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Abstract. Several fairly general existence theorems are established for two-point
boundary value problems associated with a nonlinear differential equation which occurs
in the study of the /?-Laplace equation, generalized diffusion theory, non-Newtonian
fluid theory, and the turbulent flow of a gas in a porous medium. One of them implies
the existence of similarity solutions to the Rayleigh problem for a power-law fluid.

1. Introduction. The method of upper and lower solutions has become a standard
tool for studying the solvability of boundary value problems associated with the
second-order nonlinear differential equation

(i-i) y"=f(χ,y,yf);
see, for instance, [l]-[5] and the references therein. Basically, α and β are called lower

and upper solutions relative to the equation (1.1), respectively, if

α"(*) >/(*, α(jc), α'M) and β"(x) </(*, β(x\ β'(x))

for x in some interval. Here and henceforth the prime denotes differentiation with
respect to the independent variable x.

The main purpose of this paper is to establish several fairly general existence
theorems for boundary value problems associated with the nonlinear differential
equation

(1-2) LΦ(yΊ]'=b(χ)f(χ,y,y')
by employing the method of lower and upper solutions.

Concerning the equation (1.2), the following hypotheses on φ, k and / are adopted:
(HJ φ: R-^R is continuous and strictly increasing and φ(R) = R, where R =

(-00,+ 00).
(H2) k: (α, £>)->/?+ is continuous and $b

a k(x)dx< + oo, where R+ = (0, + oo).
(H2) k: (a, + ao)->R + is continuous and f b

a k(x)dx< + oo for each fixed b>a.
(H3) /: [α, b] x R2-^R is continuous and satisfies a Nagumo condition on the set
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(1.3) Ω: = {(x,y,z);a<x<b,oc(x)<y<β(x),zcR},

where α, βeC[0, fo] with oc(x)<β(x) on [α, fc], and C[α, b] denotes the set of all con-

tinuous real- valued functions defined on [α, &].
(H3) /:[α, + oo)x/?2->/? is continuous and for fixed b>a satisfies a Nagumo

condition on the set Ω, where α, βe C[«, + oo) with φc) < /?(Λ;) on [α, + oo).

A continuous function / : [α, ί>] x R2^R is said to satisfy a Nagumo condition on
the set Ω if there exists a continuous function 0: R+^R+ and a real number σ,

1 < σ < + oo, such that

(1-4) \ f ( x 9 y 9 z ) \ ^ θ ( \ z \ ) on 0

and

r«-') J^MT^Λ r-ι̂ or^Λ }/( } J-. β(i*-'(«)D ' L WMD μ " ""
where Λ+ • = [0, + oo), φ~l(u) is the function inverse to φ(t)9

(1.6) μ:= max jS(x)- min α( c) ,
a<x<b a<x<b

(1.7) v : = max{| φ) - /?(6) |, | φ) - j8(fl) |}/(A - a) ,

and

if σ = + o o ,(1
(L - if l < σ < + o o .

We denote μ° : = 1, | φ~\u) |° : = 1.
Moreover, most of our existence theorems are stated in terms of upper and lower

solutions and a Nagumo condition.
Functions α, βeCl[a, b~\ (resp. Cl[a, +00)) are called lower and upper solutions

of the equation (1 .2) on [α, fc] (resp. [α, + oo)), respectively, if [</>(α')]'> [Φί/Π]' e ̂ O^ &)
(resp. C(α, +00)) and

π 9) Wία'W)]' > ̂ )/(̂ , Φλ «'W) in (a, 6) (resp. (α, + oo)) ,

WGS'W)]' < ̂ )/(x, β(x\ β'W) in («, 6) (resp. (α, +00));

A function ye Cl\_a, b~] (resp. Cx[a, + oo)) is said to be a solution of the equation (1.2)
on [α, b~\ (resp. [α, + oo)), if it is both a lower and an upper solution of (1.2) on [α, b~\
(resp. [α, + oo)), i.e.,

)]' = k(x)f(x, fa), /(*)) in (a, 6) (resp. (

Equations of the form (1.2), in particular φ(t) = \ t\N~1t, N>Q, occur in the study
of the (N+ l)-Laplace equation [6], generalized diffusion theory [7]-[9], non-Newtonian
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fluid theory [10], [11], and the turbulent flow of a gas in a porous medium [12], [13].

The existence results in this paper will improve, extend, and complement the existing

theory in [1]-[15]. Actually, some boundary value problems for the equation (1.2),

including the case φ(t) = \ t\N~1t9 7V>0, have been studied by O'Regan [15], Bobisud

[13], Phan-Thien [10], Kaper et al. [6], and Piao et al. [14]. Their arguments are all

different from ours. To our knowledge, the method of upper and lower solutions for

the equation (1.2) with φ(t) being genuinely nonlinear has not yet been developed.

Besides the above, we also study the Rayleigh problem for a power-law fluid

_d_
~3η

du du

~dη

8u_

UΓ
; 7V>0,

under suitable restrictions on the parameters N and k.

The plan of this paper is as follows. In Section 2, we study the boundary value

problems for (1.2) with y satisfying some linear boundary conditions, with a view to

extending Theorems 1.5.1 and 1.7.1 in the monograph [1] and improving some existence

principles and results in [13], [15]. In Section 3 we demonstrate that the Rayleigh

problem has similarity solutions under suitable restrictions on N and k, by employing

one of the existence theorems established in Section 2. Finally, in the appendix we prove

that the Rayleigh problem has no similarity solutions when N= 1 and k= — 1, —2,

2. Linear boundary conditions. The present section is the cream of this paper.

We study the following three boundary value problems

ί [</>(/)]' = k(x)f(x9 y, /) , a < x < b ,

\y(a) = A9 y(b) = B,

ί [</>(/)]' = *(*)/(*, y, /) > a < x < b ,
\y'(a) = A9 y(b) = B,

and

ί

(2 υ

(2 2)

(2.3) , y, y ,

where A and B are prescribed real numbers.

A few and significant modifications of the proof of Theorems 2.3 and 2.1 in [15]

yield the following existence result.
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THEOREM 2.1. Let (HJ, (H2) hold and let f:[a,b]xR2^>R be continuous and
bounded. Then (2.1) and (2.2), respectively, have at least one solution.

PROOF. First we prove that (2.1) has a solution. Let us define a mapping

7\: C[α,&]->C|>,&] by

!
Jα

k(s)f(s, (Jz)(s\ z(s))ds I , a<x<b,

where φ~l: R-^R is the function inverse to φ9

(2.4) (Jz)(x) : = β-\ Φ)<&> a<x<b,

and τ is determined by the equation

(2.5)

Concerning the mapping Tί9 we claim that
( i ) for each fixed ze C[α, b~\ the equation (2.5) has a unique solution τeR,

(ii) the image of C[α, b~] under the mapping T1 is uniformly bounded and
equicontinuous on [α, fo], and

(iii) the mapping Tί is continuous on C[α, &].

Let zeC[fl, fr] be fixed. Then we have, by the definition of w(τ),

(2.6) (b-a)φ-1(τ-M\\k\\l)<w(τ)<(b-a)φ-1(τ + M\\k\\1), V τ e f l ,

where \\k\\! is defined by (1.8) and M a positive number such that

\f(x,y, z)\<M on [α, ^]x/? 2.

Because 0"1 is a continuous, strictly increasing function on R with φ~1(— oo)= — oo
and 0~1(+oo)= +00, so is w (for each fixed zeC[α, ί?]), by the definition of w and
(2.6). Thus, there exists a unique τe/? satisfying the equation (2.5), the the claim (i) is
true.

By the first mean value theorem for integrals, it follows from (2.5) that for each
fixed ze C[α, b} there exists a ξe(a, b) such that

\ B-A
φ)/(s, (Jz)(s\ z(s))ds } = - ,

/ b — a

i.e.,

τ = φ i ) — k(s)f(s, (Jz)(s), z(s))ds ,
V b-a ) ]a

where τ is the unique solution of (2.5) corresponding to the function zeC[α, b~\.
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Consequently, we have

(2.7) |τ | , τ+ k(s)f(s9(Jz)(s)9z(s))ds Φ
B-A

b-a

From the definition of T1 and (2.7), we conclude that

+ M\\k\\ί = :N, a<x<b.

\(TίZ)(x)\< max \φ-1(u)\9 a<x<b, VzeC[α,b].
-N<μ<N

This shows that the image of C[α, b] is uniformly bounded on [α, b].

From the uniform continuity of φ~l(u) on the closed interval [_ — N9 N], it follows
that for any ε > 0 there exists a p > 0 such that

\φ~1(ui) — φ~ί(u2)\<ε , whenever u^u2£\_ — N,N~\ and \u1 — u2\<ρ .

Put

k(s)f(s9(Jz)(s)9z(s))ds9 7=1,2,
Jα

and

f*K(x):=\ k(s)ds , a<x<b .

Then ^Γ )̂ is absolutely continuous on [α, fe]. We assert that there exists a <3>0 such
that for any ze [α, b],

i) — K(x2)\<p , whenever xί9 x2£\_a, b~\ and \x1—x2\<δ.

Hence, there exists a <5>0, independent of ε>0 and zeC[α, 6], such that

\(T1z)(x1) — (Tίz)(x2)\<ε, whenever xl9x2G[_a9b] and 1^— x2\<δ •

This shows that the image of C[α, b] is equicontinuous on [α, b]. Consequently, the
claim (ii) holds.

Now assume that zn e C[α, b], n = 0, 1, 2, . . . , and zn converges to z0 uniformly on

[α, b] as «->> oo. By the definition of 7\, we have

(T 7 WΊ — / Λ " 1 / r 4- & M / Y v (Ϊ7 ¥^ 7 MW? I w —0 1 7^α j^Zw^Λy — (̂  I ί n r I I\,\Λ)J \^ι3, ^t/Zn^i3^, Z^^ij^Mo I , rί — U, 1, ^C, . . . ,

\ J c

where τn satisfies the condition

(2.5),

Applying the first mean value theorem for integrals to the difference between (2.5)w,

n = l , 2 , 3 , . . . , and (2.5)0, we get
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φ ~ l(τn + Γ" k(s)f(s, (Jzn)(s), zn(s))ds} - <Γ ' K + ϊ k(s)f(s, (Jz0)(s), z0(s))ds J = 0 ,
\ J a / \ J f l /

where ξne(a, b), n= 1, 2, 3, . . . , i.e.,

τ* - τ0 - ί ̂  k(s)\J(s, G/ZoX*), z0(j)) -/(s, (JzJίj), zB(j))]d5 , ii = 1 , 2, 3, . . . .

Thus from the assumption that zn(x) converges to z0(x) uniformly on [α, b], it follows
that

and hence

lim (71

1zΪI)(Λ;) = (7l

1z0)(Λ;) uniformly on [α, fc] .

This proves the claim (iii).
From the claims (ii) and (iii), we conclude that the mapping 7\ : C[α, fo]->C[α, b~\

is bounded and completely continuous, by the Arzela-Ascoli theorem. The Schauder
fixed point theorem then yields a fixed point of T1 in C[α, b].

We denote the fixed point of T1 by z(x). Then we get

' 1 , a<x<b,

where τ satisfies the constraint condition (2.5). Utilizing the fixed point z(x), we define
a function y(x) by

(2.8)

Consequently, we have

) = A, y(b)=B,

φ(y'(x)) = τ+\ k(s)f(s,y(s),y'(s))dS, a<x<b,
J a

and

LΦ(yWJ = k(x)f(x9 y(x), y'(x)), a < x < b .



BOUNDARY VALUE PROBLEMS AND THE RAYLEIGH PROBLEM 333

Therefore, the function y(x) is a solution to (2.1).

We now prove that (2.2) has a solution. Define a mapping T2 : C[α, fc]->C[fl, b] by

k(s)f(s,(Jz)(s),z(s))ds\ a<x<b , VzeQ>,fo].
/

In the same way as above, we deduce that the mapping T2 has at least one fixed point
in C[α, ft]. Thus, the fixed point of T2, denoted by z(x), satisfies the equation

\
Jα

s)f(s, (Jz)(s), z(s))ds , a<x<b .
\ Jα

Putting

y(X}:=(Jz)(X) = B-(l ' z(t)dt

= B- I φ~ 1(φ(A) + ί'k(s)f(s, y(s), y'(s))ds\dt , a<x<b,
Jx \ Jα /

(2.9)

we obtain

yeCl[a, fr] , y'(a) = A, y(b) = B.

Φ(yW = Φ(A) + I k(s)f(s9 y(s), y'(s))ds , a<x<b .
Jα

\_φ(y f(x)J]' = k(x)f(x, y(x), y '(x)), a < x < b .

This shows that the function y(x) defined by (2.9) is a solution to the boundary value
problem (2.2).

From the above proof, we see that the uniform continuity ofφ'1 and / on compact
sets implies the complete continuity of the mapping Tp j=\,2. Thereupon, we can
conclude that none of the existence results established in [15] requires the assumption

that φ~1 is continuously differentiable on R. In particular. Theorems 2.3 and 2.1 in [15]
can be recast as follows.

THEOREM 2.2. Let (H^, (H2) hold and f: [α, ί?] x R2-*R be continuous. Then the
boundary value problems (2.1) has at least one solution if there is a real number M,
independent of λ, such that \y'(x)\<M on [a, b] for each /le(0, 1) and for any solution
y(x) to the boundary value problems

( [_φ(y'}]' = λk(X)f(x, y, y') , a<x<b ,

' ) = A, y(b) = B.

Similarly, the boundary value problems (2.2) has at least one solution if there is a
real number M, independent of λ, such that \y'(x)\^M on [α, b} for each le(0, 1) and
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for any solution y(x) to the boundary value problems

(2 2) ί [</>(/)] ' = λk(x)f(x, y, /) , a < x < b ,

We omit the proof of this theorem here, because there are only a few (but significant)
modifications of the original and the modified parts are similar to those in the proof

of the preceding theorem.
A generalization of Theorem 1.5.1 in the monograph [1] is the following.

THEOREM 2.3 . Let α, β e C * [α, b~\ , respectively, be lower and upper solutions of (1 .2)
on [0, fe] with <x(x)<β(x) on [a, b~\ and let (H^, (H2) and (H3) hold. Then, for any
a(a)<A<β(a), a(b)<B<β(b), the boundary value problem (2.1) has at least one solution

a(x) < y(x) < β(x) and \ y '(x) \<M on [α, fo] ,

where the constant M depends only on α, β, φ, θ and k.

PROOF. Let us consider the modified boundary value problem of the form

(2 10) ί [</>(/)] ' = k(x)F(x9 y,y'), a<x<b,

where the function F(x, y, z) is what is called the modification of /(x, y, z) associated
with the triple α(.x), β(x), M, i.e.,

f*(x9β(x)9z)+

f*(x,y,z),

y

l+y

+y2

for y>

for κ(x)<y<β(x),

for

f*(x9 y, z): = •

f(x,y,M),

f(x,y,z)9

for z>M,

for -M<z<M,

_f(x9y9-M)9 for z<-M,

while M is a positive constant satisfying

M> v , M> I oc'(x) I, I β'(x) I on [0, b~\

and

(2.11)

l<σ< + 00
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By (1.5), such a constant can be chosen. It follows from the definition that F(x, y, z)
is continuous and bounded on [α, b~\ x R2.

By Theorem 2.1, the modified boundary value problem (2.10) has a solution
yeCl[a, b~\ with \_φ(y')~]'ε C(a, b). Concerning the solution y(x), we claim that

(I)
(II)
We shall prove only that y(x) < β(x) on [α, b~\. The arguments are essentially the

same for the case a(x)<y(x) on [<?, b~\.
Assume thaty(x)>β(x) for some xe(α, b), sincey(a) = A<β(d), y(b) = B<β(b). Then

the function w(x): = y(x) — β(x) has a positive maximum at a point x0e(a, b). Hence it

follows that y'(x0) = βf(xo), \y'(x0)\<M, and

]' = k(x0)F(x0,y(x0)9y'(.

„„ x />,/.. x x . y(χo)-β(χoY

>h(x0)f(x09 β(x0), β'(xo))>

From the continuity of [^(j'W)]' and [φ(β'(x)}]f in (α, fo), we conclude that there exists
a δ > 0 such that (Λ:O — δ, x0 + δ) c= (α, ^7) and

Integrating both sides of the above inequality with respect to t from x0 to x e (xQ, x0 + ̂ ),
we get

φ(y'(x)) - φ(y'(x0)) > Φ(βf(x)) - Φ(β'(xo)) in (xθ9 x0

i.e.,

w'(x)=y'(x)-β'(x)>Q in ( 0̂,

which is impossible at a maximum of w(x). We conclude that y(x) < β(x) on [α, b]. Thus,
the claim (I) is true.

The mean value theorem asserts that there exists a point x0 e (a, b) such that

Then by (1.7), we have v 0<v. Assume that the claim (II) is not true. Then there exists

an interval [xl9 x2~\ c [α, fo] such that one of the following cases holds:
( i ) /( *ι) = v0, y'(χ2) = M and v0</(x)<M on (xl9 x2),
(ii) y'(x1) = M, y'(χ2) = v0 and v0<y'(x)<M on (xl9 x2),
(iii) yf(x1)= -v0,y'(x2)= -M and -M<JX(Λ:)< -v0 in (xl9 x2),
(iv) yf(x1)= -M,y'(x2)= -v0 and -M<j;(x)< -v0 on (xl9 χ2).

Let us consider the case (i). By (1.4), we obtain
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I ίΦ(yWΎ\=k(χ)\f(χ,y(χ),/(*))I<k(χ}θ(\y'(χ}|) on [*1? X2]

and as a result

0(1/Ml)

<
,,

if 1 < σ < + oo and

~φ(M)

. 0 ) θ(\φ-\u)\) JX1 θ(|/Ml)

if σ = I. This contradicts (2.11). We can deal with the remaining possibilities in a similar
way and therefore we conclude that the claim (II) is valid.

The claims (I) and (II) imply that the solution y(x) to (2.10) is also a solution to
the boundary value problem (2.1). The proof is complete.

Concerning the boundary value problem (2.2), the following statement holds.

THEOREM 2.4. Let α, βeCl[a, b~\, respectively, be lower andupper solutions of (1.2)

on la, b~\ with a'(a) = β'(a) and oφc) < β(x) on [α, b] and let (HJ, (H2) and (H3) hold. Then,
for A = oc'(a) and any oc(b)<B<β(b), the boundary value problem (2.2) has a solution

<*(*)<y(x)<β(x) and \y'(x)\<M on [α, ft],

where the constant M depends only on α, β, φ, θ and k.

The proof is omitted here, because it is very similar to and simpler than that of
Theorem 2.3.

The following two statements are consequences of Theorems 2.3 and 2.4, which,
respectively, improve Theorem 4.2 in [15] and Theorem 1 in [12].

THEOREM 2.5. Suppose that f': [a, b}xR2^R2 is continuous and there is a constant
M> 0 such that yf(x, y, 0) > Ofor \y\>M and for all x 6 [α, ft]. Let a=—N,β = N, where
7V=max{| A |, | B\9 M] if we are examining (2.1), whereas 7V=max{| B\9 M}, if we are
interested in (2.2) with A = 0. In addition, suppose that (Hi), (H2) and (H3) hold. Here
v0 = | B—A I/I b — a\ can be chosen as v if we are examining (2.1), whereas v0 = 0 can be
taken as v if we are interested in (2.2) with A = Q. Then the boundary value problems (2.1)
and (2.2), respectively, have a solution, where A = ΰ in (2.2).
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PROOF. Clearly, α = — N and β = N are lower and upper solution of (1.2) on [α, ft],
respectively. Theorems 2.3 and 2.4, respectively, assert the existence of solutions to (2.1)
and (2.2).

THEOREM 2.6. Suppose that f: [α, b~] x R+ x R^>R is continuous, and f(x, y, z) > 0
fory>Q,f(x,Q9z) = Qfor(x9z)€[a9b]xR. Let B>A>Q, α = 0, and β = B. Suppose that
(Hx), (H2) and(H3) are satisfied, where v = v0 = (B — A)/(b — a). Then the boundary value
problem (2.1) has a solution.

PROOF. We may assume that / is extended to R as an odd function of y. The /
remains continuous. We shall denote the extension by / also.

Clearly, α = 0 and β = B&re lower and upper solutions of (1.2) on [α, fo], respectively.
Theorem 2.3 tells us that the boundary value problems (2.1) has a solution.

Concerning the boundary value problem (2.3), the following statement is valid,
which is a generalization of Theorem 1.7.1 stated in the monograph [1].

THEOREM 2.7. Let α, βe C\a, b~\, respectively, be lower andupper solutions of (1.2)
on [a, + oo) such that y,(x)<β(x) on {a, oo) and let (HJ, (H2) and (H3) be satisfied. Then
for any α(α)< A <β(a) the boundary value problem (2.3) has a solution ye C^[a, oo) with

lΦ(y'J]'eC(a> °°) and<x(x)<y(x)<β(x) on [α, oo).

PROOF. By Theorem 2.3, it follows that for each n>\ there is a solution
ynECl[a,a + ri] of (2.2) such that yn(a) = A, yn(a + n) = β(a + ri), oc(x)<y(x)<β(x) on
[α, a + ri], and

f*Ί)) = k(s)f(s, yn(s), y'n(s))ds , a<x<a + n,

) = Λ + f
J a

yn(x) = A+\ y'n(s)ds, a<x<a + n.
J a

Furthermore, there is an MM>0 such that \y'(x)\<Mn on [α, a + ri] for any solutions
of (1.2) satisfying ot(x)<y(x)<β(x) on [α, a + n]. By carefully examining the proof of
Theorem 2.3, we know that, for any n>\, ym(x) is a solution on [α, a + ri] verifying
a(x)<ym(x)<β(x) and \y'm(x)\<Mn on [«, a + ri] for all m>n. Consequently, for m>n
the sequences {ym(x)}, {y'm(x)} are both uniformly bounded and equicontinuous on
[0, a + ri]. Thus, employing the standard diagonalization arguments, we obtain

subsequences {ym(k)(x)}> {y'm(k)(χ)} which converge uniformly on all compact subintervals
of [α, oo) to functions y(x) and z(x), respectively. Substituting {ym(k)(x)} and {y'm(k)(x)}
into (2.12) and then letting ra(fc)—> -f oo, we get

φ(z(x))- φ(z(a)) = k(s)f(s
9
 y(s), z(s))ds , x>a,
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z(s)ds, x>a .

This shows that the function y(x) is a solution to the boundary value problem (2.3).

It is worth pointing out that our results can be extended to the study of the equation
(1.2) with some nonlinear boundary value conditions. Especially, Erbe in [3] established

several fairly general existence results to the particular case where φ(t) = t, k(x) = 1 in
(1.2) with some nonlinear boundary value conditions. All the arguments there are
independent of φ and k. Consequently, one can re-establish all the existence results
therein. Since the proofs are exactly the same, we will not repeat the results and the

proofs here and leave them to the interested readers.

3. The Rayleigh problem. The initial-boundary value problem

(3.1)

_8_

~dη

w(+oo, 0 =

irdη dt

E/o>0,

t>0

is usually called the Rayleigh problem, which has been suggested as a model for a

power-law fluid near the suddenly accelerated plane wall. For details see [16] and [10].
If we write

(3.2) u=U0t«y(x), x = XηΓ», p:=
7V+1

then we arrive at the boundary value problem

(3.4) X0)=l,

(3.5) lim x[~λ]+y(x) = Q,
x-* + oo

where

λ: = k/p , [ — λ]+ : = max{ — A, 0} ,

and p is required to be positive.

Conversely, if y(x) is a solution to (3.3)-(3.5), then the function
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is a similarity solution to the Rayleigh problem (3.1), where the similarity variable
x = Xηt~p and p, Xare given by (3.2). That is to say, similarity solutions to the Rayleigh
problem (3.1) exist if and only if solutions to the boundary value problem (3.3)-(3.5)
exist.

The Rayleigh problem (3.1) was considered by Phan-Thien [10], but there were
two errors:

(i) The boundary condition (3.5) was not presented, and hence
(ii) his conclusion that similarity solutions to the Rayleigh problem (3.1) exist for

any real number k is not true.
In the appendix we shall prove that the boundary value problem (3.3)-(3.5) has

no solutions when N= 1 and λ=—2, — 4, —6, . . . .
Concerning the boundary value problem (3.3)-(3.5), the following statement holds.

THEOREM 3.1. When N>Q, λ> — 1, the boundary value problem (3.3)-(3.5) has a
solution y(x). If N> 1, then ye C^O, +00) and

Γ τv-1 -Wϋv-i)
(3.6) 0<X*)< l-^-x^+w on [0, +00),

L N+l J +

where [w]+ : = max{w, 0}, ίfN=\, thenyeC2[ΰ, + co)and

(3.7) 0<y(x)<e-χ2/2 on [0, +00)

while if 0<N<\, thenyεC2[Q, +ao)and

(3.8) 0<X*)< 1+ - *(N + 1)/N on [0, +00).

From (3.6), we conclude that when N> 1 and λ>—l9 the similarity solution y(x)
has compact support, i.e., there exists a point Q<xQ<((N+ l)/(N— ij)N/(N+v such that

)ΞΞ() for X>XQ.

PROOF OF THEOREM 3.1. Put

x>0, if N>1 ,

β(x): =
-v2

e-χ*12, x>0, if N=l,

, if

Clearly, a(x) and β(x) are lower and upper solutions of (3.3) on [0, + oo), respectively.
When Λf> 1, we define

=l, f ( x 9 y , z ) = λy-xz.
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Then, for each £>0,/(x, y, z) satisfies a Nagumo condition on the set

provided

θ(\z\) = \λ\+b\z\ and σ = + o o .

When 0<N< 1, the equation (3.3) can be rewritten as

y"(x) = (λy(x) - xy'(x)) \ y'(x) |(1 ~^/N .

We define

Then, for each b > 0, /(x, y, z) satisfies a Nagumo condition on Ω provided

θ(|z|) = (μ| + i|z|)|z|1-̂ , σ = + o o .

Theorem 2.7 tells us that the boundary value problem (3.3)-(3.5) has a solution y
and

oψc) <y(x) < β(x) on [0, + oo) .

In particular, when 7V£(0, 1] the solution y(x) is in C2[0, +00). This proves the
theorem.

By Theorem 3.1, it follows from (3.2) that the Rayleigh problem (3.1) has a similarity
solution when

7V>1 and k>-l/2N

or when

0<7V<1 and -l/2N<k<l/(\-N).

Appendix. In the appendix we study the boundary value problem

(!)„ y" + xy' + (n + l)y = 09

(2) X0)=l,

where w = 0, 1, 2, . . . , which is a special case of (3.3)-(3.5) when N= 1, λ= — (n+ 1). Our
aim is to demonstrate the following:

THEOREM. Ifn = 0, 2, 4, . . . , then the boundary value problem (1)W-(3)M has a unique
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solution', ifn=l,395,..., then (l)/J-(3)n has no solution.

From the theorem, we conclude that the Rayleigh problem (3.1) has no similarity

solutions when N= 1 and k= — 1, — 2, —3, . . . .
We begin by introducing the following formulas relative to the Hermite polynomials

[17, pp. 837, 1033-1034]:

(4) Hen(x) = (-l)"eχ2>2 -ζ- e~χ2/2

dxn

(5) ^-Hen(x) = nHen-ι(x)9 / ι = l , 2 , . . .
dx

(6) Hen +1(x) = xHen(x) - nHen _ ̂ x) , n = 1 , 2

(7)

The first eleven Hermite polynomials are

He0 = l, Heι=x, He2 = x2-\, He3 = x3-3x, He4 = x4-6x2 + 3

Employing the first eleven Hermite polynomials, we have already checked up the
identity

(8)n Hen(x) Σ (-i
m > 0

Thus, we conjecture that it is still true when n= 10, 11, 12, ... . However, we have
not yet been able to present its proof.

Clearly, y = e~χ2/2 is a solution of the equation (1)0. Using the method of reduction
of order, we can find the general solution of (1)0

(9)0 y0(x) = Ae-*2/2

where A and B are arbitrary constants.
From the structure of the equation (1)M, we conclude that the function
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(9)B
Γ e

Jo

Σ (-
m~1

m> 1

is the general solutions of (!)„.
From the representation of yn(x), we assert that A = 0 if and only if the solution

yn(x) satisfies the boundary condition (3)n.
To prove the assertion, it is enough to prove that when A = l, limx_> + 00x

n + 1yn(x)

does not exist or exists but is equal to a nonzero constant. Indeed, applying the lΉospital

rule, we obtain

Pe t 2l2dt

(10)0 lim χy0(χ) = lim Jo = lim __L^=1,
jc-> + oo x^ + oo X e ' x-^ + oo 1— X

I ft t / *> /// I pX 11 J-fp 1 (γ\ \ ( 1 \m f-f/y (v^
I cΓ Mi \^ c J.± ζ γ. v^J / i \ •*• / ϊ •*-* ^n nt\ )

l » - 4 - 1 / x 1 Jθ TO > 1 MA

hm xn+ίyn(x)= hm — — _

Γ= lim

dx

where

M,=Hen(x) Σ (

Hen(x)

M2 = xHen(x) Hen(x)
\ dx ;m>ι

i.e.,

lim xn + ίyn(x)= ϋm I Hen(x) Σ (— l)m—— Hen_m(x)
x-> + co χ-+ + co\ m>0 MΛ

(10).

+ Hen + 1(x) Σ (-l)m , m _! ^fe»-m(^)]> «=1,2, ,3,.. . .

Here we have used (5) and (6). The reason why the lΉospital rule can be applied is that

Fn(χ)= (X et2l2dt + eχ2l2He-\x) Σ (-\T-^^ Hen_m(x), / ι = l , 2 , 3 , . . .
Jo m>ι αx
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approaches + oo as x tends to + oo.
The polynomial in the brackets on the right hand side of (10)π is exactly the left

hand side of (8)π. We conjecture that it is equal to n\. If it is a polynomial of degree

nonzero, then the limit does not exist, if it is a polynomial of degree zero, then it is

exactly n\ by (5) and (7). This shows that our assertion is valid. Therefore, when

is the unique solution of (!)„. When n= 1, 3, . . . , the equation (!)„ has no solutions,

because Hen(ty = 0 in this case.

This proves the theorem.
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