DOES A NON-LIPSCHITZ FUNCTION OPERATE ON A NON-TRIVIAL BANACH FUNCTION ALGEBRA?

Osamu Hatori

(Received November 16, 1992, revised June 14, 1993)

Abstract

We show a property of a normal Banach function algebra on which a non-Lipschitz function operates. An example of a non-trivial normal Banach function algebra such that the operating functions are not necessarily locally Lipschitzian is given. We also show a sufficient condition in terms of the operating functions for a normal Banach function algebra to coincide with the algebra of all complex-valued continuous functions.

1. Introduction. By a Banach function algebra on a compact Hausdorff space X we mean a subalgebra of the algebra $C(X)$ of all complex-valued continuous functions on X, which contains the constant functions and separates different points in X and is a Banach algebra with the norm $\|\cdot\|_{A}$. A complex-valued function φ defined on a domain D in the complex plane is said to operate on a Banach function algebra A if the composite function $\varphi \circ u$ belongs to A for all u in A with range in D. We consider the problem involving the functions which operate on A. When A is uniformly closed de Leeuw and Katznelson [9] showed that if a non-analytic continuous function φ defined on a domain D operates on A, then $A=C(X)$. Considering the case where $\varphi(z)=\bar{z}$ on the complex plane C we see that the theorem of de Leeuw and Katznelson above is a generalization of the Stone-Weierstrass theorem. Spraglin [19] showed that a function φ defined on a domain in D which operates on a uniformly closed Banach function algebra on an infinite compact Hausdorff space is continuous on D (cf. [7]). Obviously every function operates on a Banach function algebra on a finite compact Hausdorff space. There is a Banach function algebra on an infinite compact Hausdorff space on which a certain discontinuous function does operate (cf. [1], [7, pp. II12-II14], [8]).

This fact is compared with the previous results; for example, there exists a Banach function algebra such that every operating function is real analytic and a Banach function algebra such that every operating function is locally Lipschitzian (cf. [10], [16]).

On the other hand Katznelson [17] showed that if the square root function $\sqrt{\cdot}$ defined on the half-open interval $[0,1)$ operates on a conjugate-closed Banach function algebra A on X, then $A=C(X)$. In [14] we showed that if $|z|^{p}(0<p<1)$ defined on
the open unit disk $\{z \in C:|z|<1\}$ operates on A on X, then $A=C(X)$. We also proved in [14] that several non-Lipschitz functions never operate on a non-trivial Banach function algebra by using the results concerning operating functions on the real part of the algebra.

In this paper we consider the case where the algebra A is normal, which means that for every pair of disjoint compact subsets K_{1} and K_{2} of X there is $f \in A$ with $f=0$ on K_{1} and $f=1$ on K_{2}. We show that there is a non-trivial Banach function algebra such that the operating functions are not necessarily locally Lipschitzian. We also show that a normal Banach function algebra on X on which a non-local-Lipschitz function operates coincides essentially with $C(X)$, that is, there is a finite subset K of X such that $A \mid F=C(F)$ for every compact subset F of $X \backslash K$. Furthermore we give a sufficient condition for a normal Banach function algebra A to coincide with $C(X)$. We prove these results by using an ultraseparation argument. The notion of ultraseparability was introduced by Bernard [3]. We say that a Banach function algebra A on X is ultraseparating if \tilde{A} separates the points in \tilde{X}, where \tilde{A} is the algebra of all bounded sequences in A and \tilde{X} is the Stone-Čech compactification of the direct product $X \times N$, where N is the discrete space of all positive integers. Thus every sequence \tilde{f} in \tilde{A} is identified with a function defined on \tilde{X}. We begin by recalling some results on the ultraseparation argument which we need in this paper to prove the theorems.

Theorem A (cf. [11, Theorem], [12, Corollary 1.2]). Let A be an ultraseparating Banach function algebra on a compact Hausdorff space X and φ a complex-valued nonanalytic continuous function defined on the unit disk $\Delta=\{z \in C:|z|<1\}$. Suppose that φ operates on A. Then $A=C(X)$.

For a subset S of $\tilde{X},[S]$ is the closure of S in \tilde{X}. For every $x \in X$ we denote the fiber $\bigcap[K \times N]$ by F_{x}, where K varies over all the compact neighborhoods of x.

Theorem B (cf. [14, Lemma A]). Suppose that A is a Banach function algebra on X. Let x be a point in X and let p and q be a pair of different points in F_{x}. Suppose that \tilde{A} does not separate p and q. Then the following hold.
(i) If p and q are points in $F_{x} \backslash[\{x\} \times N]$, then there are two sequences $\left\{G_{p}^{(n)}\right\}$ and $\left\{G_{q}^{(n)}\right\}$ of nonvoid compact subsets in $X \backslash\{x\}$ such that

$$
G_{\alpha}^{(n)} \cap\left(\overline{\bigcup_{(\beta, m) \neq(\alpha, n)} G_{\beta}^{(m)}}\right)=\varnothing
$$

for $\alpha=p, q$ and for every n. In fact, let n be a positive integer. If a function f in E satisfies the inequalities

$$
|f(y)| \leq \frac{1}{2}, \quad y \in G_{p}^{(n)}
$$

and

$$
|f(z)| \geq 1, \quad z \in G_{q}^{(n)}
$$

then we have

$$
\|f\|_{E}>n
$$

(ii) If q is in $F_{x} \backslash[\{x\} \times N]$ and p is in $[\{x\} \times N]$, then there is a sequence $\left\{G_{q}^{(n)}\right\}$ of nonvoid compact subsets of $X \backslash\{x\}$ which satisfies

$$
G_{q}^{(n)} \cap\left(\overline{\bigcup_{m \neq n} G_{q}^{(m)}}\right)=\varnothing
$$

for every positive integer n. Let n be a positive integer. If a function f in E satisfies the inequalities $f(x)=0$ and $|f(y)| \geq 1$ for every y in $G_{q}^{(n)}$, then we have

$$
\|f\|_{E}>n
$$

Theorem C (cf. [13, Lemma 6]). Let A be a Banach function algebra on a compact Hausdorff space X. Then A is ultraseparating if and only if \tilde{A} separates the points in F_{x} for every x in X.

In [4] and [5] Bernard studied the problems of involving the non-local-Lipschitz functions which operate on a certain space of real-valued continuous functions on a compact Hausdorff space. The author also treated similar problems in [14] and [15].
2. Continuity. Spraglin [19] proved that functions defined on a domain which operate on a uniformly closed Banach function algebra on an infinite compact Hausdorff space are continuous (cf. [7, Theorem 9 and the corollaries]). By a similar idea we see the following.

Lemma 1. Let A be a normal Banach function algebra on an infinite compact Hausdorff space X and φ a complex-valued function defined on the unit disk $\Delta=\{z \in C:|z|<1\}$. Suppose that φ operates on A. Then φ is continuous on Δ.

Proof. Suppose that φ is not continuous. Without loss of generality we may assume that $\varphi(0)=0$ and there is a sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ in Δ with $z_{n} \rightarrow 0$ such that $\inf _{n}\left|\varphi\left(z_{n}\right)\right|=d>0$. There is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in X such that $\left\{x_{n}\right\}_{n=1}^{\infty} \backslash\left\{x_{m}\right\} \nexists x_{m}$ for every $m \in N$. For each $m \in N$ there is a function u_{m} in A such that $u_{m}\left(x_{m}\right)=1$ and $u_{m}\left(x_{n}\right)=0$ for $n \neq m$ since A is normal. For each $m \in N$ there is $k_{m} \in N$ such that $\left\|u_{m}\right\|\left|z_{k_{m}}\right|<2^{-m}$. Put

$$
u=\sum_{n=1}^{\infty} z_{k_{n}} u_{n} .
$$

Then we have $u \in A$. We may suppose that $u(X) \subset \Delta$. Let x_{0} be a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$. Then $u\left(x_{m}\right)=z_{k_{m}}$ and $u\left(x_{0}\right)=0$ since $u_{n}\left(x_{0}\right)=0$. We see that

$$
\inf _{n}\left|\varphi \circ u\left(x_{n}\right)-\varphi \circ u\left(x_{0}\right)\right| \geq d,
$$

which is a contradiction since $\varphi \circ u$ is continuous and x_{0} is a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$.

3. Operating functions which are not Lipschitzian.

Theorem 2. Let A be a normal Banach function algebra on a compact Hausdorff space X and φ a complex-valued non-local-Lipschitz function defined on. Δ. Suppose that φ operates on A. Then there exists a finite subset K of X such that $A \mid F=C(F)$ for every compact subset F of $X \backslash K$.

Proof. Suppose that φ is not continuous. Then X is a finite set by Lemma 1, so that $A=C(X)$. Suppose that φ is continuous on Δ. In the same way as in [3] (cf. [6, Lemma 4.22]) there is a finite subset K of X such that for every $x \in X \backslash K$ there exist a compact neighborhood G_{x} of x and positive real numbers ε_{x} and δ_{x} such that $\varphi \circ u \in A \mid G_{x}$ and $\|\varphi \circ u\|_{A \mid G_{x}}<\varepsilon_{x}$ for $u \in A \mid G_{x}$ with $\|u\|_{A \mid G_{x}}<\delta_{x}$. Indeed, suppose that there is no such K. Then there are infinite sequences $\left\{x_{n}\right\}$ of X and $\left\{G_{n}\right\}$ of compact neighborhoods of x_{n} such that $G_{n} \cap\left(\overline{\bigcup_{m \neq n} G_{m}}\right)=\varnothing$ and that for every $\varepsilon>0, \delta>0$ and a compact neighborhood G of x_{n} there exists $u \in A \mid G$ with $\|u\|_{A \mid G}<\delta, \varphi \circ u \in A \mid G$ and $\|\varphi \circ u\|_{A \mid G}>\varepsilon$. For every $n \in N$ there exists an $E_{n} \in A$ such that $E_{n}=1$ on G_{n} and $E_{n}=0$ on $\overline{\bigcup_{m \neq n} G_{m}}$. Then for every n there is $f_{n} \in A$ such that

$$
\left\|f_{n}\right\|_{A}<2^{-n-1}\left\|E_{n}\right\|^{-1}, \quad\left\|\varphi \circ f_{n} \mid G_{n}\right\|_{A \mid G_{n}} \geq n
$$

Put $g=\sum_{n=1}^{\infty} f_{n} E_{n}$. Then g converges in A. We see that $g \mid G_{n}=f_{n}$ for every n and $\|g\|_{A}<1$. Thus

$$
\|\varphi \circ g\|_{A} \geq\left\|\varphi \circ g\left|G_{n}\left\|_{A \mid G_{n}}=\right\| \varphi \circ f_{n}\right| G_{n}\right\|_{A \mid G_{n}} \geq n
$$

for every $n \in N$, which is a contradiction. We may assume that $\varphi(0)=0$. By multiplying φ by $\delta_{x} / \varepsilon_{x}$, without loss of generality, we may assume that $\varepsilon_{x}=\delta_{x}$. We may also suppose that there are real numbers t_{0} and η with $0 \leq t_{0}<\delta_{x} / 20, t_{0}<\eta$ such that $\varphi\left(t_{0}\right)=10 t_{0}$ and $|\varphi(t)|>10 t$ for $t_{0}<t<\eta$, since φ is a non-local-Lipschitz function. We will prove that $A \mid G_{x}=C\left(G_{x}\right)$ for every $x \in X \backslash K$. Suppose not. Then by [2, Theorem 1.5] (cf. [6, Corollary 6.16]) there are two sequences $\left\{G_{1}^{(n)}\right\}$ and $\left\{G_{2}^{(n)}\right\}$ of nonvoid compact subsets of G_{x} such that $G_{1}^{(n)} \cap G_{2}^{(n)}=\varnothing$ for every $n \in N$ and $M_{n}=\inf \left\{\|u\|_{A}: u \in A, u\left(G_{1}^{(n)}\right)=\{0\}\right.$, $\left.u\left(G_{2}^{(n)}\right)=\{1\}\right\} \rightarrow \infty$ as $n \rightarrow \infty$. For each $n \in N$ choose a function $u_{n} \in A$ such that $\left\|u_{n}\right\|_{A}<$ $2 M_{n}, u_{n}=0$ on $G_{1}^{(n)}$ and $u_{n}=1$ on $G_{2}^{(n)}$ and put

$$
v_{n}=\frac{\delta_{x}}{4 M_{n}} \times u_{n}+t_{0}
$$

Then $\left\|v_{n}\right\|_{A}<\delta_{x}$. Then $\left\|\varphi \circ v_{n} \mid G_{x}\right\|_{A \mid G_{x}}<\delta_{x}$. Put

$$
w_{n}=\left\{\varphi \circ v_{n} \mid G_{x}-\varphi\left(t_{0}\right)\right\} \times \frac{2 M_{n}}{5 \delta_{x}} .
$$

Then $\left\|w_{n}\right\|_{A \mid G_{x}}<3 M_{n} / 5, w_{n}=0$ on $G_{1}^{(n)}$ and

$$
w_{n}=\left(\varphi\left(\frac{\delta_{x}}{4 M_{n}}+t_{0}\right)-10 t_{0}\right) \times \frac{2 M_{n}}{5 \delta_{x}}
$$

on $G_{2}^{(n)}$. There is $n_{0} \in N$ such that $\delta_{x} / 4 M_{n}+t_{0}<\eta$ for every $n \geq n_{0}$, since $M_{n} \rightarrow \infty$ as $n \rightarrow \infty$. On the other hand

$$
\left|w_{n}\right| \geq \frac{2 M_{n}}{5 \delta_{x}}\left\{\left|\varphi\left(\frac{\delta_{x}}{4 M_{n}}+t_{0}\right)\right|-10 t_{0}\right\}
$$

on $G_{2}^{(n)}$. Thus $\left|w_{n}\right|>1$ on $G_{2}^{(n)}$ since $|\varphi(t)|>10 t$ for $t_{0}<t<\eta$. It follows by the definition of the quotient norm that for an $n \in N$ with $n \geq n_{0}$ there is $\hat{w}_{n} \in A$ such that $\left\|\hat{w}_{n}\right\|_{A}<3 M_{n} / 5$, $\hat{w}_{n}=0$ on $G_{1}^{(n)}$ and $\hat{w}_{n}=c$ on $G_{2}^{(n)}$, where c is a real number greater than 1 , which contradicts the definition of M_{n}. Thus $A \mid G_{x}=C\left(G_{x}\right)$. Suppose that F is a compact subset F of $X \backslash K$. Then by the fact above there are $x_{1}, \ldots, x_{n} \in F$ and compact neighborhoods $G_{x_{i}}$ of x_{i} such that $A \mid G_{x_{i}}=C\left(G_{x_{i}}\right)$ for $i=1, \ldots, n$, and $\bigcup_{i=1}^{n} G_{x_{i}} \supset F$. It follows by, for example, a decomposition of the unity argument that $A \mid F=C(F)$.

There is a normal Banach function algebra A on X such that $A \neq C(X)$ on which a non-local-Lipschitz function operates. In the same way as in the proof of Proposition 24 in [15] we see the following.

Example. Let $X=\{0\} \cup\{1 / n: n \in N\}$ and

$$
A=\left\{f \in C(X): \sum_{n=1}^{\infty}\left|f\left(\frac{1}{n}\right)-f(0)\right| M_{n}<\infty\right\},
$$

where $M_{n}=2^{n^{2}} . A$ is a normal conjugate-closed Banach function algebra on X. Let $d_{n}=1 / 2 M_{n+1}+1 / 2\left(M_{n+1}-1\right), r_{n}=-1 / 2 M_{n+1}+1 / 2\left(M_{n+1}-1\right)$ and $h_{n}=2^{-n^{2}-n}$. Let φ be a complex-valued continuous function on $\Delta=\{z \in C:|z|<1\}$ such that

$$
\varphi(z)=\left\{\begin{array}{ll}
0, & \left|z-d_{n}\right|>r_{n} \\
\text { for } \forall n \in N \\
\left(r_{n}-\left|z-d_{n}\right|\right) h_{n} / r_{n}, & \left|z-d_{n}\right| \leq r_{n}
\end{array} \text { for } \exists n \in N .\right.
$$

Then φ is a non-local-Lipschitz function on Δ operating on A, but $A \neq C(X)$.
4. A sufficient condition for $A=C(X)$.

Theorem 3. Let A be a normal Banach function algebra on a compact Hausdorff space X and φ a complex-valued function defined on the open unit disk such that $\left|(\varphi(z)-\varphi(0)) z^{-1}\right|$ tends to infinity as z tends to 0 . Suppose that φ operates on A. Then $A=C(X)$.

Proof. In the same way as in the proof of Theorem 2 we consider only the case where φ is continuous. We will prove that A is ultraseparating. If we prove that A is ultraseparating, then we see that $A=C(X)$ by Theorem A. By Theorem C it is enough
to prove that \tilde{A} separates different points in F_{x} for each $x \in X$. Let x be a point in X. Suppose that p and q are different points in F_{x}. We consider four cases:
(i) $p, q \in[\{x\} \times N]$;
(ii) $p, q \in F_{x} \backslash[\{x\} \times N]$;
(iii) $p \in F_{x} \backslash[\{x\} \times N], q \in[\{x\} \times N]$;
(iv) $p \in[\{x\} \times N], q \in F_{x} \backslash[\{x\} \times N]$.

In the case (i) it is easy to see that \tilde{A} separates p and q, since A contains constant functions. We can prove the cases (iii) and (iv) in a way similar to the case (ii). We give a proof of (ii).

Suppose that p and q are different points in $F_{x} \backslash[\{x\} \times N]$. By Theorem B there are two sequences $\left\{G_{p}^{(n)}\right\}$ and $\left\{G_{q}^{(n)}\right\}$ of nonvoid compact subsets of $X \backslash\{x\}$ which satisfy

$$
G_{\alpha}^{(n)} \cap\left(\overline{\bigcup_{(\beta, m) \neq(\alpha, n)} G_{\beta}^{(m)}}\right)=\varnothing
$$

for every $(\alpha, n) \in\{p, q\} \times N$ and that for every $n \in N$ the inequality $\|f\|_{A}>n$ holds for every $f \in A$ such that $|f| \leq 1 / 2$ on $G_{p}^{(n)}$ and $|f| \geq 1$ on $G_{q}^{(n)}$. Put

$$
B=\left\{f \in A: f(x)=0, f\left(\bigcup_{n=1}^{\infty} G_{p}^{(n)}\right)=\{0\}, \text { and } f \text { is constant on } G_{q}^{(m)} \text { for every } m\right\} .
$$

Put

$$
M_{n}=\inf \left\{\|f\|_{A}: f \in B, f=1 \text { on } G_{q}^{(n)}\right\}
$$

for $n \in N$. Then $M_{n}<\infty$, since A is normal and $M_{n} \rightarrow \infty$ as $n \rightarrow \infty$. In fact we see that $M_{n} \geq n$ for all n. By the Baire category theorem (cf. Sidney [18]) there are positive real numbers δ and ε with $\delta<1 / 2, u_{0} \in B$ with $\left|u_{0}\right|<1 / 2$ on X and a dense subset U of $\left\{u \in B:\left\|u-u_{0}\right\|_{A}<\delta\right\}$ such that $\varphi \circ u \in A$ and $\|\varphi \circ u\|_{A}<\varepsilon$ for every $u \in U$. By the definition of M_{n} there is $u_{n} \in B$ such that $u_{n}=1$ on $G_{q}^{(n)}$ and $\left\|u_{n}\right\|_{A}<2 M_{n}$ for each $n \in N$. Put $c_{n}=u_{0}\left(G_{q}^{(n)}\right)$ and

$$
v_{n}= \begin{cases}u_{0}+\frac{\delta c_{n}}{2 M_{n}\left|c_{n}\right|} u_{n}, & c_{n} \neq 0 \\ u_{0}+\frac{\delta}{2 M_{n}} u_{n}, & c_{n}=0\end{cases}
$$

Note that $v_{n} \in\left\{u \in B:\left\|u-u_{0}\right\|_{A}<\delta\right\}$. Without loss of generality we may suppose that $\varphi(0)=0$. For every positive real number c there is a positive real number t_{c} such that $|\varphi(z)|>c|z|$ for all z with $0<|z|<t_{c}$. Put $c=3 \varepsilon / \delta$. For n sufficiently large we see that

$$
\left|v_{n}\right|=\left|c_{n}\right|+\frac{\delta}{2 M_{n}}<t_{c}
$$

on $G_{q}^{(n)}$. It follows that

$$
\left|h \circ v_{n}\right|>c\left(\left|c_{n}\right|+\frac{\delta}{2 M_{n}}\right)>\frac{3 \varepsilon}{2 M_{n}}
$$

on $G_{q}^{(n)}$. Thus there is a $w_{n} \in U$ near v_{n} such that the inequalities $\left|h \circ w_{n}\right|>3 \varepsilon / 2 M_{n}$ on $G_{q}^{(n)}$ and $\left\|h \circ w_{n}\right\|_{A}<\varepsilon$ hold for n large. It follows that $\left(2 M_{n} / 3 \varepsilon\right) h \circ w_{n}$ is in B, constant on $G_{q}^{(n)}$ and $\left|\left(2 M_{n} / 3 \varepsilon\right) h \circ w_{n}\right| \geq 1$ on $G_{q}^{(n)}$ and $\left\|\left(2 M_{n} / 3 \varepsilon\right) h \circ w_{n}\right\|_{A}<2 M_{n} / 3$ for n sufficiently large, which is a contradiction. We have thus proved that \tilde{A} separates p and q.

References

[1] J. M. Bachar, Jr., Some results on range transformations between function spaces, Proc. Conf. on Banach Algebras and Several Complex Variables, Contemp. Math., vol. 32, 1984, pp. 35-62.
[2] W. G. Bade and P. C. Curtis, Jr., Embedding theorems for commutative Banach algebras, Pacific J. Math. 18 (1966), 391-409.
[3] A. Bernard, Espaces des parties réelles des éléments d'une algèbre de Banach de fonctions, J. Funct. Anal. 13 (1972), 387-409.
[4] A. Bernard, Functions qui opèrent sur un espace de Banach de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 314-I (1992), 661-663.
[5] A. Bernard, Une fonction non Lipschitzienne peutelle opérer sur un espace de Banach de fonction non trivial?, preprint.
[6] R. B. Burckel, Characterizations of $C(X)$ among its subalgebras, Marcel Dekker, New York, 1972.
[7] P. C. Curtis, Topics in Banach spaces of continuous functions, Aarhus Univ. Lecture Notes Series vol. 25, 1970.
[8] H. G. Dales and A. M. Davie, Quasi-analytic Banach function algebras, J. Funct. Anal. 13 (1973), 28-50.
[9] K. de Leeuw and Y. Katznelson, Functions that operate on non-self-adjoint algebras, J. Analyse Math. 14 (1963), 207-219.
[10] A. Dufresnoy, Union de compact d'interpolation: Calcul symbolique, J. Funct. Anal. 21 (1976), 245-285.
[11] O. Hatori, Functional calculus for certain Banach function algebras, J. Math. Soc. Japan 38 (1986), 103-112.
[12] O. Hatori, Range transformations on a Banach function algebra, Trans. Amer. Math. Soc. 297 (1986), 629-643.
[13] O. Hatori, Range transformations on a Banach function algebra. II, Pacific J. Math. 138 (1989), 89-118.
[14] O. Hatori, Symbolic calculus on a Banach algebra of continuous functions, J. Funct. Anal. 115 (1993), 247-280.
[15] O. Hatori, Separation properties and operating functions on a space of continuous functions, Internat. J. Math. 4 (1993), 551-600.
[16] S. Igari, Sur les fonctions qui opèrent sur l'anneau de Dirichlet $D(G)$, Tôhoku Math. J. 17 (1965), 200-205.
[17] Y. Katznelson, A characterization of all continuous functions on a compact Hausdorff space, Bull. Amer. Math. Soc. 66 (1960), 313-315.
[18] S. J. Sidney, Functions which operate on the real part of a uniform algebra, Pacific J. Math. 80 (1979), 265-272.
[19] W. Spraglin, Partial interpolation and the operational calculus in Banach algebras, Thesis, Univ. California, Los Angeles, 1966.
O. HATORI

Department of Mathematics
Tokyo Medical College
1-1 Shinjuku 6-chome
Shinjuku-ku Tokyo 160
Japan
E-mail address: berobero@jpnwas00.bitnet

