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Abstract. In this paper, we study the stability of changing sign solutions of weakly
nonlinear second order elliptic equations. Here by stability, we means stability for the
natural corresponding parabolic problem. We prove the instability of many sign changing
solutions. On the other hand, we find a number of methods for obtaining stable changing
sign solutions. Some of these methods involve singular perturbations.

1. Introduction. In this paper, we study the stability properties of the changing

sign solutions of the following problems:

(1) -Au = h(u) inD, w = 0 on dD,

(2) -Au = h(u) i n Z > , — = 0 on dD,
dn

(3) -ε2Au = h(u) i n / ) , w = 0 on dD,

(4) -ε2Au = h(u) i n D , — = 0 on dD,

dn

where D is a bounded domain in Rn (n>2) with regular boundary dD, ε>0 and

h\ Z?1-*/?1 is defined by

f / x (au — ecu2 if w>0
h(u) = <

\du + u2 if ι/<0.

Hereα>0.

Problem (1) comes as a limiting problem of the following competition species

problem

— Av = av — v 2 — cvw

(5) — Aw = dw — w 2 — evw in D

v = w = 0 on dD,

when both interaction parameters c and e go to infinity and c/e^κx as c, e

We have shown in [19] that if (1) has a nondegenerate solution w0 which changes sign
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d=η(a)

a = d

FIGURE 1.

on D, (5) has a unique positive solution (v, w) which is close to (OCUQ , — u0) (for c, e
large and c/e close to α). Moreover (v, w) is stable if and only if w0 is stable. Here we
denote w+=max{w, 0} and w~=min{M, 0}. Therefore, it is important to study the
stability properties of the changing sign solutions of (1). By stability we mean stability
as solutions of the natural corresponding parabolic equations. As we mentioned in the
introduction of [19], there are analogous results for Neumann boundary conditions.

In a recent paper, Dancer and Du [17] showed that if a, d>λ2, where λ2 is the
second eigenvalue of — Δ under the Dirichlet boundary condition, (1) has at least one
changing sign solution. In a more recent paper [18], they found the exact domain for
(a, d) on which (1) has at least one changing sign solution. They showed that there
exists a curve Γ (cf. Figure 1) which was actually given in [8] such that (1) has a
changing sign solution if and only if (α, d) is above Γ in the αrf-plane.

In the present paper, we are mainly interested in the stability properties of the
solutions of (1) which change sign on D. We obtain many conditions for changing sign
solutions to be unstable and a number of methods of constructing stable changing sign
solutions in various parameter ranges. Many of our results hold for the solutions of
(1) with a much more general nonlinear term f(u). Note that the stability properties of
the non-constant solutions of (1) and (2) are quite different. It is well-known that in
many cases, the non-constant solutions of the problem (2) are unstable. For example,
Casten and Holland [6] showed that if D is a convex subset of /?", any non-constant
solution of class C3(D) of (2) is unstable. It can be shown that this is not true for the
problem with Dirichlet boundary condition (cf. [40]). It is also known that this is false
for the case h is allowed to have explicit spatial dependence, h = h(x,u) (cf. [2], [3],
[29]).

We also treat the problems (3) and (4) with ε sufficiently small. Note that (3) is a
special case of (1) (after a rescaling). It is well-known that the weakly stable non-constant
solutions of (3), (4) correspond to the non-constant local minimizers of the functional
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-- ί
ε JD

— H(u)dx
β JD

in a suitable space. We sketch a proof of this folklore result at the end of Section 3.

Therefore, our main interest is to look for the non-constant local minimizers of the

functional Jε{u) in the required spaces. Such problems has been studied by many authors

(cf. [5], [21], [23], [25], [26], [30], [33], [35]-[37], [39] and the references therein).

It seems that Matano has some other methods for constructing local minima for some

other nonlinearities but no details seem to be available.

In Section 2 we study stability properties of the changing sign solutions of (1). We

find that in many cases, the changing sign solutions of (1) are unstable. In Section 3

we use domain variation techniques to construct stable changing sign solutions for

problem (1). We also construct stable changing sign solutions for the problem (1) on

a convex domain D. In Section 4 we study the existence of the weakly stable solu-

tions of the problems (3) and (4) and the asymptotic behaviours of such solutions.

This reduces to discussing the local minimizers of a functional involving singular

perturbations. In the final section, we very briefly discuss the local minimizers of a

functional such as in Section 4 with a small perturbation on the nonlinear term.

The work of both authors was supported by the Australian Research Council. We

should like to thank the referee for his careful reading of the manuscript.

2. Instability results for problem (1). In this section we mainly study the stability

properties of the changing sign solutions of (1). We also treat the problem with a more

general nonlinear term f(u). Let Cι

0{D) = {ueCι(D)\ u = 0 on dD} and Wl'p(D) =

W2'p(D)n Wl'2(D). By a solution, we always mean a weak solution. Let λγ denote the

first eigenvalue of — Δ under Dirichlet boundary conditions.

THEOREM 2.1. Suppose that a, d>λx and uaeCl(D) is a solution of the problem

(6) -Δu = h{u) in D, w = 0 on dD

which changes sign on D. Then uΛ is an unstable solution of (6) (for the natural corresponding

parabolic equation) for α sufficiently small.

PROOF. We divided the proof into three steps.

Step 1. We prove that αwα->0 in C\D) as α-»0.

By an easy upper and lower solution argument, we know that for any α > 0,

(7) -d<uΛ<aai~ι .

Therefore,

(8) -da<0Lua<a.

(8) implies that for any sequence {αn} with απ-»0, {||ocwww|| 00} is uniformly bounded and
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(<xnun)~-+0 as rt-KX). Here un = uΛn and u~ =min{wn, 0}. Therefore, {\\anu^{a — αnw*) +

ocnu~(d-\- u~)\\ oo} is uniformly bounded. Using the regularity theory for — Δ, we have that

{||απwj|2}i,} is uniformly bounded for any p>n. The compactness of the embedding of

Wl'p{D) to ClΦ) implies that απwπ->w0 in Cj(25). Moreover, u o > 0 in D. (This follows

from (8).) For any φ e Cl(D\ we multiply (6) by φ and integrate by parts. We have that

(9) (απwπ, -Aφ)= [_0Lnu;(a-0Lnuϊ
JD

Passing to the limit as «->oo, we obtain that

(10)
(M 0, -Aφ)=\ uo(a-uo)φdx.

JD

Here we are using that anun ->0 as n-+oo. Since u0 satisfies

(11) -Au = u(a~u) i n Z > , u = 0 on dD

and since a>λί, by (ii) of Lemma 1 in [11], we see that wo = 0 or uo = φa, where φa

is the unique positive solution of (11). Now we conclude that wo = 0. Suppose uo = φa.

Let K be the natural cone of CQ(D). It follows from the maximum principle that u0 € K.
Then, there exists a neighborhood Bδ(u0) czKofu0 such that u > 0 in D for any w e Bδ(u0).

Since απwπ changes sign on D, then for any n large, απwπ £ Bδ(u0). This contradicts that

^nun^u0 in Cέ(5). Hence, wo = ().

Step 2. We prove that {HMJOO} is uniformly bounded for sufficiently small α.

Suppose that there is a sequence {αn} satisfying αw->0 as «->oo and {un} = {uan}

satisfying ||wjoo->cx) as n-+co. Then wπ = wπ/||wn||00 satisfies

(12) -Δw π = ww

+(fl-αΛ+) + w ; ( ί / + M ; ) i n / ) , wπ = 0 on dD

and 11^11^ = 1. Since {||w,ΓHoo} is uniformly bounded, then w~->0 in L°°(D) as n^oo.

By an argument similar to that in Step 1, we have that wn->w in Cj(/5) where vi>>0 in

D, wφO in D. By Step 1, we also know that απwπ

+-»0 in D as «->oo. Then, vv satisfies

— Δw = flw in D , w = 0 on dD .

This is a contradiction, since α>Λ,x and vi>>0 and vP^O in D.

Step 3. We prove that ua is an unstable solution of (6) (for the natural cor-

responding parabolic equation) for α sufficiently small.

The proof of the instability reduces to showing that the linearized equation

t ( n ϊ ) g > a ( ; ) g a ] + in D

k = 0 on dD

has eigenvalues in f={λeC: Re/l<0}. Here
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+ I if w>0 _ IΊ if w<0
sen «=< sgn u = <

[θ i fw<0; [θ i fw>0.
Suppose that there exists a sequence {αn} satisfying απ->0 as «->oo such that the

principal eigenvalue Xn of the problem (13) for α = απ satisfy λn>0. Let un denote uΛn.
We know from Step 2 that {||MJ| «,} is uniformly bounded. Hence, {||λ(wπ)|| ̂ J is uniformly
bounded. By the same arguments as those in the proof of Step 1, we know that there
exists ύe CQ(D) such that un-+ύin Cj(25). We discuss two possibilities: MΞO and ύ changes
sign on D. It follows by an idea similar to that at the end of Step 1 that there are only
these two possibilities.

If ύ changes sign in D, then the linear operator in (13) for α = απ is a small
perturbation (in the operator norm) of that for the problem

(14) -Ak=[asgn + u + dsgn~u + 2u~]ik + λk in D, fc = 0 on dD

for n large. Therefore, for n large, Xn is near the principal eigenvalue λ of (14) which
is negative (cf. Lemma 2.6 in [19]). Hence, Xn<§ for n large. This is a contradiction.

If w = 0 in Z>, let ^, be the eigenfunction corresponding to λn with ||£J|QO = 1. Since
un satisfies

(15) -ΔwΪI = [(α-απ«ll

+)sgn+MIIH-(ί/+wJΓ)sgn"ι/Ji/II in D, un = 0 on dD

and since the term in the bracket on the right hand side of (15) belongs to L°°(Z)), it
follows from Caffarelli and Friedman [4] that meas{xeZ>: un = 0}=0 for all n. There-
fore, sgn + Mn + sgn~«n=l a.e. in D for all n. This implies that there exists 0>O such
that

(16) - Δ J ξ ^ ^ + θ ) ^ a.e. in D

for n large enough. Here we use (13) and the facts that a, d>λu Xn9 kn>0 and «„-•() in
Cl(D). Let φ be a positive eigenfunction corresponding to λx. It follows from (16) that

(17)

Since ψ(x)>0 in Z), (17) is a contradiction. This completes the proof.

COROLLARY 2.2. Suppose that uΛeCo(D) is a solution of (6) which changes sign on
D. Then ua is unstable when α is sufficiently large.

PROOF. Let v=—au. Then (6) becomes

(18) -Av = v+(d-(x~1v+) + v~(a + v~) in D, v = 0 on dD.

Therefore, if ua is a solution of (6) for α sufficiently large, va = — αwα is a solution of
(18) with α" 1 sufficiently small. Note that (18) has the same form as (6). Then using
the same idea as in the proof of Theorem 2.1, we have that va is an unstable solution
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of (18) when α is sufficiently large. Since it is easy to check that the linearizations of
(18) at υa and (6) at ua have the same principal eigenvalue, the result follows.

As mentioned before, there exists a curve Γ in αd-plane such that (6) has changing
sign solutions if and only if (α, d) is above Γ. Now, we shall obtain the following result.

THEOREM 2.3. Suppose α>0. There exists a strip Γr above Γ which is a one-sided
neighbourhood of Γ in R2 such that for (a,d)eΓf any changing sign solution of (6) is
unstable.

PROOF. We use a contradiction argument to prove this theorem. Suppose there
exist {(an,dn)} such that (an,dn) is above Γ,an-^ά,dn^d as «->oo, (ά,d)eΓ and
{un} = {uanfdn} is a sequence of changing sign solutions of (6) for a = an, d=dn. Suppose
also the principal eigenvalue λn of the problem

[ ( n π ) g M ( M ) g j in D
(19)

k = 0 on dD

satisfies λn>0. It follows from [18] that | |MJ «,->() as n-*oo. Since a, d>λu there exists
Θ1>O such that an, dn>λί+θί for all n sufficiently large. Thus the argument in the
second case of the proof of Theorem 2.1 implies that !„>() is impossible when n is
sufficiently large. This is a contradiction. This completes the proof.

By Remark 3 of [18], we know that this can be improved further if there is a
compact group of linear symmetries G acting orthogonally on Rn such that D is invariant
under G. We can prove an analogous theorem for the existence of solutions of (6) which
change sign and are invariant under the action of the group G. Thus, we obtain a new
curve Γί. An argument similar to that in the proof of Theorem 2.3 implies that there
is a one sided neighbourhood Γ" of Γx such that any changing sign solution for (a9d)eΓ"
which is invariant under the natural action of G is unstable. Note that we prove a little
later that if G is connected the G-invariant solutions are the only solutions which can
possibly be stable.

The next theorem implies that there is no changing sign stable radial solution for
the problem (6) if D is a ball or an annulus in Rn (n>2).

THEOREM 2.4. Assume that DczRn is a bounded and smooth domain, feC1(R),
we CQ(D) is a solution of the problem

(20) -Au = f(u) inZ>, u = 0 on dD

and u satisfies a* VM = 0 on T except for a compact set Z of finite (n — iy dimensional
Hausdorff measure, where a is any constant vector in Rn and T is the boundary of a
component of the set {xeD: a VύΦϋ}. Then u is unstable.

PROOF. Let h — a VM. Then /? satisfies the linearized equation of (20) at u but does
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not satisfy the boundary condition. Let Dt be a connected open subset of D such that

dDί c 77 Then, we can argue as in Section 1 of [10], to deduce that

ί
JD dD1

Note that since T is not very regular, there is a technical difficulty here to justify the

integration by parts. But, we can overcome this difficulty by the same argument as in

the proof of Lemma 2 of [15] (supplemented by the lemma and the remarks after it in

[16]).

Since dDx ^ T and Λ = 0 on T\Z, then /* = 0 a.e. on dDγ. Here by a.e. we mean

almost everywhere with respect to surface measure. Therefore,

Now, we define

W(υ)

and

JDI

=4" f ί\Vv\2-f'(ΰ)v2]dx, for
2 JD

0 otherwise.

Then, W(t) = 0 and te WQ'2(D). In fact, by the regularity property of the solutions of

(20), we know that ύe C2(D). Thus ΐίeC1(D). Since h = 0 a.e. on dDu by Green's theorem

and the same idea as in the proof of Lemma 3.22 in [1], we have that te Wl'2(D).

It is well-known that the smallest eigenvalue X of the problem

(21) -Ah = f'(ύ)h + λh i n £ > , A = 0 o n dD

is equal to inf{^(t;): υe Wl>2(D), IM|2 = 1} and the only minimizers are ± 1 times the

first eigenfunction corresponding to X (and hence are non-zero on all of D). Hence,

± μt(x) cannot minimize our problem (where \\μί || 2 = 1). Hence, the minimum is negative

and thus X<0. Hnece u is unstable.

REMARK. If / is Lipschitz continuous on R, the result is still true (since f(u)e

W1'2). Moreover, we can allow many domains with corners.

The following result was known to Lin and Ni [32] and Sweers [40]. We obtain

it as a corollary of Theorem 2.4.

COROLLARY 2.5. Assume D is a ball or an annulus in Rn (n>2) and tie CQ(D) is a

radial solution of (20) which changes sign on D. Then u is unstable.

PROOF. We consider the case of a ball. The other case is similar. Now u attains
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a positive maximum and a negative minimum on D and only one of them can be
attained at r = 0. Thus there exists at least one r>0 such that w'(r) = 0. Let r0 be the
first such r, T={r = 0}u{r = ro} and D1 = {r:0<r<ro}. Theorem 2.4 implies that ύ is
unstable.

Using the same idea as in the proof of Theorem 2.4, we also obtain the following
result.

THEOREM 2.6. Assume that feC\R)9 /(0) = 0, and DaRn (n>2) is a connected
smooth domain which is invariant under reflection in the hyperplane xγ =0 and eγ ή>0
for xedD with x1 >0. Here ή is the outward normal vector at x, ex is the direction ofx1.
IfueCl(D) is a solution of (20) which is odd in xx and is positive for xeD with xx>0,
then ύ is unstable.

PROOF. Since w>0 for xeD with xι >0 and ύ is a solution of (20), by the strong
maximum principle, dύ/dή<0 on dDu where Dx = {xeD: xx >0}. Thus, dϋ/δx1<0 for
xedD and xx >0 since ή eι >0 for xed/) and JCX >0. Let h(x) = du/dx1=(\, 0,..., 0) •
Vw. Then h(x) satisfies the equation

(22) Ah + f'(u(x))h = 0 in D

and Λ(x)<0 on dD1n{x1>0}. The conditions on ύ imply that /?(*)>0 on
(dD1n{x1=0})\(dDn{x1=0}). Hence if we define D2 to be the component of
{xeD:h(x)>0} containing Dn{xeRn: xx=0}, then dD2ndD^dDn{x1=0}, (since
Λ<0 close to any part of dD not in xx = 0 and Λ is even in xx). Since 3Dn {^ =0} has
finite (n — 2)-dimensional Hausdorff measure, the result follows from Theorem 2.4.

Now, we give a simple way of obtaining changing sign solutions which are unstable
solutions for domains of the type in Theorem 2.6.

THEOREM 2.7. Assume that f is odd, f(s)<f(s)/s for s>0, /'(0)>0, f{s)>0for
0<s<θ and f(θ) = 0. Assume that D^Rn(n>2) is as in Theorem 2.6. Then there exists
a λ>0 such that when λ>λ9 then problem

(23) -Au = λf(u) inD, u = 0 on dD

has a unique solution ύ, —θ<u<θ, which is odd in xx and positive for xeD, x1 >0 and
ύ is unstable.

PROOF. Without loss of generality, we assume /'(0) = 1. We first show that such
solutions exist. Let Dί = {xeD: xx>0}, D2 = {xeD: xx<0} and let 1 denote the first
eigenvalue for the Dirichlet problem o n ^ . We consider the problem

(24) -Au = λf{u) in Dt , w = 0 on dDx .

By standard bifurcation theorems (cf. [13, Theorem 2]), a branch C of positive solutions
of (24) will branch off at (0, λ) and C is unbounded in C^D^) x [0, oo). Hence C0(/)i)
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denotes the set of continuous functions on Dί vanishing on dDx. By the maximum
principle, 0<uλ<θ since /(^)<0 if s>θ by the assumption on /. Thus, for any λ>λ,
there exists a positive solution of (24). Since f'(s)<f(s)/s for ^>0, there is only one
such solution uλ for any λ. (See [11, p. 739-740].) By the facts that f(s) is odd and D
is connected and invariant under reflection in the hyperplane xγ = 0, we have that

a J u λ in D,
l-uλ in D2

is a solution of (23) for λ>λx and clearly uλ is odd in xx and positive for xeDί. For
any λ>X, if there exists another solution ύλ of (23) which is odd in xx and positive for
xeDu then ύλ\Dί is a positive solution of (24) and thus, uλ = ύλ\Dί. This implies ύλ = ύλ

in D. The instability of ύλ can be obtained by Theorem 2.6. This completes the proof
of Theorem 2.7.

REMARKS 1. The same arguments as in Theorems 2.6 and 2.7 work for a number
of other cases if we look for solutions odd in both xί and x2 and we assume w>0 if
xeD with xί9 x2>0 (with a suitable condition on the normal ή). Thus many of the
simple ways of constructing changing sign solutions tend to yield unstable solutions.

2. Note that the conditions on the normal n in Theorems 2.6 and 2.7 are necessary.
One can give counterexamples by domain variation arguments (even with the dimension
n equal to two). For example, let Dm be smooth symmetric domains approximating
B1ΌB2, where Bl9 B2 are disjoint balls with the same radius 1 such that dBx and dB2

intersect at a single point. We easily see from Section 3 below that for large m there
exists a stable solution for (6) on Dm approximating a function on B^ u B2 which is
positive in B2 and negative in Bx. If we choose a = d and α = 1 in h(u), this stable solution
is an odd function of xx. (See Section 3 below.) With some care one can show the
positivity condition of Theorems 2.6 and 2.7 is also true in this example.

3. The conclusions of Theorems 2.6 and 2.7 can be applied to the problem (6)
when a — dand α = 1 since if u is a changing sign solution of (6), ύ satisfies —d<ϋ<avi~γ.
It is clear that h(s) satisfies a condition similar to that of f(s) in Theorems 2.6 and 2.7
in ( — d, αα"1).

Now, we prove the following theorem which implies that the changing sign solutions
of the problem (6) in a 2-dimensional connected smooth strictly convex domain are
unstable if they have some special properties. The proof uses an unpublished idea of
Matano (who used it for a slightly different situation).

THEOREM 2.8. Assume that f is locally Lipschitz continuous and /(0) = 0. Assume
that DaR2 is a connected smooth strictly convex domain. IfύeCQ(D) is a solution of

(25) -Au = f(u) inD, M = 0 on dD

which does not change sign near dD, but ύ changes sign on D, then ύ is unstable.
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PROOF. Let a = (aua2)eR2, Vu = (du/dxudu/dx2). Then, α Vw satisfies the
equation

-Ah=f'(ϋ)h in D.

Let ϊί=a Vu. We know KeC1(D)nC0(D) (since ueC\D) by standard regularity
theory). Moreover, there exist at least two points xteD (/=1,2) such that /?(.*,•) = 0.
(We know this from the fact that u attains a positive maximum and a negative minimum
in D.) Without loss of generality, we assume x1=Q. (Otherwise, we use a linear
transformation to shift xx to 0.) Thus, K(x) = o(\x\m) as |x|->0 for some m>0 and
meN0. If this holds for every integer m, then Λ = 0 in D by unique continuation. This
is impossible. Thus, by Hartman and Wintner [27], in a neighbourhood of x = (0, 0),
we have the asymptotic relations

(26)

(27)

as |x|-»0. Here pm+1(x) is a nonvanishing, homogeneous, harmonic polynomials of
degree m + 1 . Note that we assume a little less regularity than that in [27] but an
examination of their proof shows that the result is still true under our assumptions. It
is easy to show that for every such polynomial in J?2, there is a constant c>0, such
that \Vpm+1(x)\>c\x\m on R2. It then follows easily (cf. Pagani-Masciadri [38]) that
there is an open neighbourhood Fof xγ = 0 such that {^=0} n V consists of Jordan arcs
γj9 j= 1,2,..., 2fc + 2, which, emanating from xx = 0, locally divide Finto 2fc + 2 disjoint
subdomains Ωj such that h>0 in Ωj,j=\9 3, . . . , 2fc+l and K<0 elsewhere in

We consider two possibilities here:
(i) each of the subdomain Ωj can be extended to the boundary dD;
(ii) there exists a subdomain which cannot be extended to the boundary.
If the second case occurs, we easily prove that ύ is unstable by the same arguments

as in the proof of Theorem 2.4.
Now we only consider the first case. If k> 1, there are at least four subdomains

which can be extended to the boundary of D. This implies that there are at least four
Jordan arcs which emanate from x1 =0 to the boundary of D.

On the other hand, VM is prarallel to n on dD and Viz n φ 0 on dD, where n is the
outward normal at xedD. (This follows from the maximum principle since ύ does not
change sign near dD and /(0) = 0.) Hence a Vw can only be 0 on dD at the two points
where a n = 0. (That there are only two points follows from the strict convexity of D.)
Thus, if k > 1, we can find at least one closed Jordan curve in D which connects x = 0
and one (or two) of the two points on dD where α « = 0 such that a* Vw = 0 on it.
Then, Theorem 2.4 implies that ύ is unstable.

The argument shows that we have finished the proof unless k = 0 and (i) holds for
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every Ωj. If k = 0 and (i) holds for every Ωj9 it is easy to see that the zero set of a Vw
is a single Jordan curve joining the two points on dD where a n = 0. If there exists
a0eR2 with | a0 | = 1 such that the zero set of a0 Vw is not a single Jordan curve Γao

joining the two points on dD where a0 n = 0, then by the arguments above, we conclude
that u is unstable. Now, we assume that for each aeR2 with |έi| = l, the zero set of
a Vw is a single Jordan curve Γα joining the two points c\9 c2 on 3Z> wehre a « = 0.
The curve will change continuously with a. As α varies around the circle \a\ = 1, the
two end points will move around dD. Moreover, all the curves must pass through at
least two fixed points pl9p2eD (the maximum point and the minimum point of ύ). We
shall prove that this is impossible. In fact, we see that the order of the four points c\,
Pu Piτ C2 o n Γa will be unchanged as we vary a continuously around the circle | a | = 1.
We also know that c\, c\ are also the end points of Γ_α, since Γ_α is the same as Γa.
Thus, as we move a continuously to — a, c\ will be moved to c2 and c2 will be moved
to ca

u but the order of ca

u pl9 p2, c2 is clearly changed. This contradicts the fact that
the order of the four points is unchanged as we vary a continuously. This completes
the proof.

REMARK. These ideas can be used to restrict the behaviour of stable solutions on
convex domains in R2 whose zero sets intersect dD in exactly two points.

New, we shall obtain the following result which implies that when D is a ball or
an annulus in Rn (n>2), if ύ is a non-radial solution of (20), then ύ is unstable. There
have been several claims of results of this type but the proofs have been incomplete
(sometimes in the case of an annulus when «>3).

THEOREM 2.9. Let D be invariant under the action of a connected closed subgroup
G of SO(n), whre SO(n) is the real special orthogonal group consisting of matrices on Rn

with determinant + 1 . Assume that ύeCl(D) is a solution of (20) where f is locally
Lipschitz. If u is stable, then ϋ(x) = ύ(gx) for xeD and geG.

REMARK. Simple examples show that the result may be false if G is not connected.
Note that the component containing the identity of the symmetry group of a domain
is always closed.

PROOF. Suppose that there exist x e D and g0 e G such that u(x) φ u(gox). We shall
prove ύ is unstable.

Note that G is a compact connected Lie group. Thus, go = expA, where A is an
element of Lie algebra of G (cf. [22, p. 113]). Moreover, S = {exp tA : t e R} is a subgroup
of G. Hence, S is a connected compact commutative subgroup of G and thus a torus
group (cf. [28, p. 78]), that is, a product of circle groups. Therefore, a dense set of
elements of S have finite order and hence we can find an element g0 of S of finite order
which is arbitrarily close to g0. Therefore, there exists m>0 such that (jo=e, where e
is the identity of SO(n) and ύ(x) φ ύ(gox) (by continuity).

By [22] again, ^ 0 = exp^4, where A is an element of the Lie algebra of S. Let
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oc(t) = exp tλ. Then {<x(t) :teR}c=S^G and α(m) = e. If we let w(t)(x) = d/dt(u{(x(t)x)), then
satisfies

- A(w(t)M) = /'(fifaOWΛW* for / e [0, in]

) = 0 on dD,

since w(a(/)x) is a solution of (20) for all t. Since there exists xeD such that ύ(x)φύ(gox),
there exists t0 e (0, m) such that w(to)(x) φ 0 in D. Now, we shall prove that w(0)(x) changes
sign on D. Suppose w{0)(x) > 0 (< 0) on D. We have that w(0)(x) = Vw(x) i x > 0 (< 0) on
Zλ Here we use that α'(ί) = exp(L?) A and oc'(O) = A. Therefore,

(28) w(t)(x) = Va(t)xύ{oi{t)x) exp(tA)Ax = Vyu(y) Ay >0 (<0) on D ,

where j> = α(ί).x. (Note that yeD.)
Since M(α(0)x)ΞM(α(φ) = ίϊ(jc) in D, then if vv(/)#O for some /e(0, m\ by a well-

known analysis theorem, we have that there exist tu t2 and xoeD such that w(tι)(χo) < 0
and ^(/2)(^o)>° τ h i s contradicts (28). Thus, >v(0)(x) changes sign on D. Since w(0)(x)
is an eigenfunction of the problem

(29) -Ah = f'(u(x))h + λh i n / ) , h = 0 on 3D

corresponding to λ = 0, it follows that the principal eigenvalue of (29) is negative. This
implies that ύ is unstable. This completes the proof.

The following result was also known from [32] and [40]. We obtain it as an
immediate corollary of Theorem 2.9.

COROLLARY 2.10. Assume that D is a ball or an annulus in Rn (n>2). Assume
ύeCl(D) is a non-radial solution of (20). Then u is unstable.

REMARK. This result and an earlier result imply that on an annulus and a ball
there are no stable changing sign solutions of (20).

There is an analogue to Corollary 2.10 and a partial analogue to Corollary 2.5 for
the problem (20) when D is a cylinder.

PROPOSITION 2.11. Assume that f is locally Lipschitz continuous and D = BR(0) x
(0, L) where BR(0)aRP (p>2) is the ball {x:0< \\x\\ <R}. Let M(X, z) = u(r, z)eC1

0(D) be
a changing sign solution of (20) which satisfies that u'r(R, z)φθ for every ze(0, L). Then,
u is unstable.

PROOF. We write (20) as

rr r zz

(30)
ur(0, z) = u(R, z) = i4r, 0) = u(r9 L) = 0 .



STABILITY OF SIGN CHANGING SOLUTIONS 211

Since ύ changes sign on Z>, there exists zoe(0, L) such that w(r, z0) changes sign.
(The only other possibility is that there exists z1e(0, L) such that ^ Z ^ Ξ O , but this
is impossible by our assumption on ϋr.) Note that wr(0, z) = 0 because by regularity theory
ύ(x,z)eC2(D). Thus, there exists r>0 which depends on z0 such that ύr(f, zo) = 0. Let
h(r, z) = δw(r, z)/dr. Then Λ(r, z) satisfies the equation

(31) Kr + hzz + f\W + (?^h\ = 0

and λ(r, zo) = 0.
To prove ύ is unstable, we only need to find a piecewise C 1 closed Jordan curve

Γ on the rz-plane such that ϊ = 0 o n Γ . Let f be the domain bounded by Γ. If we can
find such at Γ, then h(r, z)p(ω) (where p(ω) is a degree one spherical harmonic in the x
variable) will be a solution of the linearization of (20) on Y= {(x, z): (||JC||, z)ef}
vanishing on the boundary. Theorem 2.4 then implies that ύ is unstable.

Assume h(f, z0) = 0 where r > 0. Let yx = r — f, y2 = z — z0 and Λ(>>) = ft(r, z). Then Λ(y)
satisfies the equation

(^^) =o in £

and A(0) = 0, where D = {(>;1,>;2):>;1=r-/,>y2 = z - z 0 for (r, z)e(0, Λ)x(0, L)}. Using
the same arguments as in the proof of Theorem 2.8, we obtain that there is an open
neighbourhood V oίy = 0 such that {Λ = 0} n V consists of quite smooth Jordan arcs γj9

7=1, 2,..., 2/w + 2, which, emanating from y = 0, loally divide V into 2m + 2 disjoint
subdomains Ωi such that h does not change sign on Ω7 . We are using essentially that
fΦO. This implies that there is an open neighbourhood Kof (r, z0) such that {Λ = 0} n K
consists of Jordan arcs 7^,7= 1, 2,..., 2m + 2, which, emanating from (r, z0), divide F
into 2m + 2 disjoint subdomains Ωy. We also consider two cases here:

(i) all Ωj can be extended to the boundary of the rectangle (0, R) x (0, L);
(ii) there is a subdomain Ωj which cannot be extended to the boundary of the

rectangle.
If (ii) occurs, we know that hΦO on Ωj and Λ = 0 on dΩj and dΩjCiifd, R) x (0, L).

Thus, dΩj is a closed Jordan curve satisfying our requirement. Now, we only need to
treat the case (i). We have that Λ = 0 on the set {0} x (0, L) by the regularity of ύ. Since
each Jordan arc y, can be extended to the boundary of the rectangle (0, R) x (0, L) and
Λ 7̂ 0 on the set {R} x(0, L), there exists at least one Jordan curve Γ passing through
(r, z0), which ends at two points on the boundary of the rectangle. Let eί9 e2 denote its
two end points. There are four cases:

( i ) both of them belong to [0, Λ] x {0} or [0, Λ] x {L},
(ii) one of them belongs to {0} x [0, L], while the other belongs to (0, R) x {0}
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(iii) both of them belong to {0} x [0, L],

(iv) one of them belongs to (0, R) x {0}, while the other belongs to (0, R) x {L}.

Since du/dr==0 on [0, R] x {0}, [0, R] x {L} and {0} x [0, L], for each of the four

cases above, we can find a closed curve Γ* (a part of it may be a part of the boundary

of the rectangle) such that du/dr = 0 on Γ*. We can then construct Y as before and

obtain the instability of ύ. We do not know the smoothness of Y near r = 0 but since

this has zero (n — l)-dimensional Hausdorff measure, the argument in [15] shows that

this does not cause difficulties.

REMARK. Arguments similar to those in the proof of Proposition 2.11 still work

for the case where Z) = Ωx(0,L) and Ω is an annulus if /(0) = 0. Here we also need to

assume that u( ,z) changes sign for z in (0, L) arbitrarily close to 0 or to L. We use

reflection tricks (since /(0) = 0) and Hartman-Wintner's results on ύ and dύ/dr. The

details of the proof are rather more tedious. We omit the proof here.

COROLLARY 2.12. Assume that /(0) = 0 and D = ΩxE, where ΩaRp (p>2) is a

ball or an annulus andEa Rn~p is a smooth bounded connected manifold. Let ϋ(x, z) e CQ(D)

be a solution of (20) which is not a radial solution of x. Then ύ is unstable.

PROOF. This follows easily from Theorem 2.9 by setting G = SO(p) acting on the

first variable. There is a slight technical trouble with smoothness of 3D at the corners

but this can be overcome with reflection tricks. (Here we are using the fact that /(0) = 0.)

3. Stable changing sign solutions of (1). In this section we shall use domain

variation techniques as in [9], [10] and an idea of Sweers [40] to construct stable

changing sign solutions of the problem (1) in various situations. Some of these examples

are rather symmetric solutions on rather symmetric convex domains.

Let

= ^r ί |Vw| 2 - ί
2 JD J

where

H(u) =

H(u) for
D

1 2 1 ,
— au -αw if w>0

— du2+—u3 if u<0.
2 3

Then the critical points of I(u) in WQ'2(D) are solutions of (1). It is well-known (cf.

[18]) that there are two strictly local minimizers of I(u), u1 = oc~1φa and u2= —φd where

φr is the unique positive solution of the problem

(32) -Au = u(r-ύ) in D, w = 0 on dD
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for r>λλ. Moreover, these solutions are non-degenerate and stable.

Let B1 and B2 be two disjoint balls in Rn such that dBl9 dB2 intersect at a single

point. Let Ω = B1\JB2. Then, we easily see that the function

jux in Bx

\u2 in B2

is a non-degenerate solution of (1) in Ω and is stable, since the principal eigenvalue X

of the problem

(33) -Ak = h'(u)k + λk in Ω, k = 0 on dΩ

satisfies Γ>min{Xl5 J 2 }>0, where λt (/=1,2) is the principal eigenvalue of the line-

arization of (1) at ut on Bi9 respectively.

It is clear that ύ changes sign on Ω. Moreover, if a = d, α = l , then, u1=—u2.

Therefore, ύ is an odd function of xx.

Now, we shall construct the changing sign stable solutions for (1) with smooth

domains approximating ί2.

Choose Ωm star-shaped for m>4 such that Ωm decreases to Ω in the sense of [14].

As in the proof of Theorem 1 in [9], one easily obtains that the problem

(34) -Au = h(u) in β m , w = 0 on dΩm

has a locally unique solution um in PFj'2(Ώm), um-+ύ in LP(B) for all p> 1. Moreover,

for large m, the eigenvalue problems (33) and

(35) -Ak = h'(um)k + λk in Ωm, k = 0 on dΩm

have the same number of negative eigenvalues counting multiplicity as (33) and 0 is

not an eigenvalue for (35) for large m since 0 is not an eigenvalue for (33). Thus, um is

stable. Moreover, since ύ changes sign in Ω, um changes sign in Ωm when m is sufficiently

large. This is the required example. Note that if a = d and α= 1 and if Bx and B2 have

the same radius, local uniqueness shows that um is odd in xί. The same construction

can still be used if Bx and B2 are not balls.

Now, we shall construct a stable changing sign solution of the problem (1) in

convex domains with our special nonlinearity. The domains here are rather different

from the previous example and the parameter range is quite different. This example is

an interesting contrast to some of the results in the previous section. Our construction

is a modification of the one in Sweers [40].

We assume that

as-as2

h

jε-2 + 2ε-3α2 s<0
and
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1/2

, . . . , * M ) G / Π « > 2 ) , ( ^ - ^ - -
2 φ - l )

Note that hε(s) satisfies

1
(36) hε(s)=-2εhl—l-εs\ for

By the maximum principle, we know that if u is a changing sign solution of the

problem (1) with h = hε,

-aε(2(x)~1<u(x)<aoί~ί in D.

As earlier, the problem

(37) -Δu = λhε(u) i n / ) , w = 0 on δZ>

has a unique positive solution for every λ>a~1λί9 since s " 1 / ^ ) is decreasing on

[ O ^ o Γ 1 ] .

Similar arguments hold for negative solutions. Let Uλ and V\ denote the positive,

respectively the negative solution of (37) for λ>a~1λ1. Note that this is a different

notation from earlier in the section. Let Jε(λ, u) denote the energy functional for (37),

that is,

)D

We have the following lemmas.

LEMMA 3.1.

JJtλ,u)= ί (]-\Vu\2-λ [Uhε(s)ds)dx .
J D\ ^ Jo /

limaχ\D\, λ/^, V\)

6 λ-^oo 24

uniformly for ε e ( 0 , 1], w/iere |Z>| ω the Lebesgue measure of D.

LEMMA 3.2.

u x29..., χn)<l(χ\- ; ^

V 2φ-l)

/or Γ sufficiently large.

PROOF OF LEMMA 3.1. We will show the second statement. The basic idea of the

proof is the same as that of the proof of Lemma 3 in [40]. Since V\ is the only stable

solution of

(38) - Δw = λ min{λε(w), 0} in D , u = 0 on dD ,
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the function minimizes

;{λ,u)= I U-\Vu\2-λ \Umm

for λ>a~1λί. We can estimate J~(λ, u) from below by —a3a~2\D\/24 since

u)>-λ I \ mm{hε{s\U}dsdx>
24

It is sufficient to show that for all σ>0 there is φεe W^2{D) such that uniformly for

ε e(0,l],

,. 1 * _,
hm λ 1Jε(λ,φε)< α 3α 2 |Z>| + σ.

Take φeC£(D) with - α ( 2 α ) - 1 <φ<0 and φ= - a ( 2 a ) - 1 on a closed subset of D with

measure larger than \D\ — \2a~3cc2σ. The result follows for λ large since

— \Vφ\2dx a3oί~2\D\+— σ
, 2 24 2

ITJD 24

This completes the proof.

Because of Lemma 3.1, there is X>a~1λί such that

j;(λ, Uλ)<Jε(λ, Vε

λ)<—^-a3a-

for all A > I a n d εe(0, 1].

PROOF OF LEMMA 3.2. For t large enough, we easily see that

(39) Uχ(xu . . . , χw)<
2φ-l)

Indeed, since

X^ ( x 2 + + x ) ) l = — X>(maxΛεμ- l ) /J α

and since I ^ i +1)2 - {a2 + 2α)(2α(« -1))~ 1(x\ + + JC2)) > 0 in D for / > 0, the function

on the right hand side of (39) is a supersolution of (37) for />0. By the sweeping

principle [7], one finds that (39) holds for all t>0. Hence the lemma follows.

Finally we will show, for ε > 0 but small enough, that l/χ does not minimize Jε(λ, ).

We shall modify Ux near (0, 0) to obtain a Wj'2(Z>)-function with lower energy. Hence
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the solution of (37) for λ = X that minimizes JE(X, ) is not V\ or Uχ9 which are the only

stable solutions with fixed sign. (Note that V\ has higher energy than lJχ.)

Set

; δ<Xl<2δ} .

Then I D\Λ | = C<5W. Moreover, define 2 on /? by

z(.s) = 0 f o r i ^ l , φ ) = j - l for 1 < ^ < 2 , z(.s)=l fo

and set

uδ{xu X2>- > xJ = *(δ~1Xi)Uj{x1,..., xn).

Then, M ^ G ^ J ' 2 ( Z ) ) and

Vw,(x l 9..., xn) = δ-ίUχ(x1,..., xn)(l, 0, . . . , 0) + z(δ-1x1)VUχ(xί,..., xn) in

By Lemma 3.2 we can estimate the difference in energy as follows:

]-\ {\Vuδ\
2-\VUχ\2)dx + x\ aU\dx + x[

—aU2χdx + x[ —aϋ\dx
2 J D i a 3

1 ^ 2 ) ί
JD2

1/2

Since ό is sufficiently small, we can choose M > 0 (M is independent of δ) such that

Z>2̂  <= KMδ n Z), where AΓMί is an ^-dimensional ball with center 0 and radius Mδ. By the

facts that dD satisfies the condition (A) of [31, p. 6] and that l/χe WKj'2(Z)) n L°°(i)), we

obtain by using the remarks before Lemma 1.2' of [31, p. 253] that

ί \VUχ\2dx< [ \VUχ\2dx<C2{Mδ)n-2 + 2β

where C2 > 0, 0 < β < 1. Therefore,

JJtX, uδ)-Jε(X9 Uχ)<

<C3(X)δn+β, for δ<\.
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Let

vδ(xί9 ...,xn)= -—δUχ(δ~1xl9..., δ'^J .

Then

1 1

Here we use (36). Hence, vδ is a solution of (37) with ε = <5 and D replaced by D\. After

extending vδ by 0 outside of D\ we obtain

vδ)=[(^\Vvδ\
2-1?6 hδ{s)ds\dx

i r / i

Finally, we set ŵ  = ŵ  + ί;a. Since suppu δ <^D\D δ and since suppι^<=Z>/, we find that,

by the estimates above

9 vδ)<(\ + i -

for ^ sufficiently small. This implies that the global minimizer is not lJχ and hence the

global minimizer must change sign as required.

N o w we are in a position to prove the following theorem.

THEOREM 3.3. Let D be as above andΩ = DuD*uS, where

1 / 2

)) (xi+
2φ-l)/

1 / 2

S=Ux1,.,..,xn)eR»(n>2),
I 2φ-l)

exist λ,δ>0 with λ and δ'1 sufficiently large such that the problem

(40) -Au = λhδ(u) inΩ, w = 0 on dΩ

has at least one stable changing sign solution which is symmetric in xx about x1 = l.

PROOF. We first modify the argument above to show that there exist I, δ>0
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such that Jδ(X, u) has a changing sign global minimizer in the set of functions in Wl'2(Ω)

which are symmetric for reflections in S. Now Uλ and V\ denote the solutions on Ω

(with Dirichlet boundary conditions on dΩ). By the uniqueness of the positive and

negative solutions of (37) on Ω, Uλ and V\ are symmetric for reflections in S. We now

repeat the same argument as above except that we modify Uχ by symmetrically modify-

ing it near the corner at xx = 0 and the one at xx =2. The argument is much the same as

before except that we have two vδ terms (one at either end). Thus we find a changing

sign solution of (20) which is symmetric for reflections in S and which is a global

minimizer of Jδ(J, u) for the functions symmetric for reflections in S. We need only to

prove that it is a local minimizer of Jδ(λ, ύ) in Wli2(Ω). We shall give a general proof.

Let g e CX{R) be sublinear and T^ Wl'2(Ω) be the subspace of symmetric functions.

If u is a local minimizer of

E(u) = — (\Vu\2-G(u))dx uεT,
2 JΩ

where G(u) = \u

og(s)ds, then, by standard arguments, every eigenvalue of the problem

(41) -Ah-g\u)h = λh in Ω, /z = 0 on dΩ, heT

is nonnegative. However, the eigenfunction φ(x)>0 corresponding to the smallest

eigenvalue of the problem

(42) - Ah -g\u)h = λh i n Ω , h = 0 on dΩ , he Wl>2(Ω)

must have the symmetries of the domain Ω. Thus it belongs to T. This follows because

if A is the Lie group of symmetries of Ω, then, since the equation and Wl'2(Ω) are

invariant under the usual orthogonal action of the Lie group, φ = $ATaφdμ must also

be a positive eigenfunction, where μ is the invariant Haar measure and Taf denotes

the naturally induced action of A on the function / . Note that φ is non-trivial since

φ(x)>(y on Ω implies \A(Taφ\x)dμ>0 for every xeΩ. Thus, the smallest eigenvalue of

(42) is also an eigenvalue of (41). This implies that every eigenvalue of (42) is nonnegative.

If every eigenvalue of (42) is positive, then it is easy to see that u is a local minimizer

of E on Wl'2(Ω). If not, 0 is a simple eigenvalue of (42) with simple eigenfunction φeT.

Hence, we see that if we do a Lyapunov-Schmidt reduction of our equation near u on

Γor Wl'2(Ω), we have the same bifurcation equation B(0) = 0 on R (defined near zero).

Now B=Vb where b: R^>R. Then, it follows easily from the generalized Morse Lemma

(cf. [34]) that u is a local minimizer of E(u) on Wl'2(Ω) if and only if 0 is a local

minimizer of b on R and the same result is true on T. Hence, our claim follows. There

is one more technical point. For the above argument, we need E to be C 2 . This is true

if g is C 1 and g'(s)-+0 as |s|->oo by standard arguments. But in our case h'δ(s) has one

jump discontinuity at 0. With care, one can show that the above conclusion is still true

by proving that in this case E is still C 1 and E'(u) is strictly differentiable at a solution

u if w#0 (cf. [18]) and then by proving a slight variant of the generalized Morse Lemma.
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By a truncation argument on hδ (since the minimizer of Jδ is bounded from above and
below), we can meet the requirement of sublinearity. This completes the proof.

REMARKS. 1. By domain variation arguments as in Theorem 1 of [9], we can
obtain a stable changing sign solution of (40) on a smooth convex domain also with
some symmetry.

2. We could obtain even more symmetric local minimizers by working in the
subspace of functions symmetric under rotations in x 2,..., xn. By making minor changes
in our Sweers type construction and using our argument above, we obtain changing
sign local minimizers which have all the symmetries of rather symmetric convex domains
(doubly symmetrized if n = 2). As above, we can smooth the domains if we wish. It
would be interesting to know if the global minimizers have the symmetries of the domain
in these cases.

3. It is implicit in our work that for smooth enough nonlinearities the local
minimizers and the stable solutions are the same. This follows by a slight variant of
the argument at the end of the proof of the last theorem.

4. Local minimizers and singular perturbations. In this section we consider a third
method for constructing stable changing sign solutions. This is only valid for a, d both
large, but works for more general domains than domain variation arguments. One can
show that some of the examples we construct here can only occur for large a and d
because if for fixed a, d our problem has no weakly stable changing sign solution on
Z), then it is not difficult to show that the same is true for domains close to D in the
sense of [14].

Consider the problem

(43) -ε2Au = h(u) in D, — = 0 on dD.
dn

It can be shown that the stable solutions of (43) are the local minimizers of the
functional

Jε(u) = —\ \Vu\2dx-—\ H(u)dx for
2 JD e JD

Here H(u) is as in Section 3. We know that H(s) has two local maximizers sx =
a<χ-\ s2= -d; H(Sl) = a3oc-2/6 and H(s2) = d3/6. Let α3α~2 = J 3 for a, d>λί. We as-
sume this for the rest of this paper. Then F(s)= -H(s) + d3/6 satisfies F(s1) = F{s2) = 0
and F(s)>0 for seR.

Define

Jε(μ) = — I I Vw 12dx + — F(u)dx for u e W12(D).
2 JD ε JD
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Then the stable solutions of (43) correspond to the local minimizers of Jε(u). Thus, we
are interested in looking for the local minimizers of Jε(u).

Define Jo: L\D)->R by

<«)={ ) = O a.e. in D,

-f oo if the perimeter is infinite .

Here PerDA is the perimeter of A in D, which is well-defined (but possibly infinite) for
any measurable set A. See, e.g. [24]. For the sake of completeness we give the definition
here: if χA(x) is the characteristic function of A, equal to 1 on A and 0 on D\A, then

PerD ^ = sup< χA divσdx:σeCS'(D,Rn)\\σ(x)\<l for xin D

BV(Z>) is the space of functions with bounded variation (cf. [24]). Then we have the
following theorem, which, together with Remark 3 below answer an open problem in
[30]. (See Remark 2.2 there.)

THEOREM 4.1. Let D be a bounded domain in Rn with Lipschitz boundary. Assume
that uQ is a L1-local minimizer of Jo and there exists a bounded open set QczL1(D) such
that uosQ and J0(u0)<J0{u) for ueQ, J0(u0)<J0(u)for ueQ\Q. Here Q is the closure
of Q in L\D\ Then there exists εo>0 and a family {wε}ε<εo such satisfies /0(w*) = Λ)(wo)
and u* = u0 ifu0 is the only minimizer of Jo in Q.

PROOF. The proof is due to Kohn and Sternberg [30] for the case where u0 is
isolated. The general case follows by a very similar argument. (The details appear in [20].)

REMARKS. 1. If UoβL^iD), we can choose {wj such that \\uε — u*\\
for all p> 1. Here uε is a minimizer of Jε and u* is as in Theorem 4.1.

2. When D is as in Figure 2,

•0 as ε->0

-d
- 1

on the left hand side of Γo

aa~A on the right hand side of Γo

is an isolated local minimizer of Jo. The proof is due to Kohn and Sternberg [30] for
the case n = 2. The proofs are easily generalized to the case «>2 by the same idea.

3. When D is as in Figure 3,

FIGURE 2.
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FIGURE 3.

-d

act
i = 0,

on the left hand side of Γf

on the right hand side of Γ f ,

Then, ut is a non-isolated local minimizer of Jo. Moreover, there exists an open set

QaL\D) such that uoeQ and J0(u0)<J0{u) for ueQ and J0(u0)<J0(u) for w e β \ g .

A detailed proof for n = 2 appears in [20]. The proof is also true for n > 2 by the same idea.

4. It is easy to see that if D is convex and n = 2, Jo can have no local minima.

We can also obtain a result analogous to Theorem 4.1 for the problem (3). We

define the sequence of functionals Iε: L1 (D)-+R, by

= 4 ί |Vw|2+- ί
2 JD ε JD

and Io:

/„(«) =

R by

+ oo if the perimeter is infinite .

Here M 6 BV(D), W(JC) e{ — d,aoί x}, a.e. in Z), F(w) is as before, Hn_ x is (« — l)-dimensional

Hausdorff measure, Φ(s) = 2\s_d^F(t)dt and M equals the trace of u on <λD. It follows

from [37] that {/J Γ-converges to 70, in the sense of Theorem 2.1 of [37]. Now we

discuss the local minimizers of 70. We assume u0 is of the form

uo(x) =
aoc

-d

xeA

xeB,

where AuB = D. Let Γ = dAndB be the interface between the regions A and B (cf.

Figure 4). By Proposition 5.2 in [37], the interface Γ has zero (mean) curvature if the

interface is sufficiently smooth.

For uΓ as shown in Figure 4, I0(uΓ) can be written to be of the form

1)-2Φ(0))Hn_^

where AΓ, BΓ are as in Figure 4.

When 2Φ(0) = Φ(αα"1), i.e., when α= 1 and a — d, it follows easily from the formula

above that
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Thus, we can obtain the minimizer of /0 in the same way as we did for Jo. Hence, 70

has an isolated local minimizer when D is as in Figure 2 and has non-isolated local
minimizers when D is as in Figure 3.

When 2Φ(ϋ)φΦ(aoί~1\ the problem seems difficult to analyse. In the case of an
ellipse D in R2

9 it can be shown that /0 never has a local minimizer of the type we are
looking for (with a smooth interface). Details appear in [20]. This strongly suggests
that one layer solutions do not exist in this case. If 2Φ(0) is close to Φ^α" 1), one can
obtain local minima of Io by treating Io as a perturbation of Jo.

5. Perturbations on the nonlinear terms. In this section we shall discuss very

briefly the singular perturbation problems (3) and (4) with a small perturbation on the
nonlinear term h{u). We shall consider a case more general than (3) and (4) though the
special case of (3) and (4) is our main problem of interest.

Let WsC\R) satisfy W(S)-> + GO as | J | - > + OO, W(S) = 0 has only two roots τ, μ,
τ < μ and W(s) > 0 on R. Moreover, assume that W{s) satisfies

C1\s\p<W(s)<C2\s\^

for I Λ I >5Ό, where Cί9 C2, s0 are positive constants and p>2. For convenience, we
assume that τ<0 and μ>0. We are interested in the local minimizers of the functional

ίε= f ueW12{D).

Here ε > 0 is sufficiently small; g e C1(R) for s e R and | g(s) | < Bι + B2 \ s \q, 0 < q <p9 where
Bl9 B2>0. It is clear that a local minimizer of ϊε is a stable solution of the problem

(44) -ε2Au=W'(u) + εg'(u) in D, — = 0 on 3D.
dn

Since F(s) has the same form as W(s), the results obtained in the previous section apply
to this problem when g vanishes identically.

Define
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u = τ} + g(τ) meas(£Γ) + g(μ) meas(ΛΓ)ί l λ

t + oo if the perimeter is infinite ,

for MGBV(D), u(x)e{τ, μ) a.e. in D, BΓ and AΓ are as in Figure 4 and meas(2?Γ) +

meas(^ίΓ) = meas(Z>). Then, we have the following theorem.

THEOREM 5.1. Let D be a bounded domain in Rn (n> 2) with Lipschitz boundary,

and suppose that u0 is a L1-local minimizer of ϊ0. Moreover, assume that there exists an

open set QcL\D) such that u0e Q, ϊo(u)>Ϊ0(u0)for ueQ andϊo(u)>Ϊ0(u0)for ueQ \Q.

Then there exists εo>0 and a family {wε}ε<εo such that

uε is an L1-local minimizer of ϊε, and }\uε — u*\\Lι(D)^>0 as ε->Ό .

Here u*eQ satisfies ϊo(u*) = ϊo(uo). If u0 is the only minimizer of ϊ0 in Q, then u* = u0.

PROOF. The proof of this theorem is very similar to the proof of Theorem 1 of

[39] and of Theorem 4.1 above.

It is easily seen that when g(τ) = g(μ),

This implies that the behaviour of ϊ0 is the same as that of Jo before. When g{τ)φg(μ),

the problem seems difficult to analyse.

REMARK. We can also obtain a result analogous to Theorem 5.1 for the problem
with Dirichlet boundary conditions. Here we assume τ < 0 < μ. The limit problem here is

>erD{u = τ} + J D g(u)dx + J d D | Φ(0) - Φ(u(x)) \dHn _ x(x)

' the perimeter is infinite ,

for ueBY(D), u(x)e{τ, μ}, a.e. in D\ Φ(s) = 2\s

χyJW{s)ds and u equals the trace of u on

dD. As before, we can simplify this formula. In various special cases, / 0 reduces to one

of our earlier problems.
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