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Abstract. We show how to calculate the ratio sets of (/-measures as limit points
of infinite products of the associated ^-functions. In particular, we show that every
^-measure is of type IIIj.

1. Introduction. By Dye's celebrated theorem, every ergodic system of type II
or type III is orbit equivalent to one of the form (X, Γ, μ), where Zis the infinite product
of two-point spaces, Γ the (countable) group of finite coordinate changes in X, and μ
some measure on X which is quasi-invariant and ergodic with respect to the action of
Γ. The Krieger-Araki-Woods ratio set, discussed in [9], is an invariant for orbit
equivalence, allowing classification into systems of types II 1? II„, IIIl9 IIIA (0<λ<\),
and IΠ0. We will discuss here only probability measures.

In a recent paper [1], two of the authors introduced the G-measure formalism,
showing that all ergodic measures may be regarded as a generalization of the g-measures
of M. Keane, that is, there are functions gk on X such that

dμin)

Here, μ(w) denotes the measure μ averaged over the first n coordinates, and the function
gt depends on the coordinates (xi9xi+ί9 •) and satisfies

— (<7;(0, jc. + i , xi + 2, '' ) + gι(\, Xi+u * i + 2> ' ' " ) ) = 1 f ° r every xeX.

2

In this paper, we shall seek to characterise the ratio set of μ in terms of the limit points
of infinite products of the form Wf=nQi(u)lgi{v)9 u,veX. Our major result, Theorem
4.4, gives a necessary and a different sufficient condition which are nevertheless rather
close to each other, for a number r to belong to the ratio set. In Section 5, this theorem
is applied to show that provided the image of g contains an interval, every ^-measure
is of type III^ Hence by a theorem of Connes-Krieger [3], [5], they are all orbit
equivalent. In the last section, we apply our results to infinite product measures.
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2. Preliminaries.

(2.1) NOTATION. For each integer ieN, suppose we are given a finite space Xi

which we may identify with Zm, the integers modulo /(/), for some positive integer /(/).
We shall denote by X the infinite product Π £ i ^ i > a n c * by Γ t n e βΓOUP °f ^n^ie

coordinate changes

{yeX\ 3N with yn = 0 for n>N) .

Here, and in the sequel, we are thinking of elements in Xas sequences x = (xί9 x2, x3, ).
An element yeΓ acts on xeXby the rule (yx)n = yn + xn (mod/(«)). We will say that

two elements w, v e Xare eventually equal if there exists yeΓ with yu = v. This is equivalent
to demanding that there exists neN with un = vn for all n>N. For neN, let Xn =
Π Γ = π + i ^ ' ^ w ^ be convenient also to identify Xn with {xeX: x1=x2= * * * = xn = 0}.
Thus we define Γn = ΓnXn, and Γn = {ysΓ: yk = 0 for k>n}. Notice that one may write
l a s a disjoint union

x= U y*n -
yeΓn

As usual, we shall assume that X is equipped with its Borel σ-algebra ^ derived from
the product topology. Let μ be a measure on X, and suppose that μ is quasi-invariant
for the action of Γ, i.e. we define μoy(E) = μ(y~1E) for E a Borel subset of X, yeΓ,
and assume that μ ° y ~ μ for all y e Γ.

Then μin)~μ, where μin) = (\l\Γn\)ΣyeΓnμoy. We shall always assume that μ is a
probability measure, in which case μ(n) is also a probability measure. Notice that for
all y eΓn, we have μ(n)(yXn) = μin)(Xn)= 1/| Γn |. Recall that a quasi-invariant probability
measure is said to be ergodic if for every Γ-invariant Borel set A, either μ(A) = 0 or
μ(A)=\.

(2.2) DEFINITION. We recall from [9, §2] the definition of the Krieger-Araki-
Woods ratio set. Let μ be a measure on X, and let re[0, oo]. We shall say that
r G r(X, Γ, μ) if for all ε > 0 and for every set A of positive μ-measure, there exists a
set B<^A of positive μ-measure and there exists ye[Γ] such that

and
dμoy

(x)-r <ε
dμ

for almost every xeB.

In this definition, the full group [Γ] of Γ consists of all those automorphisms
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S: X-+X such that for all x e X there is 7 = y(x) e Γ with Sx = yx. A moment's reflection
shows that in the case of our group Γ, the action of the full group may be replaced by
the action of Γ itself. Thus, we may state:

(2.3) LEMMA, ( i ) Let r e [ 0 , 00 [. Then rer(X,Γ,μ) if and only if for every

ε > 0 and for every set A with μ(A)>0, there exists yeΓ such that

dμoy
μ<x: yxeA and

dμ

(ii) 00 er(X, Γ, μ) if and only if for every M>0 and for every set A with μ(A)>0
there exists yeΓ such that

μ\x:yxeA and ^^-(x)>M\>0 .
I dμ J

(2.4) We recall from [1] that a probability measure on I is a G-measure, where
G = (Gn)™= 1 is a family of non-negative Borel functions on X which are

( i ) normalized in the sense that

0/1Λ.I) Σ Gn(yx) = l for all x e l , and
yeΓn

(ii) compatible in the sense that

Gn(yx)Gm(x) = Gm(γx)Gn(x), where n>m, yeΓm and xeX.

The G-measure condition is to require that for all n

J^ Gn(x) for all xeX.

It is shown in [1, Proposition 1] that, after passage to an equivalent measure, the Gn

may actually be assumed continuous on X.
An equivalent formulation, somewhat preferable from the point of view of the

present work, involves functions

rn(x)/Gn _i(jt) if G M _!(x)#0

These satisfy two relations:

( i ) θn(
χ) depends only on the coordinates (xn9 xn + l9 — -)9 and

(ii) for each n9 QIKn))ΣyGZ{lmgn(yx)=\ for all xeX.
One has Gn(x) = g1(x)g2(x) gn(x).
Let T be the unit circle, and consider the map qn: Xn-+T defined by

00
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The function gn on Xn is said to be qn-continuous if there is a continuous function

g'n on Zm x T such that gn(x) = g'n(xn9 qn(x)).

The family G is said to be q-continuous if #„ is ^-continuous for all neN.

A measure μ on Z is said to be circle adapted if qo(x) = tfoίj7) implies K{χ}) = M M )

for all X J G I . Notice that every measure on X differs from a circle adapted one by a

discrete measure of countable support, hence every continuous measure is circle adapted.

Proposition 1 of [1] asserts that every circle adapted measure is equivalent to a

G-measure, the family G being ^-continuous.

Henceforth, we shall assume that G is a normalized compatible ^-continuous family,

and that μ is a G-measure. We shall seek to describe the ratio set of μ in terms of the

functions gk and g'k. As a preliminary to this, let us note the following obvious fact:

(2.5) LEMMA. Let μ be a quasi-invariant G-measure, with G as above. Then for

each k, we have gk(x)>0for μ a.e. x, and for yeΓ,

In this infinite product, only finitely many terms are different from 1, for if yeΓn,

then by the property (i) of the functions gk9 we have gk{yx) = gk{x) for k>n.

3. The basic theorems. We give two theorems, a necessary and a (different)

sufficient condition for a number to belong to the ratio set.

(3.1) THEOREM. Suppose that μ is a G-measure on X which is quasi-invariant for Γ.

( i ) Let r e [0 , oo[. Then if rer(X, Γ, μ) then for every ε>0, for every n and for

every yoeΓn there exists yeΓn such that

μiuey0X
n:

(ii) If oo e r(X, Γ, μ), /λe« /or every M > 0, /or every « and for every y0 e Γn, ίΛere

exists yeΓn such that

PROOF. This is a direct consequence of Lemmas (2.3) and (2.5), applied to A = y0X
n.

D

We have the following sufficient condition:

(3.2) THEOREM. Suppose that μ is a G-measure on X which is quasi-invariant for Γ.

( i ) Let r e ] 0 , oo[. Suppose that for every ε > 0 there exists β>0 such that for

every n and for every yoeΓn there exists yeΓn such that
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μ(<ueγ0X
n:

gXu)
<ε})>βμ(γ0X

n).

Then rer(X,Γ,μ).

(ii) Suppose that for every m>0 there exists β>0 such that for every n and for

every yoeΓn there exists yeΓn such that

μ(\uey0X»: f[ ^->ml)>βμ(y0X»).

Then ooer(X,Γ,μ).

PROOF. We shall prove only (i); the proof of (ii) is similar and left to the reader.

Let ε>0, and suppose that ε<r. Choose β according to (i). Let A be an arbitrary

set of positive μ-measure. By a theorem of Caratheodory [6, (10.30)] there exists n and

y0 e Γn so that

β

and

μ(Any0X
n)>(\-j-)μ(y0X

n)

μ(Anγ0X»)>[l-l-

We may choose γ e Γ" such that

μ(y0X
n) .

dμoγ

dμ
(u)-r <ε

on a subset of measure greater than βμ(y0X
n). Letting B be the intersection of this

s u b s e t w i t h A, w e see t h a t μ(B)>βμ(y0X
n)/2, a n d \dμoy/dμ(u) — r\<ε for al l ueB.

It follows that yB^y0X
n, and that

β
μ(yB)>^(r-ε)μ(y0X»).

Hence μ(A nyB)>0. By definition, we have rer(X, Γ, μ). D

Notice that the above proof breaks down for the case r = 0. We shall present an

example later to show that the above theorem is false for r = 0.

4. The condition (E^. We recall from [1], the condition (EJ.

For every ε>0 there is keNsuch that for all neNand for all yeΓn+k,

sup<Ίl-
Gn(yx)

Gn{x)
: xeX><ε.
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We shall assume henceforth that this condition is satisfied.

It was shown in [1] that this condition implies that there is a unique G-measure.

Here, we show that in the presence of this condition the necessary and sufficient condition

of § 3 can be ameliorated.

Indeed, for n fixed, the infinite product occuring in (3.1) and (3.2) may be written

as

™ gi(γu) = Gn(yu) ^ » gfyύ)

i = o gtiμ) Gn(u) i=n+i g^u)

Thus, letting μyon denote the probability measure (l/μ(γ0X
n))μ\ γoXn, we have:

(4.1) PROPOSITION. Let r e ] 0 , oo[. Consider the conditions:

(a) For every ε > 0 there exist β>0 and k>0 such that for allneN and for all γoeΓn+k

there exist yeΓn+k such that

μγo,n+k[<ueyoX
ι n + k .

gt(u)
< ε

(b) rer(X,Γ,μ).

(c) For every ε > 0 there exists k>0 such that for all neN and for all yoeΓn+k there

exists yeΓn+k such that

μγ0tΛ+k[<ueγ0X' n + k . π — r >0 .

One has (a)=>(b)=>(c). The implication (b)=s>(c) holds also for r = 0.

A similar statement, whose formulation is left to the reader, holds for r= oo.

We may use the condition (£Ί) to control the "tail" of the infinite product. The

technicalities are contained in the next two lemmas.

(4.2) LEMMA. Let ε, δ > 0, and suppose ueX.ye ΓN, and that I Π ̂  19i(yu)l9i(u) ~~

r\<δ. Choose k according to the condition (E^. Then for all v such that uί=vί,...,uN+k —

vN+k, one has

T 9i(yv)

PROOF. Notice firstly that

ff Giiyv) Π

Secondly
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π ^ - π ^
= i gt(u)

Since

Gι(u)

<ε and

π π — 1

we have | Π ^ i (di(yv)gi(u))/gi(γu)gi(v))-11 <(2 + ε)ε. It follows that

π
D

(4.3) LEMMA.

lΠf=i#i( z ; )/0 i ( M )~ r

yeΓL+k such that

ε>0. Suppose that u,veX and LeN are given so that

Ch°ose k according to the condition (EJ. Then there exists

— r

PROOF. Choose yeΓL+k by yjUj=Vj, for i<L + k. Then γu = v + w, for weXL.

Thus Πf=ig i(yu)/g i(u)=Ylf=1 (gt(v)/gt(μ))(gi(Ό+w)/gi(v)).
Now, since \Y\f=iGi(v)/di(u)-r\<δ, and \Y\f=i9i(v + w)lGi(v)-l\<s, we have

— r

D

Notice that if u and v are eventually equal, for L sufficiently large, we have

ΓΊf= 1 9i(V)/9i(U) = Π T= 1 Qi(V)/di(U) a n ( ^ Πf= 1 Qi(yU)/Qi(U) = Y\T= 1 0i(yw)/0i(W)» w n e r e 7 ΐS

chosen as in the above proof.

Using these two lemmas, we may refine the conditions in Proposition (4.1),

obtaining:

(4.4) THEOREM. Let re]0, oo[. Consider the following conditions:

(a) For every ε>0, there exist β>0, k>0 and LeN such that for all neN and all

yoeΓn+k,

fiyo,n+k[ \uey0X
n+k: 3vey0X

n+k, eventually equal to u, such that l>n + L implies

i

11 gi(v)/gi(u)-r

(b) rer(X,Γ,μ).
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(c) For every ε>0, there exists k>0 such that for all neN and all yoeΓn+k there
exists L>n and γeΓL+k with

μyon + A <uey0X
n+k: 3veγ0X

n+k, eventually equal to w, such that

1>L implies Π 0i(v)/gt(u)-, <ε})>μyo,n+k(yoyXL+k).

We have (a)=>(b)=>(c).

PROOF. If | \ \ ! = n +1 g((v)/gι(w) — r | < ε and v is eventually equal to M, then by Lem-
ma 4.3 there is yeΓL+k so that \Y\ι

i=n + ίgi(yu)lgi(u)-r\<δ + (r + δ)ε.
Thus, the condition (a) implies the condition (a) of Proposition (4.1), and it follows

that rer(X, Γ,y).
The proof of (b)=>(c) is similar. •

The point of Theorem (4.4) is that it expresses in a clear way our "motherhood"
statement that the ratio set consists of the infinite products Y\*Ln(gi(v)/gi(u)). We will
see in the next section that in certain circumstances the integer L may be chosen so
that for all n and y0

μ(y0X
n+k)

so that the conditions (a) and (c) coincide.

5. Tail conditions. The functions gk introduced in § 2 allow us to use a kind of
shift, identifying each of the tail spaces Xk with the circle T. We are able thereby to
refine the conditions of Theorem 4.4. The essential technique of this section is based
upon considering limits of the form

1 ; _ A gί(yk9sli(k+i)"Ί(N))

where y e X is fixed and s, teT.
Indeed, we have:

(5.1) LEMMA. Let re]0, oo[. Suppose that for all ε>0,for all neN and for all
yeX, there exists N=N(n) so that for all m>N, μ(7mte1(^/m)))>^» where

W=\seT\ 3teT with < ε

Then for all m>N,for alίuey^q~1(Wm), there exists vey^q~1(JVm), eventually equal
to u, such that
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<ε .
k = » 9k(P)

NOTATION. The notation in the above statement is as follows:

y*meΓ is defined by (,£),-{ J *»*P*k

t 0 otherwise .

PROOF. It is easy to see that

Hence, taking u = y£ίq~1(s) and v = y£ίq~1(t), we see that the product

fl^^+^)-/M) i s a l s o ft

By the continuity of the function g'n(yn, •)> w e s e e that if | P(s, t) — r \ < δ for some ί, then
this is also true in a neighbourhood of t. Thus, we may choose t so that qnl(s) ar*d
gr"1^) are eventually equal. •

(5.2) THEOREM. Let r e ]0, oo [. Suppose that sup£ /(/) = / < oo. Suppose that for all
ε>0, and for all neN, the integer N(n) of (5 A) may be chosen satisfying supneN(N(n))<
Jf (ε) /or some JΓ = Jf(ε) e R + . ΓΛ^ r e r(X, Γ, μ).

PROOF. This is a direct result of Theorem 4.4 and Lemma 5.1, modulo the fact
that if m — n = 3f, then for some β>0 independent of m and n

This is an easy consequence of the boundedness of /(/). •

We apply this result to the ̂ -measures of Keane (cf. [8]); see [1, 2.8] for their
relationship to (/-measures.

(5.2) PROPOSITION. Let l(i) = I (constant) for all i. For each y e Zh let g\y, ) be a

log Lipschitz function of order α on T, satisfying ( l //)£ e z i ^ ( ^ ' " ) = ^ Let μ denote

the (unique) g-measure. Then if g is not the constant function 1, μ is of type Πli .

PROOF. In this case, the functions g'k are all identical, so the product in Lemma
5.1 reduces to

A g'(yk,s/im-k)_mf(gf(ym-i,s/ii)

k=ng\yk,t/r-k) hog\ym-i9tll
l) '

Since the g'(y, )'s are log Lipschitz, we may find a constant X so that for / =
1, ,m-H,

noggf(ym.i9s/li)-\ogg\ym.ht/li)\<jr(\s-t\/liT



10 G. BROWN, A. H. DOOLEY AND J. LAKE

and hence, since ΣΓ=i (Π~'< °°, the infinite product

M glut, 0)
exists, for all s,te Tand furthermore, for ε>0 there exists k such that

<ε .
i gliyn tin

Since the #/ are nonconstant, and Lipschitz, one can choose pairs (s, ί), (s0, t0) so that

and
M

approach rationally independent limits, rl9 r2. Thus, the ratio set must consist of all of
[0, oo] and we are in a type I I ^ situation. •

The above theorem implies in particular that the Riesz product \\k = χ(1 + a cos 3kt)dt
(aφO) is of the III^ This result was also obtained by Yoshida; his methods are based
on our Lemma (2.3), but are particular to Riesz products.

The next proposition analyses Riesz products of the form ΠΓ=i 0 +akcos3kήdt,
where ak-+0 as A:->oo. These are of type 11^ or ΠI0.

(5.4) PROPOSITION. Let v be the Riesz product which is the weak*-limit of the
measures

n

Π (1 +ak2π cos 3*ήdt.

Suppose that α k \0 as fc->oo. Then the ratio set ofv is contained in the set {0, 1, oo}.

PROOF. We may as well suppose ak< 1/2 for all k. According to lemma (5.1), we
should consider the infinite product

_

where y is a triadic rational whose denominator is at most 3" and s,teT. A simple
manipulation shows that the product is equal to

exp Σlog
k = n

sin2π3fc"m t-s
\\

1
\ \

We claim that as «->oo, this approaches 1. In fact, 12 sin 0/(1 + akcosθ)\<4, so
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log sin2π3*~m

4αksin2π3*~m

t — s

t — s

\\

//

<4πa3k-m .

(We have used the facts that l o g ( l + x ) < x , that s i n x < x and that (t-s)/2<\.) Now

Thus, we see that

exp( — 3an)<Pn m<Qxp(3an) , for all choices of t and s .

Since an-+0, we see that PΛfllI->l uniformly in s and /. By Lemma (5.1), no element of

]0, oo [ apart from 1 can belong to the ratio set. This is therefore contained in {0, 1, oo}.

D

REMARKS. Let us suppose that γ^ak=co and £ ( 1 — ak) = co. By standard Riesz
product arguments, μ is neither equivalent to Haar measure, nor does it have any atoms.
Hence μ is neither of type IIX nor of type I. For these Riesz products measures, μ is
either of type II ̂  or type IΠ 0 . It would be desirable to have criterion for deciding
which, but at the present time none is available.

6. Product measures. It is instructive to apply Theorem 4.4 to product measures

on infinite products of two point spaces. Thus, let l(k) = 2 for each k, and choose the

functions gk(x) to depend only on the coordinate xk. Choose ^-6(0, 1) and write

0*00 =
if

if

The ^-measure corresponding to this choice is the infinite product μ=

for γe {0,1},
^=1μi, where

Moore [11] has calculated the ratio sets for product measures. In the present

notation, we may re-state his result as follows

(6.1) THEOREM. (1) μ is type I if and only if £ w (1 - at) < oo.

(2) μ is type II 1 if and only if

(3) μ is of type III if and only if
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Σ(min(2β,,l-α l))2 = oo.

In the remaining cases, μ is of type IIO 0.

The present techniques allow us to somewhat refine this theorem. We will need
some notation. Let σt denote log{(l +^)/(l— <zf)}. Then log(gi(y)/gi(η)) = (η — y)σi for

γ,ηe{0,l}.
It follows that for u, veXn, and for m>n

(1) Π ^

We shall consider two cases, representing two extremes; a^O and Λ,—»1. These cor-
respond to σf->0 and σ^oo, respectively.

Our first result is:

(6.2) PROPOSITION. Ifa^O andγj°af = oo, then the measure μ is of type IΠ^

PROOF. We may as well assume that a x<\β for all i. The estimates

\-aJ \-a{

show that ]Γσt =oo and α^O as /->oo.
Let re[1, oo[, ε>0 and let n be any integer. Let u be an arbitrary element of y0X

n.
Since £ σt = oo, we may choose t; differing from u in finitely many coordinates such
that \Σ*Ln(vi — ui)σi — logr\<ε. From (4.4) (a), together with formula (1), it follows
that rer(X, Γ, μ), and hence μ is of type 11^.

(6.3) The above examples have dealt with measures of type III^ As was indicated
in Section (5.4) the present methods do not allow us to readily distinguish between
Type 11^ and Type IΠ0. A major reason for this is that the statement of Theorem 3.2
fails for r = 0. The referee was kind enough to provide the following example of this.

Define a product measure by taking αf = 0 if / is even and αf = (l — 2"ί)/(l +2" ' ) if
i is odd. By Moore's criterion, the measure is of type Π^. But if Theorem 3.2 held for
r=0, we would be able to use the same arguments given in the paper to obtain a version
of Theorem 4.4 valid for all r>0. Yet one can easily check that for all y0 and u

o>n + 2\ueγox
n + 2: 3vey0X

n + 2 eventually equal to u such that

l>n + 2 implies f\
c = n+10i(w) J 2

and this would imply that 0 belonged to the ratio set.

(6.4) It seems to be an open problem to give an explicit construction of a product
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measure of type ΠI0 on an infinite product of two point spaces. (The standard examples
found for example in [7] can be realized on product spaces where the number of points
in each space is unbounded.)

We would like to offer a conjecture which would resolve this problem.

CONJECTURE. If {α,} is a sequence with 0 < ^ < l and such that at / I as i-+ao,
then the ratio set of the product measure μ formed from {αj has ratio set contained
in {0, 1, oo}.

If our conjecture could be proved, it would combine with Moore's criterion to give
easy examples of measures of Type IΠ0.

Added in Proof (December 26, 1994). Dooley and Klemes have recently proved
the conjecture false, but are able to give examples of sequences for which the measure
is of Type IΠ0.
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