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Abstract. A system of two nonlinear differential equations with an irregular type
singularity not satisfying the Poincare condition is studied. A two-parameter family of
bounded solutions is constructed by the fixed point technique. The domain of holomorphy
of the set of functions appearing in the fixed point technique is to be given by a family
of the product of two circles over every point in a domain of independent variable. The
radius of one circle depends on the argument of the independent variable only, while
that of the other essentially depends on the independent variable itself.

1. Introduction.

1°. Assumptions. In a previous paper [6], the author studies a system of two

nonlinear differential equations of the form

(A) x2 ~^ = (μ + ax)y+f(x, y, z), x2 -^- = ( - v + βx)z + g(x9 y9 z),
ax ax

under the assumptions that

( i ) x is an independent variable;

(ii) μ and v are positive numbers and their ratio is irrational;

(iii) α and β are complex constants and there is a positive quantity K satisfying

the inequalities

(1.1)

(iv) f(x, y, z) and g(x, y, z) are holomorphic and bounded functions of (x, y, z) for

(1.2) \x\<a9 \y\<b9 \z\<b,

and their Taylor series expansions in (y, z) contain neither the constant terms nor the

linear terms, where a and b are small positive constants.

2°. Review of a previous result. Under these assumptions, the following was

proved:

PROPOSITION 1. Let ε0 be a preassinged sufficiently small positive number. There

exists a formal transformation of the form
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(1.3) pjk(x)ujvk,
2

= v+ qjk(x)ujvk ,

which formally changes the equations (A) to the linear equations

o dv
(A') r2 "" ___

dx
= (-v + βx)v.

The coefficients pjk(x) and qjk(x) are holomorphic and bounded functions of x for a domain

of the form

(1.4. <π — ε0 ,

admit asymptotic expansions in powers of x as x tends to zero through the sector

(1.4. + ) . a' is a small positive constant.

For the proof of the convergence of the formal transformation (1.3), the following

proposition played an important role. Namely the double power series appearing in

(1.3) has the particular property which is clarified in the proposition below:

PROPOSITION 2. For each fixed], the power series in a single variable Y

are uniformly convergent for

(1.5. <π-ε0
0<\x\<a', \v\<b',

where a' and b' are small positive constants depending onj. Similarity, for each fixed k,

the power series XJ

αD

=0/?J k ( φ J and ΣJL 0 qjk(x)uJ in u a r e uniformly convergent for

< π —ε 0 ,

where a' and V are small positive constants depending on k.

\u\<b\

By the help of this proposition, [6] has introduced truncated differential equations

of special type. After proving the existence of a solution for these equations, we have

obtained the following main theorem.

THEOREM A. Let ε0 be a preassigned sufficiently small positive number. The formal

transformation (1.3) is uniformly convergent for (x, u, v) in a domain of the form

(1.6. < π — 0 < | x | < α o , \u\<b0, \υ\<bo,

where a0 and b0 are small positive constants. Namely, there exists a transformation

(1.7) y = Φ(x,u,v), z=Ψ(x,u9v),
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which changes the equations (A) to the linear equations (A') in the domain (1.6.+ ). The

Taylor expansions of the functions Φ(x, w, v) and Ψ(x, w, v) coincide with the power

series expressions (1.3).

3°. n nonlinear equations. In order to extend Theorem A to the case of n nonlinear

differential equations, we consider the case where y and z are vectors and, in particular,

the μ, v, α and β are diagonal matrices. Such equations are written simply in the form

(B) χ2 ^-=(iJίμ)+χU*))y+f(χ, y)
dx

Here, x is a complex independent variable; y is an ^-vector; lw(μ) and ln(α) are n by n

diagonal matrices, respectively, with diagonal entries {μ7} and {α,-} which coincide with

the entries of the ^-vectors μ and α; f(x, y) is an ^-vector with entries holomorphic and

bounded in (x, y) for a domain of the form

\x\<a, \\y\\= max \y}\<b

and their Taylor series expansions in powers of y begin with terms of degree at least

2. We assume that

(i) the βj are nonzero real numbers independent over the field Q of all rational

numbers;

(ii) the oίj are complex numbers and there is a positive quantity K such that

(1.8) μj + κ-9laij>0 for all j .

REMARK. When a factor x appears in the nonlinear term, such a system of nonlinear

equations was already studied in [5].

For an arrangement {pup29 '' m,pn) °f nonnegative integers pj and an rc-vector z

with entries {z,-}, let \p\=P\+p2+ ''' +Pn

 a n d zp = zp

1

ίz%2- zPn. In the same way as

in Proposition 1, it is not difficult to prove the following:

PROPOSITION 3. There exists a formal transformation of the form

(1.9) y = u+ Σ ΰjίx)up,

which formally changes the equations (B) to the linear system

(B') 2 ^
dx

The coefficients gp(x) are holomorphic and bounded functions ofx in a domain of the form

π
(1.10. T) argx + - <π-ε0, 0<\x\<ao,
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and admit asymptotic expansions in powers ofx as x tends to zero through the sector (1.10).

In order to prove the convergence of the formal transformation (1.9) by utilizing

the method as in the proof of Theorem A, the following problem will have to be solved:

PROBLEM. For any fixed pp the power series in the entries of the (n-l)-vector

(i.π) Σ

is convergent for

(1.12. argx + — < π - ε 0

Here a" and b" are small positive constants depending on the suffix j and the power

exponents p y

If we could solve this problem, then the proof of the convergence of the formal

transformation (1.9) would be carried out in the same way as for the case of n = 2. For

« ^ 3 , however, it seems to be very difficult to solve this problem directly. So, we are

forced to study a different method for the proof of the convergence of even the formal

transformation (1.3).

In this paper, we prove Theorem A by a different method which will be applicable

to the proof of the convergence for the case of n ̂  3.

2. New arrangement of a formal solution. The equations (A) are given by

(2.1) x2-^ = (μ + ax)y + f(x,y,z), x2-^ = (-v +βx)z + g{x, y, z) .

dx dx

We have already proved the following:

THEOREM 1. There exists a formal transformation of the form

(2.2) y = u+ X Pjk(x)ujvk, z = v+ £ qjk(x)ujυk,
j

which formally changes the equations (2.1) to the linear equations

(2.3) x2-U- = (μ + ocx)u, x2-"- = (-v +βx)v .
dx dx

The coefficients pjk(x) and qjk(x) are holomorphic and bounded functions in xfor a domain

of the form
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(2.4.+) <π —ε0, 0 < | x | < r '

and admit asymptotic expansions in powers ofx as x tends to the origin through the sector

(2.4. + ), r' being a small constant.

We rearrange (2.2) in powers of u:

(2.5) y = u + Σ Pj(x, ΦJ,
j=0

= v + Σ Qj(x, Φj,
7=0

where the coefficients Pj(x, v) and β/x, v) are expressed as power series in v:

(2.6-;) Pj(x,v)= Σ PjkiΦ", Qj(x,v)= Σ ^(Φ" •
k,j + k^2 k,j + k^2

We prove the following:

THEOREM 2. The coefficients Pj(x, v) and Qj(x, v) are holomorphic and bounded

functions of(x, v) for a domain of the form

(2.7.+) <π-ε0, \υ\<rί ,

so that the power series (2.6-j) are uniformly convergent. The r0 and r± are independent

ofj.

To prove this, regard (u, v) as a holomorphic general solution (C/(x), V(x)) of the

equations (2.3) such that (U(x0), V(xo)) = (uo, v0), where x0 has to be restricted to the

domain (2.4.+). Substitute (2.5) for {y, z} into the equations (2.1) and rearrange both

sides of the resulting equations in powers of u. Then one can find the differential

equations which determine those coefficients. The equations for the pair {P0(x, V(x)),

Q0(x, V(x))} are nonlinear, while the pairs {Pj(x, F(JC)), Qj(x, V{x))} fory^l are linear

equations.

In order to derive those equations, observe that

(2.8)
dx dx dx

dPix V)
J\9 ;

U dx

7 = 0 \ dx

(μ + ax)y +/(*, y, z) = (μ + ax) U

x, V), V+Qo(x, V))

(2.9)
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Σ
7 = 1

V))Uj.

C(x, υ)=df- (x, P0(x, v), v + βo(x, v)),

df
D(x, υ) = -{- (x, P0(x, v), v + βo(x, i;))

dz

Here,

(2.10)

and, in particular,

(2.11) C(x,0) = 0, D(x,0) = 0.

The Gj(x,v) are linear forms of the functions (da+bf/dyadzb)(x, P0(x, υ), v + Q0(x,v))

for a + bi^j whose coefficients are polynomials in {βi(x, u), , Qj-^x, v), P^x^v),

• , Pj-^XtV)}. In quite a similar way, we can derive similar equations, by differ-

entiating the second power series expression of (2.5), from the second equation of (2.1)

by defining the functions E(x, v), F(x, v) and //, (x, v), which are respectively similar to

the functions C(x, v), D(x, υ) and G7 (x, v).

Hence, the pair {P0(x, V(x)\ Q0{x, V(x))} has to satisfy the nonlinear differential

equations

(2.12)
dx

dx

For 7 ^ 1, the pairs {^-(x, V{x% Qj(x, V(x))} are solutions of the linear equations

(2.13-7)

X
dx

+ C(x,

dx

J(X, V(x)),

J(X, V(x)).

The following facts should be noted:

( i ) The equations (2.12) are nonlinear, while the equations (2.13-y') are linear;

(ii) x = 0 is an irregular singular point;

(iii) The equations (2.12) and (2.13-y) possess formal solutions which are expressed

as the power series (2.6-7) w^h v= V(x).
A theorem due to Malmquist [7] or Iwano [3] implies that the power series (2.6-0)
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with v = V(x) are uniformly convergent whenever the values o/(x, V(x)), considered as points

in the (x, v)-space, belong to a domain of the form (2.7. + ), so that the pair {P0(x, V(x)),

Q0(x, V(x))} of the sums becomes a solution of the equations (2.12) for the values of

(x, V(x)) in the domain (2.7. + ). r0 and rx are small positive constants.

Obviously,

(2.14) P0(χ, V(x)) = O(V(x)2), Q0(x, V{x)) = O{V{x)2).

When we consider (x, V(x)) as independent variables, the P0{x, v) and Q0{x, v) are

holomorphic and bounded functions of (x, v) for the domain (2.7. + ). By virtue of (2.14),

these functions vanish at v = 0. Hence, the condition (2.11) is satisfied.

The coefficients appearing in the equations (2.13-1) become known holomorphic

and bounded functions of (x, F(x)), considered as independent variables, for the domain

(2.7. + ). In order to prove the convergence of the formal solution (2.6-1) with v= K(x),

again apply the theorem mentioned above.

In this manner, we can prove that the pairs {P, (x, V(x)\ Qj(x, V(x))} are successively

and uniquely determined as solutions of the linear equations (2.13-y) in such a way that

Pj(x, v) and Qj(x, v) are holomorphic and bounded functions of(x, v) in the domain (2.7. + )

and admit the power series (2.6-7) a s tne^r Taylor series expansions in powers of v. This

proves Theorem 2.

3. New truncated differential equations. For any positive integer TV, set

IN 2N

(3.1) P ( N ) ( x , u , v ) = u + Σ P A X > v ) " j > Q(N)(x> u , v ) = v + Σ Qj(*> Φ j

7=0 j=0

Apply the change of variables

(3.2) y = PiN)(x,η9ζ)9 z = Q(N)(x,η, ζ).

When the pair {y, z] is expressed as the power series (2.5), it is easy to verify that

the pair {η, ζ] defined by the equations (3.2) is expressed as power series in u of the form

00 00

(3.3) I/ = M+ Σ Φj(x,v)uj, ζ = v+ Σ Ψj{x,v)uj,
j=2iV+l j=2N

where φj(x, v) and φj{x, v) are holomorphic and bounded functions in (x, v) for a domain

of the form

(3.4. + ) argx + — < π - ε 0 , 0 < | x | < r /

o ,

r'o and r\ being sufficiently small positive constants.
By noticing this fact, the equations satisfied by the pair {η, ζ] are written as
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(3.5)
dx

dx

Here the /^x, η, ζ) and gx(x, η, ζ) are holomorphic and bounded functions of (x, η, ζ) in

a domain of the form

(3.6. argx + - < π - ε 0 , \η\<rψ>, \ζ\<rψ>

where r(

0

N) and rψ] are sufficiently small positive constants depending on N.

To see this, observe that, when the pair {u, v} is considered as solutions of the

equations (2.3), the power series (3.3) form a formal solution of the equations (3.5).

Insert (3.3) for {η, ζ] in the equations (3.5). Then the expression x2(dη/dx) — (μ + ocx)η

satisfies the order condition O(uN + 1) and does not involve any term with negative powers

in v. If the /^x, η, ζ) were not holomorphic in (η, ζ), it would involve a term with either

negative power in η or in ζ. Hence, the η2N+ ίf1 will contain either a term with degree less

than 27V +1 in w, or a term of negative degree in υ will appear in the expression

η2N+1f1(xiη,ζ). This is a contradiction. The same argument can be applied to the

second one in (3.5) for the proof of the holomorphy of the g^x, η, ζ).

Put

(3.7) log 1=0

and let {U(x\ V(x)} be a holomorphic general solution of the equations (2.3). Make the

change of variables

(3.8)

A simple calculation gives

2 dη . . U{x) 2 dY

dx (l — yy dx

x2— = (-v + βx)(
dx dx

Hence, the equations which the pair { Y, Z) satisfies become
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(3.9)

2dY _ U{x)2

dx (l-Y)2N-ίJl\ ' 1-F '

dZ e~Λ(x)U{x) 2N

01
dx (1 - Y)2N

This system of equations can be written as

U(x)

1-F '
eΛ(x)Z .

(3.10)

x2 —= U(x)2NFN(x, U(x), V(x), Y, eMx)Z),
dx

x2 = e-Λ(x)U(x)2NGN{x, U(x), V(x), Y, eΛ(x)Z).
dx

When the variables x, U(x), V(x), Y, eΛ(x)Z are considered as independent variables,

the FN(x, u, v, Y,S) and GN(x, u, v9 Y, S) are holomorphic and bounded functions of

(x, u, v, Y, S) in a domain of the form

(3.11. + )
< π - ε 0 ,

Y\<rφ, \S\<r<P,

r{o\ rψ] and r2

N) being sufficiently small constants depending on TV. These functions

satisfy inequalities of the form

| ^ ( x , u, v, Y, S)\^LN , \GN(x, u, v, Y, S)\^LN

\FN(x9u9Ό9Yl9S1)-FIAx9u9v9Y29S2)\^LN(\Y1-Y2\ + \Sί-S2\)

I GN(x, iι, υ9 Yl9 S^-G^x, u, v9 Y29 S2)\^LN(\ Y1-Y2\ + \S1-S2 |

(3.12)

and

(3.13)

for the arguments belonging to the domain (3.11. + ), where LN is a constant depending

on TV.

4. Stable domains. In order to simplify the description, we utilize some results

which were already obtained in Iwano [6]. The pair {U(x)9 V(x)} is a holomorphic

general solution of the equations (2.3), namely,

(4.1)
du

~dx~
x2± = (-v + βx)v.

dx

It is assumed that there is a positive constant K satisfying the inequalities

(4.2) Vί(κ) = μ + κfta > o , v2(κ) = -

Let Mo be the least integer such that
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(4.3) v3(fc) = Mov1(ιc)-v2(ιc)>0.

The function Ξ0(x) = e ~ Λ(x) U(x)Mo satisfies the linear equation

(4.4) x2 —^- = (Moμ + v + (Moα-β)x)ξ0 ,
ax

which satisfies the condition (4.3).

According to the discussion which was developed in Section 4 in Iwano [6], we put

, v,
| |δ| |=max{|3α|, |3/ϊ |, |A/ 03α-3/ί|},

(4.5)

I =max{v1(4 v2(κ), M0v1(κ)-v2(κ)} ,

l ^ m i n ^ * ) , v2(κ), M0v1{κ)-v2(κ)}

and define the angle Ω by the formula

(4.6)
\\v(κ)\\'

Let r0, rx and AN be positive constants depending on TV. Then, the stable domain is

given by one of the following two domains in the (x, u, y)-space:

(4.7.
_

argx + —
u\N<AN\x|χ(Λr)(argx), \v

< π - ε 0 ,

x),

where the ω(τ), χβ(τ) and χ{N)(τ) are strictly positive valued and continuous functions

defined in the τ-interval [ —π/2 + ε0, 3π/2 —ε0] or [ —3π/2 + ε0, π/2 —ε 0 ]. The ω(τ) is

given by

(4.8) ω(τ) =

r cosΩ

sinε0

cos τ

sinε0

for

for

_ π
T + 2

<

2

_ π
^ π - ε 0 .

The ^^(τ) and χ(N)(τ) are expressed as

(4.9)

(cosf l)^, for τ

COST

for h ε o ^ τ ^ Ω ,

for π — Ω ̂  τ ̂  ε0
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and

(4.10) V /

for

for

for

τ —

~~2

π-ί

π

y

+

VII

π

τ < 3 π ε
2

I cos τI
cosΩ

For the τ-interval [ —3π/2 + ε0, π/2 —ε 0], the χ^τ) and χ(N)(τ) are to be defined in a sim-

ilar manner. The constant ΔN appearing in the domain (4.7. + ) must be so chosen that

the minimum of the function ΔNχ{N)(τ) for | τ + π / 2 | ^ π —ε0 is not less than the unity.

5. The curve Γ(x0) and the stability theorem. A curve Γ(x0) consists generally of

two parts Γ' and Γ".

If I arg x0 + π/21 ̂  π/2 — Ω, the curve Γ(x0) consists of part Γ' only. Let x0 = Ao + iB0,

\. Put

I JC I 2 ' I JC I 2

I A o I I Λ o I

The variable point x = xί(σ) on Γ' is expressed by the formula

1 _

x
(5.2) for

If \argxo + π/2\>π/2-Ω, the curve Γ(x0) consists of two parts Γ and Γ". The

variable point x = x2{τ) on the Γ" is expressed by

(5.3)

in either case of θ0 ^ τ ^ Ω or π — Ω fg τ ̂  θ0.

At the ending point of Γ", namely at either τ = Ω or τ = π — Ω, this curve must be

switched to a curve of the form (5.2), where the starting point of the curve Γ' is given by

cos 0O
I cos 0OI

The properties of the curve Γ(x0) are studied in Theorem 5 in Iwano [4]. The meaning

of stable domain will be clarified in the following theorem:

THEOREM 3. Let (x0, w0, v0) be an arbitrary point in the domain (4.7. + ). Denote

by (U(x), V(x)) a holomorphίc general solution of the equations (4.1) satisfying an initial

condition (U, V) = (u0, v0) at x = x0, where x0 belongs to the sector | argx + π/2 \<π — ε0.
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Then, as x travels on the curve Γ(x0), the values of the functions (x, U(x), V(x)),
considered as points in the (x, w, v)-space, stay in the domain (4.7. +) .

PROOF. The case when | argxo + π/2|^π/2-Ω. Then curve Γ{x0) is made of the

curve Γ' only. As was already shown in Section 4 in Iwano [6], we have the inequalities

(5.5)

1

\U(x)\

1

\v(χ)\

1

d\U(x)\
dsx

d\V{x)\

dsx

d\ Ξ0(x]

3Vl(κ:)

5κ

3v2(κ)

5κ

^ 3v3(/c)

1

1*1 '
1

1*1'

\Ξ0(x) 5κ \x\

as x moves on the curve Γ'. sx denotes the arclength of this curve measured from the
origin to the variable point x. Moreover, it was shown that

(5.6)
d\x\

<— for
2

XEΓ' .

From the second inequality in (5.5) we see that the function | V{x)\ is steadily
increasing in sx on the part Γ'. Hence, the inequality | V(x)\<r1χβ(sirgx) continues to
hold as long as this one does at the starting point x0.

By utilizing the first inequality in (5.5) and inequality (5.6), we have

\U(x)\N}^3Nvί(κ) \U(x)\N 3 \U(x)\N

\x\2 2 I x l 2
(5.7)

d

5κ

vM-5*) . \U(x)
10K; I X I 2

If Â  satisfies the inequality

(5.8)
5κ

we see that the function | U(x) \N/\ x | is steadily increasing in sx. Hence, if the inequality
I U(x)\N<ΔN\x\χ{N){argx)is satisfied at the starting point x0, then this inequality is true
on the curve Γ', because the function χ(iV)(arg x) is constant for | arg x + π/21 ̂  π/2 — Ω.

The case where |argxo + π/2|>π/2-ί2. Consider the case -π/2 + ε o <argx o <Ω.
Observe that

V(x) = v0 - exp — - ) xo

β expί — I xp

x0 ) \x!

Assume that
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(5.9)

Since

x =-
COS0n

eiτ,

we have

(5.10)

Hence, on the curve Γ",

cosθ 0

X

x0

COST

= r±(cosτ)*β e{-τ

 β

It turns out that, as long as (5.9) holds, we have | V(x)

Let us assume that

for

x) on the curve Γ(x0).

(5.11)

Observe that

(5.12) U(x) =

By virtue of (5.11), we have

\uo\
N<AN\xo\χ(N\<ιrgxo).

\U(x)\N

-=\Un
X0

1

cos Ω )

on the curve Γ". Hence, the inequality | t/(x)|N<zJ i V |x |/ ( N )(argx) holds as x moves on

the curve Γ(x0) as long as it does at the starting point. q.e.d.

6. Estimation of the integrals of the kernel functions along the curve Γ(x0). When

we prove the existence of solutions for the equations (3.10) by utilizing the fixed point
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technique, it is essential to make a good estimation of the two integrals

\U(x)\ 2N

dsΎ and
\U(x)\ 2N

(6.1)

where s0 is the arclength of the curve Γ(x0). The functions \U(x)\2N/\x\2 and

£-9U(χ)| ^/(JC) |2ΛΓ/| JC | 2 will play a role of the kernels in the integral equations appearing

in Section 7 which are derived from the differential equations (3.10).

THEOREM 4. We have the estimates

(6.2)

s o \U(x)\ 2N |2JV

o \x\2

eΓ
Jo

U(x)\ 2N \2N

where M x and M2 are defined by the formulas (6.28) and (6.30).

1°. The estimation of the integrals (6.1) on the curve Γ'. Put

(6.3) φ ) , - ^ .
X

This function satisfies the linear equation

(6.4)

A direct calculation shows

d\sd{x)\ _ d

dsr

dx

\U(x)

= 2N-

\x\

U(x)\2N~ι d\U{x)\

(6.5)
1*1

6Nvx(κ)

dsx

3

U(x)\2N d\x\

\x\2 dsx

~ 5/c \x\ 2 \x

_ UNvM-lδK \s/(x)\

\0κ \x\

Hence, by integrating this inequality along the curve Γ\ we get

Γ so \U(x)\2N ^ \0κ ' ττ<- ^2N

Jo ι^ι 2 Sχf

Set

(from (5.5), (5.6))

(6.6)
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U(x)2N

(6.7) a(x) = e-Λ<x) K }

x

This function is a solution of the linear equation

(6.8) χ2 — = (2Nμ + v + (2Naι-β-l)x)&.
dx

Let Mo be the number defined by the condition (4.3). Write 0&(x) as

2N~M° TJ(x\2N~M°
= Ξ0(x) - - ^

X

By utilizing the last one in the inequalities (5.5) and the inequality (6.5), (where 2N

must be replaced by 2N—M0), we get at once

ΛΛ I ΛI 77 (vΛ I I T T(-Λ 12N — Mo 7̂ / I /" jί^Λ 12

Xj I u\£,0(x) I I (7(Xj I i I σ r M r / ' W I
dsx dsx \x\ ds

^3v3(κ) \Ξ0(x)\ \U(x)\2N-M°

~ 5κ \x\ \x\

\U(x)\2N~M°
-oWI+

10K:

/3v3(fc) t (UN
= \ 5κ 10/c

Thanks to the definition of v3(/c) in (4.3), the constant factor of the function 10&(x) |/| x \

is equal to

3(Mov1(κ)-v2{κ)) (UN-OMOJVM-ISK _ \2Nvι(κ)-3v2(κ)-\5κ

5κ 10/c lθκ

We assume, besides (5.8), that Λ̂  satisfies

(6.9)
[2Vl(κ)

Then,

(6 10)
dsx ~ 10/c \x\

By integrating this differential inequality along the curve Γ\ we have immediately
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(6.11) I e
Jof

Jo

\U(x) \2N

ds<-
10K:

2Λf

\2Nv1(κ)-3v2(κ)-l5κ

2°. The estimation of the integrals (6.1) on the curve Γ". Since the variable point

x on Γ" is given by the formula (5.3), we have

(6.12)

and

(6.13)

dx

V cos θ0

dτ

cosθ 0

\XQ\

COS0n

for θo^τ<Ω,

for π —

where sx is the arclength of the curve Γ" measured from its ending point xf

0 to the

variable point x.

As is shown in (5.10), on the curve Γ", the function 9ΐ(μ/ *) is unchanged. Since

(6.14) U(x) = uo

we have

\s/(x)\ \U(x)\2N \uo\
2N

\x\ \x\2
txpl-imil-^-^-

(6.15)
\2N

COST

sin ε0 /

because of the inequalities |cosθ 0 | ^ s i n ε 0 and π — Ω + εo^\θo — τ | . Since dsx =

— (I x0 |/cos θo)dτ and | cos θ0 \ ̂  sin ε0, the integration of the inequality (6.15), excluding

the middle terms, gives

(6.16) L U(x) \2N

-ds<-
\x\* \xo\ \ s i n ε 0 /

By the notation (4.5), this inequality implies

\U(x)\2N _, lwo |2 N

(6.16-bis) L sinε0

2 Λ Γ | | o | | - l
,π.e2Nπ\\δ\\ ^
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On the other hand, we have on the curve Γ"

X

x0

491

> = e x p ( -

(6.17)

= exp

= e

= e

-*(-

x

x0

COST

,(τ-θo)3β

COS0O

/ i \\*β\

~ \s inε 0 /

which, by the help of (6.15), implies

\2N

(6.18)
1 \

xo\
2 \sinεoj

By integrating this inequality along the curve Γ"', namely from θ0 to Ω or from π — Ω

to θθ9 we have at once

(6.19)
L \x\

\2N 1 \
( 1 \

xo\ \smεoj

By the notation (4.5),

(6.19-bis)

-<RΛ(x)
I TT(r\
I U\X)I

<e~

\χv

\2N

sinε0

3°. The estimation of the integrals (6.1) on the curve Γ(x0).

When I θQ + πβ | ^ π / 2 - Ω , we have Γ(xo) = Γ'. Hence, by virtue of (6.6) and (6.11),

we have at once
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(6.20)

and

(6.21)

U(x)\2N

-ds<-
U(xo)\2

Γ(xo)

10/c I τj( \ \2N

r(,o> \χΓ l2Nv1(κ)-3v2(κ)-l5κ \xo\

When \θo + π/2\>π/2-Ω, we have Γ(XO) = Γ'\JΓ". The starting point x'o of the

part Γ' is given by

(6.22)

f | X o | C ° s Ω V " , ΘO<Ω,
\ cos 0O /

|x 0 |cos(π — Ω)

COSθn

i{π_Ω)

The estimation of the integrals on the part Γ' is immediately obtained from (6.6) and

(6.11), where x0 should be replaced by the point x'o. We see from (6.14) that

x0

Hence, on the part Γ", we have for Ω>θ0

x'c

(6.23)
V COS θn

ll«ll

\ s i n ε 0 (

This inequality holds also for θo>π — Ω. Since

I x0I cos Ω
\xo\=- I c o s ^o I

we have

(6.24)

and

(6.25)

| cosg 0 |

c o s Ω \ x o \ c o s Ω \ x o \ s i n ε 0 \ x o \

1

sinε0 sinεn

On the other hand, we see, by utilizing (5.10), that
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- w ( — + /ΠogjcΌ

= exp -

(6.26)
x'o

1

<e

sin ε0 /

1

sinε0

1

(Θo>π-Ω),

(6.27)

V sin ε0

It follows from (6.6) and (6.16-bis) that

χ)\2N ,r \m
Jr(X0) 1*1

|2JV

where Mί has the form

/ j \ 2 J V | | o | | - l

\sinε 0 /
(6.28)

' v 2 N | | υ | | - l

10/c

sinε

2 Λ Γ | | o | | + l

π + -
lOic

sinε0

We have from (6.11) and (6.19-bis)

^K:)— 15K: \ s inε 0

1

1
|2JV

(6.29)
) Γ(XQ)

where M2 is given by

1

sin ε0 /

+ -
10K

π.e(2N+iyκ\\s\\

i

(6.30)

)

sinε0/
e(2N+l)π\\

sin ε0 /

\ ( 2 Λ Γ + l ) | | υ | | - l
_ | e(2N+l)π\\δ\\
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lOic \

\2Nv1(κ)-3v2(κ)-l5κ \sinε0

The inequality (6.27) with (6.28) and the inequality (6.29) with (6.30) prove Theorem

4. q.e.d.

7. Existence of a solution by the fixed point technique. To prove the existence of

solutions for the equations (3.10) by the fixed point technique (for example, Hukuhara

[1], [2]), we consider a stable domain of the form (4.7. + ), namely,

ίO<|x|<r'0'ω(argx), argx + y <π-ε0,

M<rϊX/ϊ(argx),

where the functions ω(τ), χβ(τ) and χ(N)(τ) are defined by (4.8), (4.9) and (4.10). Here the

constants rJJ, r'[ and AN, depending on TV, are to be so chosen as to satisfy inequalities

of the form

(7.2) rϊ max χβ(τ) < r[N), ( ANmax χ ^ τ ) rg max ω(τ) < r1 5

in the τ-interval [ — π/2 + ε0, 3π/2 —ε0] or [ — 3π/2 + ε0, π/2 —ε 0 ] , where the r(

0

N) and rψ]

are the same as those appearing in (3.11. + ).

We consider a family J^ of pairs {φ, φ} of functions φ(x, u, v) and ψ(x9 w, z;), which

are holomorphic and bounded in (x,u,v) for the domain (7.1-JV. + ) and, moreover,

satisfy inequalities of the form

(7.3) \φ(x9u,υ)\£KN\u\N, MxtUtV^Kne-^uF.

Here the constant KN, depending on N, must satisfy inequalities of the form

( KN - r'ό max ω(τ) < rψ], KN r'ό max ω(τ) zlNmax χ(Λ°(τ)< r(

2

N),

4LN -MrAN max z ^ \ τ ) < KN , 4LN M 2 J N maxχ <">(τ) < ^
τ τ

for the τ-interval. These inequalities will be obviously satisfied if we first take the value

of KN sufficiently large and then that of rJJ sufficiently small. Hence,
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(7.5)

Iφ(x, U(x), V(x))\ , U(x), V(x))\

1*1 ~4
κN\u(x)\N<rψ><\

LNM2

as long as the values of (x, U(x\ V(x)) belong to the domain (7.1-7V. + ).

Choose a point (x0, w0, v0) in the domain (7Λ-N. + ) in an arbitrary manner. Let

{U(x), V(x)} be the solution of the equations (4.1) such that {U(x0), V(xo)} = {uθ9 v0}.

By the help of Theorem 2 and by the definition of the KN, we see that the functions

^N(x) and &N(x) given by the expressions

(7.6)
) = FN(x, U(x), V(x), φ(x, U{x), V(x)), eΛ™ψ(x, U(x),

IΞGJVCX, U(X), V(X), φ(x, U(X), V(X)), eΛ(x)φ{x, U(x),

become holomorphic functions of x on the curve Γ(x0), because of the conditions (7.2).

Moreover, by virtue of (3.12), they satisfy the inequalities

The mapping 3~ is to be defined by

(7.8) y : {φ(x, u, v), ψ{x, u, v)} -+ {Φ(x, u, υ), Ψ{x, u, υ)} ,

where the Φ(x, u, v) and Ψ(x, u, υ) are given by the integrals

u{χ)2N

 / r ί , J

(7.9)

Φ(xo,uo,vo) =

Ψ{XO, i
U(x)2N

%{x)dx.

As was already proved, the integrals of the kernel functions are bounded. Therefore,

the integrals (7.9) are uniformly convergent with respect to (x0, u0, v0). This implies,

after a short reasoning, that the functions Φ(x, u, v) and ^(x, M, I?) are holomorphic in

(x, w, v) at the point (x0, w0, v0) and, consequently, for the domain (7.1-TV. + ). Moreover,

by virtue of (7.5), these functions are bounded by

(7.10)

Φ(x0, u0, vo)\^ l"o
\2N

\2N

Therefore, we see that {Φ, Ψ}e^. According to our standard analysis (for example,

Iwano [5, pp. 124—132]), we can show that the mapping ZΓ possesses a fixed point to

which corresponds a solution {ΦΉ{x, U(x), V(x)), ΨN(x, U(x), V(x))} of the equations (3.10).
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By the inequalities (3.13), we can prove that a solution of the equations (3.10) satisfying

the order condition

(7.11) Y=O( U(x)N), Z = O(e ~ Λix) U(x)N)

is unique.

In the proof of this assertion, the factor 1/4 appearing in (7.10) will be useful.

To prove this, assume that there exist two solutions. Denote by {Φ(x, U(x), V(x)),

Ψ(x, U(x), V(x))} their difference. Then we want to prove that, for any integer m,

(7.12,/w) I Φ(x, u, I O I ^ Γ K N \ u \ N , I Ψ(x9 u, v)\^-^KNe~mΛ^\u\N ,

which implies Φ(x,u,v)=Ψ(x,u,v) = Q. However, for m = l , the inequalities follow

immediately from (7.10). Assume that the inequalities (l.M.m) are satisfied. Then, we

see that the last one in the inequalities (7.5) gives

1 1

It follows from (3.13) and (7.10) that

\U(x)\2N

dx
Γ(xo) 2m + ]

which proves that the inequalities (7.12.m+ 1) hold.

Taking the transformations (3.2) and (3.8) into account, we see that the pair

{<3fN, &N} of the functions %(x, U(x), V(x)) and &N(x, U{x\ V{x)) defined by

(7.13)

u
1 - ΦN(x, u, v)

u

\-ΦN(x,u,v)'

,v + eΛ{x)ΨN(x,u,v)

becomes a solution of the equations (2.1), whenever the values of (%, U(x), V(x)),

considered as points in the (x, w, t;)-space, belong to the domain (7.1-TV.+ ). Hence, the

^ ( x , w, v) and 3?N(x, u, v) are considered as holomorphic and bounded functions of

(x, M, v) for a domain of the form

(7.14. \u\N<\x\ \υ\<bN,

where aN and bN depend on TV. However, our standard analysis, as was done in Iwano

[6], we have the following:
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PROPOSITION 4. The solution {%(x, U(x), V(x)\ 3?N(x, U(x), V{x))} is independent

ofN.

Denote this solution by {Φ(x, U(x), V{x)\ Ψ(x, U(x), V(x))}. Then, we have the

following:

PROPOSITION 5. The functions Φ(x, u, v) and Ψ(x, w, v) become holomorphic in

(x, u, v)for a domain of the form

(7.15. + ) a r g x + — < π — ε 0 , 0 < | x | < α o , \u\<b0, \v\<bo.
2

a0 and b0 are small positive constants independent of N.

Indeed, let (x0, w0, v0) be an arbitrary point in the domain (7.15. + ). Then, choose

a large positive integer N such that | u0 \N < \ x01. By the independence of TV, we observe

that the relations

(1 161 Φ(x u υ) = &/Jx u v) Ψ(x u υ) — Ψ(x u v)

hold identically in a neighbourhood of the point (x0, w0, v0). This proves our assertion.

Therefore, the functions Φ(x, u, v) and Ψ(x, w, v) admit Taylor series expansions (in

u and consequently) in u and v, which coincide with the power series appearing in the

formal transformation (2.2). This completes the proof of Theorem A.
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