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Abstract. The values of the modular y-function at imaginary quadratic arguments

in the upper half plane are usually called singular moduli. In this paper, we use the

Arakelov intersection to give the prime factorizations of a certain combination of sin-

gular moduli, coming from the Hecke correspondence. Such a result may be considered

as a degenerate one of Gross and Zagier on Heegner points and derivatives of L-series,

and is parellel to the result of Gross and Zagier on singular moduli.

In this paper, we will give a result on singular moduli by means of the Arakelov

intersection on the modular curve X0(l), which may be considered as a degenerate case

of the results in the style of Gross and Zagier on Heegner points and derivatives of

L-series (cf. [GZ1], [GZ2]). Although [GZ1] asserts that such a special case of Xo(\)

was treated in [GZ2] on singular moduli, one finds that it is not exactly the case. In

fact, the basic difference of the two papers is that for [GZ1], they assume that Heegner

points are associated to the same imaginary quadratic field, while in [GZ2], they only

deal with the case in which Heegner points (for different variables) come from strictly

different imaginary quadratic fields, e.g., the associated discriminants are relatively

prime to each other. Besides this, some of the techniques in these two papers are also

different: For example, when they try to write G™ as a series of natural numbers, they

use different strategies.

The difficulty for giving the degenerate result for N = 1 is that originally Gross and

Zagier [GZ1] used only the Neron pairing. Yet, we may equally use the Arakelov

intersection pairing by a result of Faltings and Hriljac [La]. As an application of such

a consideration, we will give the precise values and the prime factorizations for a certain

combination of some singular moduli. More precisely, we have the following two

theorems.

THEOREM 1. Let K be an imaginary quadratic field with discriminant D, let srf

be an ideal class of K, and let σ^ be the element in the Galois group of the Hilbert

class field H of K which corresponds to stf by the Artin isomorphism. Define J(srf) by

τ Heegner point
discτ = ί)

where
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dety = m
mod SL2(Z)

Then J(srf) is a rational integer, and the prime factorization of J{srf) is given by

=± Π (Upap(n)

l<n<m\D\ \ p\n

Here u denotes a half of the number of units in K, ap(ή) is defined by

0, if ε{p)=\,

if ε(p)= -1 ,
ap{ή): =

/ » \
if ε(p)=O,

in which, ε is the Dirichlet character associated with K, i.e., ε(ή) = ( — I, δ(ή): = Y\p, {n D) 2,

and r^(a) denotes the number of integral ideals of norm a in the ideal class srf. R{κ}(a)

denotes the number of integral ideals of norm a in the genus {K}, and {K} is the genus of

any integral ideal with its norm satisfying N(κ)= —p(modD). In particular, we see that

the prime factors in J(jrf) is not greater than m\D\.

THEOREM 2. In the notation as above, ifrsί{m)=0, we have the following identity:

In£ m
m\D\

s+1\D\si2uζ(2s)-iζΛs)-φ(s)h]

= -(2Aσ1(m)+ί2 Σ d\og^Λhκ-u2 Σ CJn)rJm\D\-n).
\ d\m U J l<π<m|D|

Here Qs-1 denotes the Legendre function of the second kind, and σf^(ή): = Σp\n^P

Basic ideas for this paper are something behind the two interesting papers of Gross

and Zagier [GZ1], [GZ2], hence this paper may be regarded as a footnote to them.

The reader, who is interested in the Arakelov geometry, may also consider this as a

good example towards general theory. We take Lang's book [La] as the reference to

the Arakelov theory used in this paper.

I. Proof of the first theorem.

I.I. Global Arakelov intersection pairing. To begin with, let Kbe an imaginary

quadratic field, and x a Heegner point on X0{N) associated with K. Let σ e Ga\(H/K),

for the Hubert class field H of K. By the Artin isomorphism, we assume that σ cor-
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responds to an ideal class si of K. Denote by hκ the class number of K and w = 2u the

number of units of K. Then there are two distinguished cusps, 0 and oo, on X0(N). If

ΛΓ> 1, we know that 0 / oo. So if σ is not trivial, the Neron pairing <x —0, (x— oo)σ>

makes sense. Furthermore, if we apply the Hecke operator Tm to the second component,

we see that <x — 0, Tm(x — oo)σ> has a very good interpretation. In fact, a part of the

main theorem of Gross and Zagier [GZ1] may be read as follows:

THEOREM (cf. [GZ1]). The series g^{z) : = Σm> i < * - 0 , Tm(x-oo)σ}e2πimz is a cusp

form of weight 2 and level N. Moreover, g^ is closely related with the derivative of a

certain L-series.

REMARK. For more details, refer to Theorem 1.6.1 of [GZ1], since we omit the

most important part of that theorem here to emphasize our point.

On the other hand, in the degenerate case of N= 1, we know that the two cusps

0 and oo coincide, if we use the same notation as in [GZ1]. So it does not make any

sense to talk about the classical Neron pairing locally, and hence, we cannot directly

apply the original technique of [GZ1]. (In fact, when N= 1, some of the series intro-

duced in [GZ1] are also divergent.) Nevertheless, if we consider the problem on the

arithmetic surface Xo(\) over //, by using the Arakelov intersection pairing, we see that

<JC—oo, Tm(x— oo)σ> remains to make sense.

From now on, for simplicity, we assume that r^(m) = 0, where r^(m) denotes the

number of integral ideals of norm m in the class of s/, since otherwise, the supports of

x and Tmx are not disjoint. At the end of this paper, we give the result for the cases

r^(m)/0 by some modifications. From the definition, note that we consider the Arakelov

intersection over the Hubert class field H of K, we see that

<x-oo, Γm(x-oo)*> = <x-oo, Tm(xσ)-Tm(co)}

= <x, Γm(xσ)>-σ1(rn)<x, oo > - < Γm(x"), oo>-σ1(m)/ix ,

since <oo, oo>= — hκ, if we use the standard convention. So we only need to study

<x, Tm(xσ)>-σ1(rn)<x, αo>-<Tm(xσ), αo> .

Now from the definition, we may separate this combination into two parts: the finite

part and the infinite part. Hence, we need to consider

, oo >fin - < Γm(xσ), oo>fin

and

<x, Tm(xσ)> in f-σ1(m)<x, oo> i n f-<Γm(xσ), oo> i n f.

1.2. Local intersection pairing at finite places. We in this subsection study local

intersection pairing at finite places. In this case, note that X0(l) is just P1, so all the

special fibers are the projective lines, and the cusp oo, which is defined over rational
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numbers, corresponds to the infinity in the usual sense. Now by the fact that Heegner

points have potentially good reduction, we may use the moduli interpretation to see

that Heegner points and the cusp for A^l) never meet at any finite place. Hence, the

contribution to the Arakelov intersection pairing is zero. Therefore, to understand

the contribution of the finite place to the pairing, we only need to study <x, Tm(xσ)>fin.

So we need to know the multiplicity (x, Tm(xσ))υ of x and Tm(xσ) at finite places v of H.

In order to give (x, Tmxσ)v9 we need some preparations. Let S be a complete local

ring with algebraically closed residue field k, and α, b two S-valued point of X0(l) o v e r

S. Assume that the points a and b have non-cuspidal reduction, and consider Homs(α, b)\

First, it is a left (resp. right) module over the ring Ends(α) (resp. Ends(b)). Second, the

ring Ends(α) is either Z, or an order in an imaginary quadratic field, or an order of a

definite quaternion algebra of prime discriminant over Q. Let Homs(α, b) d e g m be the set

of elements/in Homs(α, b) of degree m. We know that Homs(α, b) d e g m is a finite set

and admits a faithful action by the finite group Auts(fc).

Let x be a Heegner point of discriminant D on X0(l) over //, and a(x) the cor-

responding set of X0(l) over Λv, where Λv is the ring of integers in the completion Hv

and has a parameter π. Then to calculate (α(x), a(Tm(xσ)))v, we need to extend the scalar

to X®ΛvW, where Xis the arithmetic model of Jfo(l) over H, and Wis the completion

of the maximal unramified extension of Λv.

FACT 1 (cf. [GZ1]). ( φ ) , a(Tm(xσ)))v = Σn^hM^ Φ0)de«m, where

M«> b)degm = -

The proof proceeds as follows: First, if a and b are two sections which intersect

on X over W and reduce to regular, non-cuspidal points in special fibres, then we have

(a9b)= X hn(a,b)degl ,
«> 1

which proves the assertion for m = l . In general, we let m = prq with pr\\m. Then, if p

splits in K, we have (α(x), a(Tm(xσ))) = 0, since in this case

Homwlπn(a(xσ), a(x)) = Uomw(a(xσl a(x))

for all n> 1. But r^(m) = 0 implies that Howw(a(xσ), a(x)) contains no element of degree

m. So we only need to assume that p has a unique prime factor in K. But in that case,

a(x) and a(xσ) have supersingular reduction (mod π), and Endw/π(a(x)) = R is an order

in the quaternion algebra B over Q, which is ramified at 00 and p. We then distinguish

two cases: p is inert in K, or p is ramified in K. For more details, see Sections III. 6, 7, 9

of [GZ1]. With this, if we consider the summation

v\p
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over all the places over p, we get the following:

PROPOSITION 1 (cf. [GZ1]). (1) Ifp is split in K, then

(x,Tm(xσ)}p = 0.

(2) If p is inert in K, then B = K+Kj with j2= —pq and we have a factorization

(q) = κκ in K. Furthermore,

<x, TJx*)}p = u2log/7 X oτdp(pn)rJm\D\-n)δ(n)R^J—) .
0<n<m|D| \p/
w = 0(modp)

Here δ(ή):=Y[ .. D)2 and R{.} denotes the number of integral ideals of norm n in the

genus {•}.

(3) Ifp is ramified in K, then B = K+Kj withj2= —q and we have a factorization

{q) = κκ in K. Furthermore,

| |
n = 0(modp)

In particular, putting all these together, we have the following:

PROPOSITION 2 (see also Prop. IV.4.6, [GZ1]). In the notation as above, if

m) = 0, we have

x, oo> f i n-<Tm(x), oo>fin = w2 Σ σ'Jn)rJm\D\-ή).

Here

with

Σ
p\n

ap(n): =

0,

if

in which, ε is the Dirichlet character associated with K, i.e., ε(n) = [ — ], and {K} is the

\n J
genus of any integral ideal with norm N(κ)= —p(modD).

1.3. Local intersection pairing at infinite places. Next, let us discuss the contri-

bution at infinite places.

Since
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g(χ,y)-g(χ, *>)-g(y, GO) = - l o g - — e * y +iog e +iog e

(l + | x | 2 ) ( l + | y | 2 ) l + | x | 2 l + | y | 2

= \-log\x-y\\

we have

g(J(τi)J(τ2))-g(j(τ1)J(^))-g(j(τ2)J(<X)))=l-\og\j(τ1)-j(τ2)\2.

So to evaluate the contribution to the Arakelov intersection from the infinite part, we

need to understand \og\ j(x)—j(y)\2. But then by definition,

(*) ΦmU(z1)J(z2))= Π Uizi)-j(yz2))

So we see that

dety = m
mod SL2(Z)

<x, Γm(xσ)> i n f-σ i(m)<x, co> i n f-<Tm(x"), oo>inf

= <Ί(m)hι + Σ log I ΦΛfrΛ ΛW) I2 ,

since we have to take all Archimedean places of the Hubert class field H of K. Here

τj4i denotes the Heegner point on Xo(\) corresponding to the ideal class J^ . . Hence, we

have

<x, Tm(xσ)> in f-σ1(m)<x, cx)> inf-<Tm(xσ), oo>inf = σ 1(m)/i κ-| J ( Λ / ) | .

1.4. The proof of Theorem 1. First, since X0(l) is just P1, so, up to a certain

multiple infinite fibers, any two algebraic points (with the same degree) are Arakelov

rationally equivalent. Hence, we can find a rational function over //, say fx, such that

divAr(/x) = x ~ °° + Σ avFv ->
v Archimedean

where aveR and Fv denotes the fiber over v. Therefore, by the fact that T J x - o c f is

of degree zero at generic fibre, we see that

^ υ Archimedean

On the other hand, by definition, we have

<div A r (/J,T m (x-a)r> = 0 .

In particular, we see that the intersection <x— oo, TJx— oo)σ> is zero.

We may write the intersection as

<x-oo, Tm(x-cc)σ) = (x, Γm(xσ)>-σ1(rn)<x, oo>-<ΓM(x), α ) ) -
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But then, from 1.2, we see that

<x, Tm(xσ)>-σ1(rn)<x, oo>-<Γm(x), oo>

= <x, ΓJx^Xin-σ^mXx, oo >fin - < ΓTO(x), oo>fin

+ <x, Tm(xσ)> i n f-σ1(m)<x, oo> i n f-<Γm(x), cx)>inf

= <x, Γm(xσ)>fin + <x, Tm(xσ)> i n f-σ1(m)<x, oo> i n f-<Tm(x), oo> i n f.

Thus, by 1.3, we see that

Therefore,

With this, by Proposition 2, we complete the proof of Theorem 1.

II. Proof of Theorem 2. To prove Theorem 2, we need to know the precise

expression for the Green function of the projective line Xo(\) over C in terms of the

hyperbolic parametrization.

For seC with Re(s)>0, let Q s _ x be the Legendre function of the second kind

defined by

and define

i, τ2) : = - 2 β s _ 1 ( c o s h φ 1 , τ2))

with d(τl9 τ2) the hyperbolic distance of τ t and τ 2 . Then the function Gs(τ1? τ2) is defined

by the absolutely convergent series

PROPOSITION 3. In terms of the hyperbolic parametrization, we have the following

formula for the Green function of Pι(C) with respect to the normalized volume form

dμ: = (J^ϊ/2π)dz A dz/(l +1 z | 2) 2

, τ 2 ) - ί Gs(τu τ2)dμ(l)- ί Gs(τl5 τ2)dμ(2)
Jp^C) JPHC)

Here dμ(ί) means that we consider Gs as a function for the i-th variable, and the integration
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is taken with respect to j(τ^).

PROOF. The point is that the Green function of Pί(C) with respect to dμ can be

uniquely characterized by the following axioms. First, it has the logarithmic singularity

when τλ approaches τ 2 ; secondly, ddc of the Green function is nothing but dμ; thirdly,

the integration of the Green function with respect to dμ is zero. Obviously, the third

condition is satisfied automatically by definition. On the other hand, the first one

may be obtained from the definition of Gs. The second one comes from the fact that

l i m ^ ^ G ^ , τ2) + 4π£(τ1, s)) is a harmonic function, where E(τ, s) is the Eisenstein series

defined by

(c,d)=l

In fact, one may use the following result of Gross and Zargier to obtain the assertion.

LEMMA (cf. [GZ2]). For two points τ l 5 τ 2 of Jf, not equivalent under Γ 0(l), we

have the relation

log I j(τι)-j(τ2) | 2 = lims^ x{GJiτl9 τ2) 4- 4πE{τl9 s) + 4π£(τ2, s) - 4πφ(s))- 24 .

Here

φ(s): =
Γ(s)ζ{2s)

To prove the proposition, we proceed more precisely as follows: Since

dμ=\

and

ί

L
we see that

r l 9 s) + 4π£(τ2, s)-4πφ(s))-24

4π£(τ1? s) + 4π£(τ2, 5)-4πφ(s))- 24]dμ(l)- ί [li

- ί [li \πE(τu s) + 4π£(τ2, 5) - 4πφ(s)) - 24] dμ{2) -1 .

So up to constant, we see that g(j(τ1)J(τ2)) is nothing but
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- l im s VGJiτ l9 τ 2 ) - | Gs(τl9 τ2)dμ{\)- \ G s(τ l9 τ2)dμ{2) + C(s)) .
\ JPHQ JPHQ /

Now by the third axiom, we may fix this constant C(s).

REMARK. One may prove the lemma of Gross and Zagier by using the following

facts: First, both sides are Γ0(l)-invariant; secondly, both sides are continuous except

for a singularity log | τx — τ2 \2 + 0(1); thirdly, both sides are harmonic and have the same

decay when τ goes to infinity. A function having these three properties is unique up to

constant.

Next, by applying the Hecke operator Tm to the second component on both sides

of (*) and by the fact that £(τ, 5) is an eigenfunction of Tm with eigenvalue msσί -2s(m),

we find

l 5 τ2) + 4πσ1(m)£(τ1, s) + 4πm sσ 1_ 2 s£(τ 2, s) — 4πσ1(m)0(s)) — IΛσ^m)

= hms_1(G^ ι(τ1, τ2) + 4πσ1(m)[£(τ1, s) + £(τ2, s) —φ(s)]) —24σ1(m) —12 ^ d l o g —

d\m d

with

ατ9 +
λ a,b,c,deZ

ad — bc = m

So we need to evaluate G™ first. To do so, we first write G™ for the Heegner points in

terms of a series of natural numbers, by the properties of the Heegner points, and get

the following:

PROPOSITION 4 (cf. [GZ1]). Let s/l9 srf2 be ideal classes ofK, andat integral ideals

in srfi with N(a^ = A{. Then, for meN, ^ l J a,-i(m) = 0, we have

oo

m\L

Here

n + m\D\

For the proof, see [GZ1].

Now by the fact that the infinite part of the local intersection for our problem is
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the summation over all Archimedean places of the Hubert class field H of K, we get

the following:

PORPOSITION 5. In the same notation as above, assume that r^(m) = 0. Then

<x, Tm(x σ)> i n f- σ i(m)<x, oo> i n f-<Tm(x), oo>inf

Γ oo /

= lims_ 11 2u2 Σ δ{n)RUn>Λn + m\D\)Qs_Al
»=i \ m\D\

Ί
2-s + 1|/)|s / 2wC(25)-1Cx(s)-

PROOF. We see that

In

„ = ! ' " Λ m\D\

-s\D\s/2uζ(2syh

Here we use the fact that

E(τ^ s) = 2~s\D \S/2UC

where τ^ denotes the Heegner points in X0(l) associated with sf, and

a integral N{θ)S

On the other hand, we have the following:

FACT 2 (cf. [GZ1]).

[ 0 , otherwise.

Hence, by taking the summation with respect to s^γs^2 = ̂ , we get



SINGULAR MODULI AND THE ARAKELOV INTERSECTION 355

Σ

2n KL

,s))

~Φ(s) Σ l | | - ( 2 4 σ i ( W ) + 1 2 Σ ^ o g ^ Σ , .

Here b^m is the generalized Kronecker symbol. Now if we take the summation with
respect to J ,̂ we complete the proof by using the fact that

In particular, we get the following:

COROLLARY. In the notation as above, if r^(m) = 0, then the Arakelov intersection

pairing on the arithmetic model of X0(l) over the Hubert class field H of K is

<τ-oo,
m\D\J

Ί

d\m U / l<n<m\D\

With this, Theorem 2 is a direct consequence of the fact that, in the corollary
above, the Arakelov intersection pairing on the left hand side is zero as we proved in
1.4. In fact, one may also write down the limit for the terms involving ζκ(s) and φ(s),
by giving their Laurent expansion at 5= 1 up to degree 1 terms.

REMARKS 1. In [GZ1] and [GZ2], Gross and Zagier use the technique of J.
Sturm on the holomorphic projection to show that the value given above is related with
the derivative of L-series.

2. If r^(m) /0, we may also have the result. But now we need to give a few more
terms containing r^(m). For example, we see that if/? splits in K then the contribution
to the intersection is w/ιr^(m)ordp(m)logp. For a more detailed formula in each case,
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see the formulas IV 9.2, 9.7 and 9.11 of [GZ1].
3. A similar strategy may also give the prime factorization of some other com-

binations of certain algebraic integers, which happen to be the difference of y-invariants
at some points, e.g., the main theorem of [GZ2].

4. The stategy used in this paper may also be applied to higher dimensional cases,
say, the projective plane. We discuss this aspect elsewhere.
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