ρ= — L(l)-hlim supί_ + 00 f(t).
It is obvious that φ e C implies

r po
(2.21) L(l) < min < lim sup f(t} - lim sup K(t, s + r, φ(s)}ds,

Γ° }
- lim inf/(/) + lim inf K(t, s + r, φ(^))ίfa V .

J —r J

THEOREM 2.6. Assume that (2.15) and(2.lβ) hold. Then every solution 0/(l.l) with
initial function φeC is strongly oscillatory.

PROOF. We observe that, in view of (2.16), the equation (1.1) can be written as
a Volterra integral equation of the form

-Γx
Jo

(l l)ι x(t) = F(t)
)Q

where
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(Ά(f,s + r , < E ) , for je[0,/-r],

lθ, for se[t — r, t~\ ,

and

Suppose that x is a solution of (1.1) with initial function φeC. It is clear that the
function ^(ί,s + r, £) satisfies (2.15) and (2.16). Also F(t) satisfies (2.9) for b(t)=\.
Indeed,

lim supF(0-L(l) = lim sup /(/)- | K(t,s + r, φ(s))ds - L(l)\
ί-* + oo ί-> + oo [_ J-r J

Γ°
> lim sup f(t) - L(l) - lim sup K(t, s + r,

ί-» + oo ί-> + 00 J _r

Γ°
= ρ - lim sup K(t, s + r, φ(s))ds > 0 ,

ί- + oo J_ Γ

and

Γ°
lim inf F(0 + L(l) < σ - lim inf #(f, s + r, φ(^))ίfa < 0 .
f-> + oo ί-^ + oo J _Γ

So (2.9) is satisfied for (1.1)! and therefore, by Theorem 2.4, x is strongly oscillatory.

REMARK 2.2. Observe that for b— 1 and for r = 0 or

Γ°
lim K(t, s + r, φ(s))ίfc = 0 ,

ί- + oo J_ r

the condition (2.21) is equivalent to (2.9). However if

Γ°
lim K(t,s + r,

ί- + oo J_ r

then (2.21) is different from (2.9). Therefore, in some cases solutions of (1.1) may be
strongly oscillatory though / is not strongly oscillatory.

Now the question is when the set C is nonempty. In [29, p. 66] the existence of
solutions of the following Fredholm integral equation

"0\:
was studied under certain conditions on the functions A and g. Thus, it suffices to
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assume that

σ < lim inf g(t) < lim sup g ( t ) < ρ .
ί-» + oo

597

We can also give an answer to this question as follows.

If σ<0<ρ, set

ξ : = min
Γr ' f r

lim sup \A(t, s)\ds lim inf \A(t, s)\ds
. ί-» + αo J0 t-* + cc J0

Then 5(0, ξ)c£. Indeed,

Γ°
lim sup A(t, s + r)φ(s)ds <\\φ\\

ί-+ + oo J_ r

f r

imsup \A(t9

f-* + °° Jo
s)\ds<ρ ,

and

Γ° Γr

lim inf A(t,s + r)φ(s)ds> — \\φ\\ lim inf | A(t, s) \ds>σ .
ί-+ + oo J_ r ί-* + oo J0

I fO<σ<ρ orσ<ρ<0 and A(t, s)>0 for all t, s, then we suppose that

σ lim sup A(t, s)ds < ρ lim inf A(t, s)ds .
t~* + 0° Jo ί-* + oo J0

Define a subset C of CΓ as follows

ψε r> »r . _φ(AJ- -

lim inf A(t, s)ds lim sup A(t, s)ds
ί^ + 0° Jθ ί-* + oo JQ

Then it is easy to see that C is a nonempty subset of C.

THEOREM 2.7. Assume that (2.13) holds.

(i) //

(2.22) lim sup
f-* + 00

/(O
-=+00,

(2.1) has no eventually nonpositive solutions.

(ϋ) If

(2.23) lim inf
t-+ + oo

/(O

ί, s)ds

-=-00 ,
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then (2.2) has no eventually nonnegatίve solutions.
(iii) If both (2.22) and (2.23) hold, then every solution 0/(l.l) is oscillatory.

PROOF. First consider Case (i). Assume, for the sake of contradiction, that x is
an eventually nonpositive solution of (2.1). Then, there exists a sufficiently large Γsuch
that

t>T.

From (2.1), in view of (1.2), we obtain

ΓT + r / [T + r γ/p

O ?4Λ 0 > r f / ϊ > > f(tΛ I Kit ? Y W?>> f(t\ Ni I πp(t «Wc I\^ίι £ι~J \J *^ Λι\l j ^_ J \^l j I -IV\^t, ij, A-^yC*ιJ ^̂  / I t y i Y I I t* It, ύ ίlAύ I ,

Jo VJo /

where

\ l / 9QΓ + r \ l

ml(t)ds\
o /

Now, from (2.22), it is clear that there exists a sequence {/„} such that lim^ + ̂  tn = + oo,
and

limsup - - = lim _ _ = + o o .-

•-*•( W
V J o

This is equivalent to saying that for any large number M>0, there is an «0 >0 such that

T \ l / p

(̂ί.,̂  , for n>n0.

Choose M so that M>N and «0 so that tn>T+r for n>n0. Combining (2.24) and
(2.25), we have

Q T

fl^
3

fl^^Λ) >0, for n>n09

3 /

which is a contradiction. So we have completed the proof for (i).
Case (ii) can be proved similarly.
Case (iii) is an immediate consequence of Case (i) and Case (ii).

REMARK 2.3. Note that in Theorem 2.7, the function / has to be oscillatory.
Otherwise (2.22) and (2.23) cannot be true. However in some cases, the function / may
not be strongly oscillatory. An example is presented in the following remark.

REMARK 2.4. Observe that Theorem 1 in [20] is a special case of Theorem 2.6
(iii). Indeed, in [20], the stronger conditions
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lim sup /(/) = lim inf /(/) = + oo ,
t-* + oo f-» + oo

are required. Our conditions (2.22) and (2.23) are satisfied by the assumptions in [20].
However the converse is not true. For example, for the integral equation

Γ
= /(0-

Jo

1 +s
* = - — -

Jo U + 0

where

siιu

we have

lim sup /(/) = lim inf /(/) = 0 .
ί-* + 00 f-» + oo

Namely, the conditions of Theorem 1 in [20] are not satisfied. However, the conditions
(2.22) and (2.23) are satisfied. Therefore, all solutions of this equation oscillate. For
example,

, sin t
x(t) =

is an oscillatory solution.
The following result can be obtained from the proof of Theorem 2.7.

COROLLARY 2.3. Assume that (2.13) holds and \\mk( )\\Lq[0j + 00)<N, where N is
a positive number which does not depend on k. If

v">Λί ΈZtr ™ -<,'(!, s)
o / \ J o

then every solution 0/(l.l) is oscillatory.

2. 3. Quick, moderate and slow oscillations. In this section sufficient conditions
are established under which the solutions of (1.1) belong to the set Sq, Sm or 5S, re-
spectively, when the forcing term / belongs to the set Sq, Sm or Ss, respectively.

THEOREM 3.1. Assume that all conditions in Theorem 2.5 are satisfied. Then the
following statements hold.

( i ) If feSq, then every bounded solution of (I. I) belongs to Sq.
(ϋ) If fεSm, then every bounded solution of (I. I) belongs to Sm.
(iii) If feSs, then every bounded solution of(l.l) belongs to Ss.
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PROOF. In Section 1 , we have seen that if / e Sq u Sm u Ss, then / is strongly oscil-
latory. Also by Theorem 2.5, we know that every bounded solution of (1.1) is strongly
oscillatory.

Now consider Case (i). Take a bounded solution x of (1.1); by (1.1), we have

Q ' \1/pί Γ \l/q

ap(t,s)ds) m\t}ds) ,
3 / \ J θ /

and in view of (2.20), we obtain

(3.1) lim |x(0-/WI=0.
r-> + 00

On the other hand, since feSq, there exists an η>Q, and for any ε: ΰ<ε<η/2, there
exists a Γ>0 such that for every t> T there exist two points s1 and s2 in [0, ε] satisfying

(3.2) f(t + *ι)<-η and f(t + s2)>η .

Also for this ε, by (3.1), there exists a sufficiently large number T{>T such that

(3.3) l*(0-/(OI<β, for ί>Tλ.

From (3.2) and (3.3), we see that

and

ε>— .

Therefore, xeSq.
Consider Case (ii). Since / e Sm, there exist positive numbers η, ζ, T and for every

t > T there exist two points sl9 s2 e [0, ζ] such that

(3.4) f(t + sj< -η, f(t + s2)>η.

Take an ε such that 0<ε<τ//2, from (3.1), there exists a Tl > T such that

(3.5) |*(0-/(OI<ε, for t>T,.

From (3.4) and (3.5), we see that

-—9 for t>Tλ ,

and

— ε>— , for t>Tί .
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Therefore xeSm.
For Case (iii), since / e Sm, there exists a positive number η and for any large T

and large M, there exist two points γί and y2

 such that

and

(3.6) \f(t)\>η for /e(y l 9 y 2 ) .

Take an ε: 0<ε<η/2. From (3.1), there exists a 7\ > Γ such that

W0-/«l<ε, for ί > Γ l β

Without loss of generality we may assume that yί >y2> 7\. Then we have

(3.7) WOI>l/W|-ε , for te(γl9γ2).

Then (3.6) and (3.7) yield

\x(ί)\>η-ε>~-9 for te(γί9γ2).

This means that xeSs. The proof is complete.

EXAMPLE 3.1. For the Volterra integral equation

-ΓJo

where

. / 1
3

all conditions of Theorem 3.1 are satisfied. Indeed, p=l9 q= + 00, ||wk( )||Loo = A: and

Γ Γ i
fl(ί,5)ώ= —

Jo Jo C1
as

We observe that / e Ss and therefore every bounded solution belongs to Ss. For example,
is a bounded solution and belongs to Ss.

EXAMPLE 3.2. Consider the Volterra integral equation

t p s2

x(t) = cost— x(s — n)ds ,
f + π Jo π + t

We see that / is strongly oscillatory and moderately oscillatory. In fact, feSm. It is
easy to check that
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. sin /
x(t) = -

t + π

is a moderately oscillatory solution but not strongly oscillatory. So xφSm. As a matter
of fact, the condition (2.20) in Theorem 3.1 is false, since

i t Γt S2

α(ί, s)ds= lim - ds= + oo .
3 f-> + 00 JQ n+t

Theorem 3.1 gives information about bounded solutions only. In order to have
information for oscillation of all solutions we restrict ourselves to the following equation

= /(/)- Γ*(ί,s,x(j-r))ώ,
Jo

(3.8) x(t)-

Here assume the following:

(3.9) /: [0, +00) ->/? is bounded;

K(t, s, ξ) is measurable in s, continuous in t and ξeR, 0<s<t and,

(3.10) \K(t,s,ξ)\£B(t)L(s,\ζ\)9 where B:R+^>R + , L:R+xR+^R + are
continuous and B is bounded;

(3.11) 0<L(s,w)-L(s,ι;)<M(s, v)(u-v)9u>v>Q, where M: /?+ xR+\-^R+ is
continuous;

Λ + αo Λ + oo

L(u + r, ξ)ds<+co and M(w + r, O*< +00 , hold for all
Jo Jo

(3.12)

ξ : I ξ I < N9 where Λ^ is a positive constant.

The following lemma is borrowed from [7, p. 6].

LEMMA 3.1. Let A, B: [α, β) ι-> R + , L : [α, /?) x R + h-* /? + £e continuous and sup-
pose L satisfies (3.11). Then every nonnegative continuous solution x of the integral
inequality

L(s,x(j))ώ, fe[α,/0
Jα

satisfies

x(t) <A(t) + B(t) L(u, A(u)) exp ( M(s, A(s)}B(s)ds\ du , for t e [α, β) .
Jα \ J u /

THEOREM 3.2. Assume that (3.9X3.12) hold and limt^ + 00B(t) = 0. Then every
solution 0/(3.8) is bounded. Furthermore we have the following:

(i ) If feSq, then every solution 0/(3.8) belongs to Sq.
(ii) If feSm, then every solution 0/(3.8) belongs to Sm.
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(iii) If fεSs, then every solution 0/(3.8) belongs to Ss.

PROOF. First we prove that every solution of (3.8) is bounded. From (3.8), we have

Jo

and in view of (3.9)-(3.11), we have

ΛO

\x(t)\<m + b L(s + r, \\q>Ws + b L(s + r, \x(s)\)ds
ΛO Λί-r

L(s + r, \\q>Ws + b
J -r JO

<m + b \ L(s + r, \\φ\\)ds + b \ L(s + r, \x(s)\)ds ,
J -r Jo

for ί>0, where φ is the initial function of x. By Lemma 3.1, we have

P / P \
\x(ί)\<A + b \ L(u + r, A)exp ί b \ M(s + r, A)ds\du , for

Jo V Ju /

where A=m + b \_rL(s + r, \\φ\\)ds.
In view of (3.12), we see that every solution is bounded.

On the other hand, by (3.8), we obtain

I*(0-/(OI<£(0 L(s,ξ)ds, ί>0,
Jo

where ξ>Q is a bound of x(t). Taking (3.12) into account and in view of the assumption

lim B(t) = 0 ,

we have

lim |x(ί)-/(OI = 0.
f-» + oo

Now we can follow a procedure analogous to that for the proof of Theorem 3.1, and
prove the statements (i), (ii) and (iii).
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