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DOES A NON-LIPSCHITZ FUNCTION OPERATE ON A NON-TRIVIAL
BANACH FUNCTION ALGEBRA?

OsAMU HATORI
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Abstract. We show a property of a normal Banach function algebra on which a
non-Lipschitz function operates. An example of a non-trivial normal Banach function
algebra such that the operating functions are not necessarily locally Lipschitzian is given.
We also show a sufficient condition in terms of the operating functions for a normal
Banach function algebra to coincide with the algebra of all complex-valued continuous
functions.

1. Introduction. By a Banach function algebra on a compact Hausdorff space
X we mean a subalgebra of the algebra C(X) of all complex-valued continuous functions
on X, which contains the constant functions and separates different points in X and is
a Banach algebra with the norm | - | ,. A complex-valued function ¢ defined on a
domain D in the complex plane is said to operate on a Banach function algebra A if
the composite function ¢ o u belongs to A for all ¥ in 4 with range in D. We consider
the problem involving the functions which operate on 4. When A4 is uniformly closed
de Leeuw and Katznelson [9] showed that if a non-analytic continuous function ¢
defined on a domain D operates on A4, then 4=C(X). Considering the case where
¢(z)=Z on the complex plane C we see that the theorem of de Leeuw and Katznelson
above is a generalization of the Stone-Weierstrass theorem. Spraglin [19] showed that
a function ¢ defined on a domain in D which operates on a uniformly closed Banach
function algebra on an infinite compact Hausdorff space is continuous on D (cf. [7]).
Obviously every function operates on a Banach function algebra on a finite compact
Hausdorff space. There is a Banach function algebra on an infinite compact Hausdorff
space on which a certain discontinuous function does operate (cf. [1], [7, pp. [112-1114],
(8D).

This fact is compared with the previous results; for example, there exists a Banach
function algebra such that every operating function is real analytic and a Banach
function algebra such that every operating function is locally Lipschitzian (cf. [10],
[16]). -

On the other hand Katznelson [17] showed that if the square root function \/ .
defined on the half-open interval [0, 1) operates on a conjugate-closed Banach function
algebra 4 on X, then 4=C(X). In [14] we showed that if |z|? (0<p<1) defined on
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the open unit disk {ze C:|z|<1} operates on A on X, then 4=C(X). We also proved
in [14] that several non-Lipschitz functions never operate on a non-trivial Banach
function algebra by using the results concerning operating functions on the real part
of the algebra.

In this paper we consider the case where the algebra A4 is normal, which means
that for every pair of disjoint compact subsets K; and K, of X there is fe 4 with f=0
on K, and f=1 on K,. We show that there is a non-trivial Banach function algebra
such that the operating functions are not necessarily locally Lipschitzian. We also
show that a normal Banach function algebra on X on which a non-local-Lipschitz
function operates coincides essentially with C(X), that is, there is a finite subset K of
X such that 4| F=C(F) for every compact subset F of X\ K. Furthermore we give a
sufficient condition for a normal Banach function algebra A4 to coincide with C(X).
We prove these results by using an ultraseparation argument. The notion of ultra-
separability was introduced by Bernard [3]. We say that a Banach function algebra 4
on X is ultraseparating if 4 separates the points in X, where A4 is the algebra of all
bounded sequences in 4 and X is the Stone-Cech compactification of the direct product
X x N, where N is the discrete space of all positive integers. Thus every sequence f in
A is identified with a function defined on X. We begin by recalling some results on the
ultraseparation argument which we need in this paper to prove the theorems.

THEOREM A (cf. [11, Theorem], [12, Corollary 1.2]). Let A be an ultraseparating
Banach function algebra on a compact Hausdorff space X and ¢ a complex-valued non-
analytic continuous function defined on the unit disk A={zeC:|z|<1}. Suppose that
@ operates on A. Then A=C(X).

For a subset S of X, [S] is the closure of S in X. For every xe X we denote the
fiber (\[K x N] by F,, where K varies over all the compact neighborhoods of x.

THEOREM B (cf. [14, Lemma A]). Suppose that A is a Banach function algebra on
X. Let x be a point in X and let p and q be a pair of different points in F,. Suppose that
A does not separate p and q. Then the following hold.

() If p and q are points in F,\[{x} x N], then there are two sequences {G"} and
{G™} of nonvoid compact subsets in X\ {x} such that

Gi")n< U G;,'")>=Q
(B,m) # (a,n)

for a=p, q and for every n. In fact, let n be a positive integer. If a function f in E satisfies
the inequalities

1
If(y)lﬁy, yeGy

and
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If@I=1, eGP,

then we have

I fllg>n.
(i) If q is in F\[{x} x N] and p is in [{x} x N1, then there is a sequence {G™}
of nonvoid compact subsets of X\ {x} which satisfies
con( Uer )-o
m#*n

for every positive integer n. Let n be a positive integer. If a function f in E satisfies the
inequalities f(x)=0 and | f(y)|=1 for every y in G, then we have

Iflg>n.

THEOREM C (cf. [13, Lemma 6]). Let A be a Banach function algebra on a compact
Hausdorff space X. Then A is ultraseparating if and only if A separates the points in F,
for every x in X.

In [4] and [5] Bernard studied the problems of involving the non-local-Lipschitz
functions which operate on a certain space of real-valued continuous functions on a
compact Hausdorff space. The author also treated similar problems in [14] and [15].

2. Continuity. Spraglin [19] proved that functions defined on a domain which
operate on a uniformly closed Banach function algebra on an infinite compact Haus-
dorff space are continuous (cf. [7, Theorem 9 and the corollaries]). By a similar idea
we see the following.

LeMMA 1. Let A be a normal Banach function algebra on an infinite compact Haus-
dorff space X and ¢ a complex-valued function defined on the unit disk A={ze C:|z|<1}.
Suppose that ¢ operates on A. Then ¢ is continuous on A.

PrROOF. Suppose that ¢ is not continuous. Without loss of generality we may
assume that @(0)=0 and there is a sequence {z,};-.; in 4 with z,—»0 such that
inf, | ¢(z,)|=d >0. There is a sequence {x,};>, in X such that {x,}>; \{xnm} ? X, for
every me N. For each me N there is a function u,, in 4 such that u,,(x,,)=1 and u,(x,)=0
for n#m since A4 is normal. For each me N there is k,,€ N such that [u,, | |z, |<2™™. Put

0
u= Z Zg, Uy -
n=1

Then we have ue A. We may suppose that u(X) < 4. Let x, be a cluster point of
{x,} 2. Then u(x,)=z,, and u(x,)=0 since u,(x,)=0. We see that

inf| g o u(x,) —@ou(xo)|2d,
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which is a contradiction since ¢ o u is continuous and x, is a cluster point of {x,}% .

3. Operating functions which are not Lipschitzian.

THEOREM 2. Let A be a normal Banach function algebra on a compact Hausdorff
space X and ¢ a complex-valued non-local-Lipschitz function defined on-A. Suppose that
@ operates on A. Then there exists a finite subset K of X such that A| F=C(F) for every
compact subset F of X\ K.

Prpor. Suppose that ¢ is not continuous. Then X is a finite set by Lemma 1,
so that 4=C(X). Suppose that ¢ is continuous on 4. In the same way as in [3] (cf.
[6, Lemma 4.22]) there is a finite subset K of X such that for every xe X\ K there
exist a compact neighborhood G, of x and positive real numbers ¢, and J, such that
poueA|G, and ||@oul 46, <e, for ue 4| G, with |u| 4,¢.<9,. Indeed, suppose that
there is no such K. Then there are infinite sequences {x,} of X and {G,} of compact
neighborhoods of x, such that G,n(|Jm£,Gn)= and that for every >0, 6>0 and
a compact neighborhood G of x, there exists ue 4| G with ||u|l 4,6<9J, poue A|G and
l@oull 4,6>¢. For every ne N there exists an E,€ 4 such that E,=1 on G, and E,=0
on |Jm#nGn Then for every n there is f, € 4 such that

Ifala<2™""MENT,  ll@eful Gullag,2n.

Put g=3" . f,E,. Then g converges in 4. We see that g|G,= f, for every n and
lglla<1. Thus

looglazll@oglGullaig,=ll@° fal Gallajg, 2

for every ne N, which is a contradiction. We may assume that ¢(0)=0. By multiplying
¢ by 4, /¢, without loss of generality, we may assume that ¢, =4J,. We may also suppose
that there are real numbers ¢, and 5 with 0 <¢,<4,/20, t, <n such that ¢(z,)=10¢, and
| o(2)| > 10t for ¢ty <t<mn, since ¢ is a non-local-Lipschitz function. We will prove that
A|G,=C(G,) for every xe X\ K. Suppose not. Then by [2, Theorem 1.5] (cf. [6,
Corollary 6.16]) there are two sequences {G{"} and {G{"} of nonvoid compact subsets
of G, such that GP'n G = for every ne N and M,=inf{ | u| ,:ue 4, u(G{)={0},
u(GY)={1}}>o0 as n— 0. For each ne N choose a function u, € 4 such that | u, || ,<
2M,, u,=0 on G and u,=1 on G and put
v,= 41‘;" XU, +1, .

Then |5, ]| ,<8,. Then | @o0,|G; | 46.<d,. Put

2M

n

56,

Wp= {(P °v, | Gx_(p(IO)} X

Then || w, |l 46, <3M,/5, w,=0 on G{ and
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O, 2M,
w,=\ @ A +14 | — 102, | x <5

on GY. There is ny e N such that 6,/4M,, + t, <7 for every n>n,, since M, — co as n—co.

On the other hand
2M, )
> *+1, )| — 10z
2o )

on GY. Thus |w,|>1 on G¥ since | ¢(f) | > 10t for ¢, < t<n. It follows by the definition
of the quotient norm that for an ne N with n>n, there is w, € 4 such that | w, || , <3M,/5,
Ww,=0 on G{ and W,=c on GY, where c is a real number greater than 1, which
contradicts the definition of M,. Thus 4| G, = C(G,). Suppose that Fis a compact subset
F of X\ K. Then by the fact above there are x4, ..., x, € F and compact neighborhoods
G,, of x; such that 4|G,,=C(G,,) for i=1, ..., n, and |J;_, G,, o F. It follows by, for
example, a decomposition of the unity argument that 4| F=C(F). O

There is a normal Banach function algebra 4 on X such that 4 # C(X) on which
a non-local-Lipschitz function operates. In the same way as in the proof of Proposition
24 in [15] we see the following.

ExaMpLE. Let X={0}u{l/n:neN} and

1

f (—) —f(0)
n

where M,=2"". 4 is a normal conjugate-closed Banach function algebra on X. Let

d=1/2M, +1/2M 4 — 1), 1, = —1/2M, . +1/2(M,,, ,— 1) and h,=27"""". Let ¢ be
a complex-valued continuous function on 4={ze C:|z|<1} such that

A={feC(X): i

M,,<oo},

0, |z—d,|>r, for VneN

¢(Z)={(rn_lz_dn|)hn/rn’ |Z_dnlsr” for IneN.

Then ¢ is a non-local-Lipschitz function on 4 operating on 4, but 4 # C(X).

4. A sufficient condition for 4 =C(X).

THEOREM 3. Let A be a normal Banach function algebra on a compact Hausdorff’
space X and ¢ a complex-valued function defined on the open unit disk such that
| (p(z) — @(0))z ™| tends to infinity as z tends to 0. Suppose that ¢ operates on A. Then
A=C(X).

ProoF. In the same way as in the proof of Theorem 2 we consider only the case
where ¢ is continuous. We will prove that 4 is ultraseparating. If we prove that A4 is
ultraseparating, then we see that 4 =C(X) by Theorem A. By Theorem C it is enough
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to prove that 4 separates different points in F, for each xe X. Let x be a point in X.
Suppose that p and ¢ are different points in F,. We consider four cases:

(i) p,qel{x}xN];

(i) p, geF\[{x} xN];

(i) peF,\[{x}xN], ge[{x}xN];

(iv) pel{x}x N1, ge F,\[{x}x N]. |
In the case (i) it is easy to see that 4 separates p and g, since 4 contains constant
functions. We can prove the cases (iii) and (iv) in a way similar to the case (ii). We give
a proof of (ii).

Suppose that p and g are different points in F,\[{x} x N]. By Theorem B there
are two sequences {G "} and {G} of nonvoid compact subsets of X\ {x} which satisfy

aoo( U 6 )-o
(B,m) # (a,n)

for every (a, n)e {p,q} x N and that for every ne N the inequality || f || ,>n holds for
every f €A such that | f|<1/2 on G and | f|>1 on G. Put

B={feA :f(x)=0, f< U1 Gﬁ,’")z{O} , and f is constant on G for every m}‘

Put
M,=inf{| fll4: feB, f=10n G}

for ne N. Then M, < oo, since 4 is normal and M,— oo as n—oo. In fact we see that
M, >n for all n. By the Baire category theorem (cf. Sidney [18]) there are positive real
numbers ¢ and ¢ with §<1/2, uye B with |uy|<1/2 on X and a dense subset U of
{ueB:|lu—uqyl ,<8} such that poue 4 and || poul ,<e for every ue U. By the defini-
tion of M, there is u,€ B such that u,=1 on G and | u,|| ,<2M, for each ne N. Put
cn=uo(G) and

Uy + * _u,, ¢, #0
_| 7 2M,cl
" F)

u0+mun, Cn=0

n

Note that v,e{ueB: |u—u,l| ,<5}. Without loss of generality we may suppose that
¢(0)=0. For every positive real number c there is a positive real number ¢z, such that
|@(z)|>c|z| for all z with 0<|z|<t,. Put c=3¢/s. For n sufficiently large we see that

)
lvnl=|cn|+—<tc
2M,

on G{. It follows that
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o 3¢
lhov,|>cl|cpl+—— |>
2M, 2M,

on G{". Thus there is a w, € U near v, such that the inequalities | 4o w, | > 3¢/2M, on G
and | how, || ,<ehold for n large. It follows that (2M,/3g)ho w,, is in B, constant on G
and |(2M,/3e)how,|>1 on G and ||(2M,/3e)how,| 4 <2M,/3 for n sufficiently large,

which is a contradiction. We have thus proved that 4 separates p and g. O
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