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Abstract. We study functions which operate on a Banach space of bounded
functions defined on a discrete space. As a consequence we characterize functions which
operate on the algebra of the translation invariant operators from L?(G) to L*(G) for
1<p<?2 and for a compact abelian group G.

1. Introduction. Let G be a compact abelian group and G the dual group of G.
Let 1 <p, g<oo. A bounded operator T from L?(G)to LYG) s called a (L?,L9)-multiplier
if TT,=T,T for every yeG, where T, f(x)=f(x—7y). The set of all (L?, L*)-multipliers
is denoted by M(p, q). Since G is a compact abelian group the Fourier transform 7 for
Te M(p, q) is a complex-valued bounded function defined on the discrete group G. We
denote M(p, q)'={T: Te M(p, q)}.If p<gq, then M(p, q) is a Banach algebra and M(p, q)°
is a Banach algebra of bounded functions on G. Let E be a space of complex-valued
functions defined on a set X. We say a complex-valued function ¢ defined on a subset
S of C operates on E if ¢ o fe E for every f € E such that f(X)c=S.

The algebra M(1, 1) is isometric and isomorphic to the algebra M(G) of all the
bounded regular Borel measures on G and the operating functions on M(G)  is
characterized by Kahane and Rudin [10]. The result is extended to the case of p=¢g+#2
by Igari [8]. Igari and Sato [9] consider the case of 1<p<g<oco. They prove, for
example, that if 1<p<qg<2 or 2<p<g< 0, n, is the smallest »n integer such that
n=Po=(1/g—1/2)/(1/p—1/q) or n>Bo=(1/2—1/p)/(1/p—1/q) respectively, and ¢, is a
bounded function on [ —1, 1], then for any constants a,, a5, ..., «, the function

P(t)=o 140,12+ - o, 1"+ 1Pt Lo (t)

defined on [—1, 1] operates on M(p,q)". They also prove that if 1<p<2<g<oo,
B, =min{(1/2—1/g)/(1/p—1/2), (1/p—1/2)/(1/2—1/q)} and ¢, is a bounded function on
[—1, 1], then for any constant « the function

o) =at+|1]" (1)

operates on M(p, q)". The converse of the last result when G is the circle group is also
proven by Igari and Sato [9]. One of the essential arguments they use in their proof
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is to estimate the norm of certain trigonometric polynomials when G is the circle group.
By their results the operating functions on M(p, 2)" in the case of the circle group are
characterized: a complex-valued function ¢ defined on [ —1, 1] operates on M(p, 2)" if
and only if ¢(0)=0, ¢ is bounded on [ —1, 1] and limsup,,_, | (w)/w|< c0.

In this paper we study operating functions in a different approach, that is, we first
consider the operating functions on a Banach space of bounded functions defined on
a discrete space, which is modeled after the space M(p, 2)". Then by using the results
for the abstract function spaces we characterize the operating functions on M(p, 2)" for
an arbitrary compact abelian group G in a fashion similar to the case of the circle group
G by Igari and Sato [9]. Suppose that 1 <p<2 and S is a subset of the complex plane
such that 0e.S and 0 is an accumulation point of S. Then a function ¢ defined on S
operates on M(p, 2)" if and only if ¢(0)=0, ¢ is bounded on any bounded subset of S
and lim sup,,_q | @(w)/w|<co.

2. Operating functions on a space of bounded functions. Let Z be a discrete space.
We denote by Cy(Z) the space of all complex-valued functions on Z which vanish at
infinity. The space of all complex-valued bounded functions on Z is denoted by C%(Z).
For a subset X of Z || * ||, is the supremum norm on X. The complex plane is denoted
by C.

We study the feature at the origin of the operating functions on a Banach space
A of bounded functions on Z which satisfies the following four conditions: (1) 1¢ 4;
(2) AnCy(Z)# Co(Z); (3) yy€ A for every ze Z and sup{||x,ll 4:z€ Z} < 00; (4) fyxe A
for every f € A and for every countable subset X of Z, where we donte the characteristic
function of a subset Y of Z by yy. The condition (3) plays an essential role in this and
the following sections. If 1 <p<2, then the algebra M(p, 2)" is contained in C%Z) and
satisfies the above four properties.

LeMMA 1. Let Z be a discrete space and A a complex Banach space continuously
embedded in Co(Z) such that y,, € A for every ze Z. Then A coincides with Cy(Z) if and
only if there is a positive number M such that the inequality

inf{|| fll,: fe A, f|X=1, f|Y=0}<M
holds for every pair X and Y of disjoint compact subsets of Z.

Proor. We may suppose without loss of generality that || - ||,z <-4 The
necessity is trivial by the open mapping theorem. So we show the sufficiency. Let f
be a function in Co(Z) such that || f],z=1. Put X, ={zeZ:Ref(2)>1/2}, X,=
{zeZ:Ref(2)<—1/2}, X3={zeZ\(X,uX,):Imf(2)=>1/2}, X,={zeZ\ (X, UX,):
Im f(z)< —1/2}. Then each X, is a compact subset of Z. By the condition there exist
functions f;, f5, f5 and f, in A4 such that f;=1 on X;, f;=0 on (U:lek)\X,- and
Il fill 4 <M for every 1 <i<4. Put §=1/20M and h=04(f, +if5—f,—ifs). Then he A and
lnl4<1/5. We also see by simple calculation that ||f—h||m(z,s\/1 —6+6% and
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J1—0+82<1.It follows that for every f € Co(Z) there exists a function 4 € 4 such that
15l A< f 1l o(zy/S and || f— Al m(z,s\/l —0+02| 1l ©(z)- Thus by a standard argument
on Banach spaces we see that 4= Cy(Z). O

PROPOSITION 2. Let Z be a discrete space and A a complex Banach space which is
continuously embedded in C*(Z). Suppose that A satisfies the following four conditions:
(1) 1 ¢ 4; (2) An Cy(Z) # Cy(Z); (3) A contains the characteristic function x,,, for every ze Z
and sup{| x|l i z€ Z} = L<00; (4) A contains the function fyy for every f e A and for
every countable subset X of Z. Let S be a subset of C such that 0€S and 0 is an ac-
cumulation point of S. Suppose that a complex-valued function ¢ defined on S operates
on A. Then we have ¢(0)=0 and
@(w)

lim sup —i<oo.

w0

w

The condition sup{|x.l4:z€Z}<oo is essential, that is, the conclusions of
Proposition 2 and Theorem 5 are false unless sup{||y.,ll4:z€ Z} <o is assumed.

ExaMPLE (cf. [5, Proposition 24], [6, Example]). Let N be the discrete space of
all the positive integers and E={fe Co(N):Y.>_,| f(n)|C,< o0}, where C,=2"". Then
E is a Banach algebra with respect to the norm || f||=).""_,| f(n)|C, for f € E such that
the conditions (1), (2) and (4) in Proposition 2 hold and y,, € E for every ze V. Let
dy=1/2C,+ )+ 1/2Cp41=2), r,=—1/2C,4 )+ 1/2C,4,—2) and h,=2"""" Let ¢
be a complex-valued continuous function on {we C:|w|<1} such that

0, \ |w—d,|>r, forall neN
p(w)=
(ra—Iw—d,Dh,/r, , |w—d,|<r, forsome neN.
Then we see that limsup,,_q | @(w)/w|=co. We also see that ¢ operates on E.

Inspired by this example we may consider the problem involving the function ¢
such that ¢(0)=0 and lim,, | ¢(w)/w|= oo which operates on an algebra of continuous
functions. We may easily suppose that such functions are not so many unless the algebra
contains every continuous functions. In the case of normal Banach function algebras
we have shown, for example, the following (cf. [6]):

THEOREM A. Let A be a normal Banach function algebra on a compact Hausdorff
space X and ¢ a complex-valued function defined on the open unit disk such that
[(@(W)—@(0)/w|—>00 as w—0. Suppose that ¢ operates on A. Then A consists of all
complex-valued continuous functions on X.

We also see that many non-Lipschitz functions cannot operate on a Banach space
of continuous functions on a compact Hausdorff space unless it contains every
continuous functions (cf. [1], [2], [4], [5], [11]). We also study in [7] the case where
Banach space of continuous functions on a locally compact Hausdorff space.
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PROOF OF PROPOSITION 2. We see that ¢(0)=0 since ¢(0)€ 4 and 1 ¢ A. We suppose
lim sup,,_o| @(w)/w|=o00 and derive contradiction. Without loss of generality we may
suppose that || * || ,zy<|l * ll4- So || - || ; is complete on 4 n Cy(Z). By Lemma 1 we can
choose two sequences {X{?} and {X{"} of compact subsets of Z such that X n X = ¥
if (i, m)#(j, n) and that

M,=inf{[f]4: f€AnCo(2), f| XV =1, f|XO=0}>n.

Indeed, we choose {X{?} and {X{M} as follows: Let z, and z, be a pair of different
points in Z. Put X{¥={z,} and X{"'={z,}. Then we see that X{¥n X{!= ¥ and

inf{[|fl4: feAnCo(2), f|X =1, f|X{O=0}=1.
Suppose that X9, X ..., X© and XV, X{V, ..., XV are so chosen that they are
pairwise disjoint and

k<inf{||fll4: feAnCo(Z), f|X"=1, f| X" =0}

for every k with 1 <k <n. Put O=J; _,(X{” u X{"). Then O consists of a finite number
of isolated points. Thus we see that (4 |(Z N O0))n Co(Z\ 0) is a complex Banach space
with respect to the quotient norm | - || 4z o) defined by

1flajz~o=nf{Ifl4: fed, F{(Z\0)=f}.

Then we see that | * | oizv0)< |l * |4z 0y and (4|(Z\0)n Co(Z\ 0) # Co(Z\ 0). We
also see that y,|(Z\ 0)e(4](Z\ 0))n Co(Z\\0) for ze Z. It follows by Lemma 1 that
there is a pair of disjoint compact subsets X%, and X1, of Z\ O such that

inf {11l 41200/ € (4] (ZN\ONN CoZNO), £] X2 =0, | X2, =1} =n+1.
By simple calculation we see that
inf{||lfl4: feAnCo(2), f1X}2,=0, f| X}, =1}
=inf{[lf lajzn0: f€(A|(Z\ONNCo(Z\O), f|X21=0, f|X;2,=1}.
It follows by induction that we can choose two sequences {X”} and {X\V} with the
required properties. For each positive integer m put

0
0
Zm= U (Xé"zn—?"“UXg")n—T"“) .
n=1

Then we see that
(4]Z,)nCy(Z,)=(An Cy(Z))|Z,,

and the two norms || - | 4,2, and | * | §,z,, are equivalent Banach norms on (4 n Co(Z))|Z,,,
where

1/ a1z, =inf{I Flla: fe A4, F|Zn=1},
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11812, =inf{I Flla: fe An Co(Z), [|Zn=1}

for every fe(AnCy(Z))|Z,. The inclusion (4nCy(Z))|Z, <(A|Z,)n Cy(Z,) is trivial.
We show the opposite inclusion. Let ge(A|Z,,,)n Co(Z,). Then there is g€ A such that
g'Zng. Since Z,, is a countable set, we see that gy, €4 by the condition (4). Thus
we have §yz, € An Co(Z) since ge Co(Z,,). It follows that g=(Gxz,)|Z, € (4 n Co(2))|Z,.
We conclude that (A|Z,,,)nCO(Z,,,)=(A n CO(Z))|Z,,,. Since || * | ozy <l * |l 4» We see that
Il - Il 4 is complete on 4 n Cy(Z). Thus || * |If’,| z,, 15 a Banach norm on (4n CO(Z))|Z,,,. We
also see that ||+ || 4z, is a Banach norm on (A|Z,,,)n Co(Z,). It follows by the open
mapping theorem that the two norms | - ||g|zm and | -l 4z, are equivalent. In fact,
there is a positive constant c,, such that the inequalities

£ 412, <1 F1 2120 < mll 142,
hold for every fe(AnCy(Z ))IZ,,,. For every positive integer n put
N =sup{llflla\z,,: f€A|Z,, f*=f,¥z€Z,: f(2)=1}<n},

where # denotes the cardinality. Suppose that feA|Z, satisfies f>=f and #{ze
Z,: f(2)=1}<n. Then we have f=)__._, . %z|Znm hence

1141z, SZ ”X(z)lZm||A|z,,. <nL.
Thus we have N™ <nL. We also see that the inequalities
NM<NMm <N™+ L
hold. N™ < N™ is trivial by the definition of N{™. Suppose that f is a function in
A|Z, suchthat f>=fand #{z€ Z,: f(z)=1} <n+1. Choose a point ze {z€ Z,,: f(z)=1}
and put g=f—y,|Z,. Then ge A|Z,, g=g* and #{ze Z,:g(z)=1} <n. We also see
that
||f”A|z,,,S 91l 4z, + ”X(z)‘Zm”A|ZmSNr(lm)+L .
Hence N, < N™ + L holds. Next we show that N/ — o0 as n—oo. For each positive
integer k put
nk=ﬁ’X§2k_2m-1 .
Then

1
N> ||Xx‘2‘,2.kA2m—1|Zm||A|z,,.Zc— llxew, m—lIZm”2|Zm

27k-2
m

1 .
Zc—lnf{HfHAZfGAﬂCO(Z), le(Zl.lk_Zm_1=l, le(zon)-k—zmﬂ:O}

m

1
Z_(zmk_zm—l) ,
C

m
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so we have N{™— oo as k—oco. Since N{™ is increasing we see that N\™— oo as n—co.

Let T, be the linear operator on A defined by T,, f=fy,,, for f € A. By the condition
(4) T,, is well-defined and we see by the closed graph theorem that T, is a bounded
linear operator on 4. We denote the operator norm of T,, by ||T,|. There exists a
sequence {w,,} =S such that 0<|w,,|<1/2™"'N{™|T,l) and that |w, || T,.[2™*'m<
| @(w,,)|. There exists a positive real number n(m) such that

2" T Nty <1 Wi | ™1 2™ HI T, [ NSy 41

n(m
since N{™— o0 as n— oo, hence
2" Tl Nyoy < W | =1 2™ M T (L + DN

since NI\ .y <N + L<(L+1)N{m,. By the definition of N{m, there exists h, € A|Z,,

n(m)*

such that h2=h,, #{ze Z, : h,(z)=1} <n(m) and
Nr(s:"»)./z < hwll 4z, < Ny s

so h,, € A exists such that 4,,|Z,,=h,, and |k, ,<2N&,. Thus a function w,h,z, is in
A and satisfies [[w,f,xz l4<27™ so that h=Y%_ Wuh.1z, converges in 4 and
WZ)={0}u{w,} =S since h’=h,,. Thus we conclude that the inequalities

ol 4= | @Wnhm)l 412, =| ©Wm) | 1 1m]l 41 2,,> M/ (2L +2)

hold for every m, which is a contradiction. O

3. Operating functions on multipliers. As a corollary of the results in the previous
section we characterize the functions which operate on certain multipliers.

COROLLARY 3. Let G be an infinite compact abelian group and G the dual group
of G. Suppose that p is a real number such that 1 <p<2. Suppose also that S is a subset
of C such that 0 S and 0 is an accumulation point of S. Then a complex-valued function
@ defined on S operates on M(p, 2)" if and only if ¢ satisfies that @(0)=0, @ is bounded
on every bounded subset of S and that limsup,,_ | p(w)/w|< 0.

PrOOF. Let Z=G and A=M(p,2)". Then A4 is a Banach algebra such that
Ac=C¥Z), hence | |l oz <IlIl,. We show that A satisfies the four conditions in
Proposition 2. It is elementary to show that 1¢4, AnCy(Z)# Cy(Z), ;€A and
lxzla=1 for every ze Z. Thus we verify that fyye 4 for every feA and for every
countable subset X of Z. Let Trig G denote the set of all trigonometric polynomials on
G. Put

TyF= Y, f(2)F(2)z

zeX

for FeTrigG. Then by the Plancherel formula we see that
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ITxFlI3= 3 | f@F @)
zeX
On the other hand there exists a positive constant ¢ such that

1/2
(Z lf(z)ﬁ(zw) <c|F|,

zeZ
for every FeTrig G since fe A= M(p, 2). It follows that the inequality
ITxFll,<clFl,

holds for every Fe Trig G. We conclude that Ty can be extended to an operator T in
M(p,2). By a simple calculation (Ty) =fyy, that is, fyyeA. Thus 4 satisfies the
condition (4) in Proposition 2.

Let ©Q, be the set of all complex-valued functions defined on S which operate on
A and Q, the set of all complex-valued functions ¢ defined on S such that ¢(0)=0,
limsup,,_o| @(w)/w|< oo and that ¢ is bounded on any bounded subset of S. By the
Plancherel formula the inclusion Q;,>Q, is easy to prove. We show the opposite
inclusion. Suppose that @eQ,. Then by Proposition 2 we see that ¢(0)=0 and
limsup,,_ | @(w)/w]| < co. Suppose that ¢ is not bounded on a bounded subset S’ of S.
Then there exists a sequence {w, } of " such that fora w,e Cwehave ). | |w,—wq|< o0
and | p(w,)|— o0 as n—0. Let Y be an infinite A(p’) set, where p’ is a real number such
that 1/p+1/p’=1. Then by a theorem of Hare [3, Corollary 1.9] there is fe A such
that f?>=fand Y={zeZ:f(z)=1}. We may assume that Y is a countable set since a
subset of a A(p’) set is again a A(p’) set. Put Y={y,} and

g=wof+ Z (w,— Wo)X(y,.) .

Then ged since Y ., |w,—wol<oo and |[x,,ll,=1 for every k. We see that
9(Z)={0}u{w,} =S, hence poge A. Then |@-g(y,)|=|p(w,) |- as n—co, which is
a contradiction. Thus ¢ is bounded on any bounded subset of S, and we conclude that
Q,<=Q,. O

4. A generalization for abstract spaces. By using Proposition 2 we can prove
results similar to Corollary 3 for a large class of Banach spaces which are continuously
embedded in C%Z). For a subset K of C we denote the interior of K by int K.

LemMMA 4. Let Z be a discrete space and A a complex Banach space continuously
embedded in CY(Z) such that y,€ A for every ze Z. Let K be a subset of C such that
Oeint K. Suppose that every complex-valued bounded function ¢ defined on K such that
0(0)=0 and limsup,,_o | p(w)/w|< oo operates on A. Then fyx€ A for every fe A and
for every countable subset X of Z.

Proor. Without loss of generality we may assume | - || ,z)<| - | 4. Let fe 4 and
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X a countable subset of Z. If X is finite, then fyxe€ A4 since ., € A for every ze Z and
hence ) ,_, fx € A. Suppose that X is infinite. Put X={x,}. Since 4 is closed under
the constant multiplication we may suppose that f(Z)cint K. Define a complex-valued
function ¢ by

w,  wef(X),
pw)=
0, we K\ f(X).
Then @(0)=0 and ¢ is bounded since f(X) is a bounded subset of C. We also see

that lim sup,,_,o | @(w)/w] <1, so that o fe 4 and ¢ f(Z)<={0} u f(X). It follows that
@ o f(Z) is a countable set. Put

e=inf{|w—w'|: we f(Z), w e C\K} .

Then &¢>0 since f(Z) is compact and f(Z)cintK. We define a sequence {a,} of
non-negative real numbers by induction as follows: If f(x,)=0, then put a,=0. If
f(x1)#0, then choose a real number a; such that 0<a,; <e&/(4]|y,ll40) and f(x;)+
a f(x))/| f(x)eint Kn(f(X)f. Note that such an a, exists since f(X) is a counta-
ble subset of C. Suppose that a,, ..., a, have been chosen. If f(x,,,)=0, then put
a,+,=0. If f(x,.,;)#0, then choose a real number a,,, such that 0<a,,,<

8/(2"+2 “X(xm 1}”,4) and

S s )+ s 1/ s )1 (1) | €iLK R {f(X) y U (f(xi>+aiMi)}c :

where

0 N xi :0 N

Mi={ fx)

SO, flx)#0.
Thenu=Y ", a,M,y,, convergesin 4 since ||a,M, x|, <&/2"* 1. Since || - | ozy< Il * I 4
we see that u(z)=zz°:1a,,M,,x{xn)(z) for every ze Z, so that u(z)=0 if ze Z\ X and
u(x,)=a,M, for every positive integer k. Put g=¢@o f+u. Then geA4 and g(Z)cK.
Define a complex-valued function ¢ on K by
Six),  w=glx,) and g(x,)#0,
0, otherwise .

d(w) ={

We see by simple calculation that ¢ is well-defined. We also see that | ¢(w)|<|w]| since
[ f(x)1<]g(x,)]. It follows that fyy=¢ogeA. O

THEOREM 5. Let Z be a discrete space and A a complex Banach space continuous-
ly embedded in CYZ) such that AnCyWZ)#Cy(Z), y,€A for every zeZ and that
sup{llxylla:z€Z}=L< 0. Let K be a subset of C such that O€int K.

(1) Suppose that Ac Cy(Z). Then the following four conditions are equivalent:
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(i) Every complex-valued bounded continuous function ¢ defined on K such that
@(0)=0 and limsup,, ., | p(W)/w| < o0 operates on A.

(ii) Every complex-valued function ¢ defined on K such that ¢(0)=0 and
limsup,, .o | @(w)/w| < oo operates on A.

(iii) The complex-valued function ¢ defined on K operates on A if and only if @
satisfies @(0)=0 and lim sup,, o | @(w)/w|< c0.

(iv) Suppose that fe A and ge Co(Z) such that |g|<|f| on Z. Then ge A.
(2) Suppose that A¢Cy(Z) and 1¢ A. Then the following two conditions are equivalent:

(i) Every complex-valued function ¢ defined on K such that p(0)=0, ¢ is bounded
on every bounded subset of K and that lim sup,,_,,| @(w)/w|< oo operates on A.

(ii) The complex-valued function ¢ defined on K operates on A if and only if
¢ satisfies that @(0)=0, ¢ is bounded on every bounded subset of K and that
lim sup,, .o | @(W)/w| < c0.

Proor. Case (1). Obviously, (iii) implies (ii) and (ii) implies (i). We show that
(i) implies (iv), (iv) implies (ii) and (ii) implies (iii). Suppose that (i) is satisfied. Suppose
that f € 4 and ge Cy(Z) satisfy the inequality | g|<| | on Z. Without loss of generality
we may assume that f(Z)cintK. Since feCy(Z) the set E={zeZ: f(z)#0} is a
countable subset of Z. In the same way as in the proof of Lemma 4 we see that there
exists u€ 4 such that (f +ul(Z)<= K, u=0 on Z\ E, argu(z)=arg f(z) for every ze E and
that {ze Z: f(z)+u(z)= f(zo)+u(zo)} ={z,} for every z,eE, where arg denotes the
argument of complex numbers. Choose a continuous function ¢ on K such that

g9(2), w=(f+u)z) for some zeE,

(p(W)={0’ w=0.

Note that such a function ¢ exists since 0 is the only accumulation point of (f + u)(E).
Then ¢ is bounded and | (w)|<|w| on K. Thus we have po(f+u)e A and po(f +u)=g
on Z. We conclude that (iv) holds.

Suppose that (iv) holds. Suppose that a function ¢ on K such that ¢(0)=0 satisfies
the inequality limsup,,_q | @(w)/w|<oo. Let f be a function in 4 such that f(Z)<K.
Since f(Z) is a bounded set in C there is a positive constant L such that | (w)|< L|w|
for every we f(Z). Thus we see that (po f)/Le Co(Z) and |(p° f)/L|<|f| on Z. 1t
follows that (@ o f)/L is in A, hence @ o f € A. We conclude that ¢ operates on A.

Suppose that (ii) holds. Let 2, be the set of all complex-valued functions defined
on K which operate on 4 and 2, the set of all complex-valued functions ¢ defined on
K such that @(0)=0 and limsup,, ]| @(w)/w|<co. By (ii) 2,>Q, is trivial. Suppose
that ¢ € Q2,. Then ¢(0)=0 since 1¢ 4. We see by Lemma 4 and Proposition 2 that
limsup,, .o | @(w)/w|<co. Thus feQ,. It follows that Q,=Q,. Thus (iii) holds.

Case (2). (ii) clearly implies (i). We show that (i) implies (ii). Let Q, be the set
of all complex-valued functions defined on K which operate on 4 and Q, the set of all
complex-valued functions on K such that ¢(0)=0, ¢ is bounded on any bounded subset
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of K and that limsup,,_, | @(w)/w| < co. By (i) the inclusion Q; 5 Q, is trivial. We show
that Q, < Q,.

First we show that there is f'€ 4 such that /2= f and {ze Z: f(z)=1} is an infinite
countable subset of Z. Since A4 ¢ Cy(Z) there are ge 4 and a countable subset {z,} of
Z and pe C\ {0} such that g(z,)—»p as n—oo. We may assume that g(Z)<int K and
there is a positive & such that g({z,}) = {we C:|w—p|<e} cint K\ {0}. Define a function
¢ on K by

I, fw—pl<e,
p(w)=
0, weK\{weC:|w—p|<e}.

Then we see that @(0)=0, ¢ is bounded on K and limsup,,_,|@(w)/w|=0. It follows
by (i) that ¢ operates on A. In particular, @ oge 4. We see that (pog)’=¢og on Z
and {zeZ:¢pog(z)=1}>{z,}. We define a sequence {a,} of positive numbers by induc-
tion as follows: Put a, =1. Suppose that a4, ..., a, have been chosen. Choose a,,, so
that 0<a,,, <1/Q2"" 'l ll0)- Then Y. a,x.,, converges in 4. Choose a positive d
such that {weC:|w|<25}cintK and put h=(pog+> ", a,x.,)0. Then he A and
h(Z)<int K since ||¢ °gllopzy=1 and IIZ:O: { Xzl o(zy = 1. Define a function ¢ on K by

1, we{(l+a,)d},

0, otherwise .

¢>(W)={

Then ¢(0)=0, ¢ is bounded on K and limsup,,_, | ¢(w)/w|=0, hence ¢ operates on A.
In particular, ¢ ohe 4. We see that (poh)*=¢ohand {zeZ:poh(z)=1}={z,}.

Let ¢ be a function in Q. Then by Lemma 4 and Proposition 2 we see that
lim sup,,_.o | @(w)/w|<oo. Since 1 ¢ 4 we have ¢(0)=0. We show that ¢ is bounded on
any bounded set. Suppose not. Then there exist wye C and a sequence {w,} in K such
that | w,—wo | < 1/lx, 142" and | @(w,)|—c0 as n—oco. Put

g=wopoh+ Z (Wn—Wo)Xiz,y -
n=1

Then ge 4 and g(Z)={0} u{w,} =K, hence @ oge A. On the other hand, |po-g(z,)|=
| @(w,)|—c0 as n—o0, which is a contradiction since 4 < C®Z). Thus ¢ is bounded
on any bounded subset of K. It follows that p € Q,, thus 2, =Q,, and (iii) holds. []
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