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Abstract. The aim of this paper is to describe the Riemann-Roch map on affine
schemes associated with Noetherian local rings. The Riemann-Roch theorem on singular
affine schemes is one of the powerful tools in the commutative ring theory. Our main
theorem enables us to calculate the Riemann-Roch maps under some assumption.

1. Main theorem. Let k be a field and R=@i>QRi a graded Noetherian ring
which satisfies R0 = k and R = R0\_R{\, i.e., R is a graded A -algebra generated by Rx.
We denote by m the homogeneous maximal ideal @i>0Rt.

For an abelian group M, we write MQ for M®z Q, where Z (resp. Q) is the ring
of integers (resp. the field of rational numbers).

Let X=Pτo](R) be a smooth projective variety over k of dimension d. We denote
by A^(X)=φd

i = 0Ai(X) the Chow group of X. If we put CHi(X) = Ad_i(X) for
/ = 0, . . ., d, then CH(^f)= ©f= oCH ί(^0 has the structure of a commutative ring (since
X is smooth), and is called the Chow ring of X. (We refer the reader to [5] for definitions
and basic facts.)

We put c = cί(0x(l)) n [J]eA d _ 1(X)Q = CH1(X)Q, where c^Θ^X)) denotes the first
Chern class of the invertible sheaf Θx{\), i.e., c stands for the Carder divisor
corresponding to the line bundle Θx(\). Let

be the natural surjective ring homomorphism ((c) is the principal ideal of CH(X)Q

generated by c), and

(1.2) τ: K0(/ίm)β -

the Riemann-Roch map for the affine scheme Speci?m (cf. [5, chap. 18]), where K0(Rm)
is the Grothendieck group of finitely generated i?m-modules and A^Spec iΐm) is the
Chow group of Spec i?m.

Our main theorem is the following:
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THEOREM (1.3). In the notation as above, we have an isomorphism of graded modules

(1.4) ξ: CH(I)β/(c) -> A,(Spec RJQ

such that ξπ(td(Ω%)) = τ([Rm~]) is satisfied, where td(Ω^) is the Todd class of the locally

free sheaf Ωv

x, and [7?m] is the element in K0(Rm)Q corresponding to Rm. Here, ξ=φd

iz=oξi

is an isomorphism of graded modules such that

ξi
( * }

We have the following corollary immediately from Theorem (1.3).

COROLLARY (1.6). In the notation as in Theorem (1.3), the following are equivalent:

(1) τ([/?m]) is contained in Ad + 1(SpecΛJQ.
(2) td(Ωί)=lmod(c).

We shall prove Theorem (1.3) in Section 4. The next section is devoted to motivation.
By using Theorem (1.3), we show in Section 3 that τ([v4]) is not contained in
Adim^(Spec^4)Q when A is a Gorenstein local ring defined in (3.3). (As far as the author
knows, it is the first example of a Gorenstein ring such that τ([A~})$AdimA(SpecA)Q.)

2. Motivation. In the present section we shall explain why we would like to
prove Theorem (1.3) or what we want to do. The reader can skip this section because
the results introduced here are not used after this section.

Let A: be a perfect field of characteristic p (> 0) and A a complete Noetherian local
ring of dimension r with coefficient field k.

Let / : A^A be the Frobenius map (i.e., f(x) = xp for any xεA). Then / is a
(module-)finite morphism since A is a complete local ring whose coefficient field is
perfect. We denote by fe: A -+A the e-th iteration of the Frobenius map /, i.e., fe(x) = xpe

for XGA. We write eA for the ^4-module A whose module structure is given by fe.
Let K0(v4) be the Grothendieck group of finitely generated ^-modules and we write

K0(A)Q for K0(A) ®z Q F°Γ a finitely generated ^4-module M, [M] stands for the
element in K0(A)Q corresponding to M.

If a ring homomorphism g:B^>C is (module-)finite, every finitely generated C-
module naturally has a structure of a finitely generated 2?-module. Therefore we can
define a group homomorphism g* : K0(C)Q->K0(2?)Q. Since the Frobenius map / :A^A
is finite in our case, we have an endomorphism / * : K0(A)Q-+K0(A)Q.

We put

(2.1) LiK0(A)Q = {ceK0(A)Q\f*(c)=pic}

for i=0, 1, . . . , r, i.e., L^Ko^)^ is the eigenspace of / * with eigenvalue p\ Then we
can easily prove
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(2.2) K 0 ( Λ ) Q = e ^ 0 L £ K 0 ( Λ ) β

by induction on the dimension of cycles. Hence we have a unique representation

(2.3) lA] = qr + qr-i+ -' +q0, (<7< e LtK0(A)^ .

Such a decomposition of [v4] inherits various properties of our ring A.

Our aim in the present paper is to study how to decompose [^] as above.

Since (f:¥)e(qi)=pieqi for / = 0, 1, . . . , r (cf. (2.1)), we have

Therefore, it is immediate to see

(2.4) 4 r = l i m _ L [ M ] in K0(A)Q.

Suppose that A is a regular local ring. Then 1^4 is an ,4-free module (of rank/?1")

by Kunz's theorem [10]. Hence we get f*([.A"]) = [1A']=pr\_A'], and therefore

\_A~]eLrK0(A)Q. That is to say, \_A~\ = qr and qr-ι= ' = qo = 0 are satisfied. (When

A is a regular local ring, we immediately obtain K0(A)Q = Q \_A~\ since the global

dimension of A is finite. Furthermore it is easy to see K0(y4)Q = L r K 0 (^) Q and

When A is a complete Noetherian local ring of characteristic p > 0 whose coefficient

field is perfect, we obtain a natural decomposition as (2.2) or (2.3) using the Frobenius

endomorphism. As we shall see below, however, we can make a decomposition as (2.2)

or (2.3) over an arbitrary Noetherian local ring A (under a mild condition) by using

localized Chern characters, the singular Riemann-Roch theorem [5] or Adams opera-

tions (cf. Gillet-Soule [6], [7]).

In the rest of this section we merely assume that our ring A is a homomorphic

image of a regular local ring unless otherwise specified. {A does not have to include a

field.) Put r = dim A.

Letting AJie(Spec A)Q = ®r

i = 0 A f(Spec^)Q be the Chow group of the aίfine scheme

Spec A with rational coefficients, we can construct a natural isomorphism

(2.5) τ K o ί ^ β - ^ A ^ S p e c ^ β

called the Riemann-Roch map (cf. [5]). When A is a complete Noetherian local ring of

characteristic p > 0 with perfect coefficient field, it is easy to see that

(2.6) τ" W S p e c A)Q) = I^KoίΛfo

is satisfied for each /. That is to say, in order to study the decomposition as (2.2) or

(2.3), we have only to investigate the Riemann-Roch map (2.5), and therefore, we do

not have to assume that A includes a field of positive characteristic.

Put
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(2.7) <iΛ]) = qr + qr.1+ + tf0 fee A, (Spec A)Q).

Our aim is to get the decomposition (2.7).

The following are basic facts about the decomposition (2.7). We omit the proof.

REMARK (2.8). Let A be a homomorphic image of a regular local ring.

(1) We have qr φ 0. (By [5], qr = [Spec A~\ e Ar(Spec A)Q is satisfied, where [Spec A]

is the cycle corresponding to Spec A.)

(2) If A is a complete intersection, then we have qr-χ= =qo = 0 (cf. [5, Cor.

18.1.2]).

(3) Assume that A is equidimensional. If the dimension of the non-Cohen-

Macaulay locus of A is /, then we get

where KA denotes the canonical module of A. In particular, when A is a Cohen-Macaulay

ring, we have τ([KA]) = qr — qr_ί+ ••• + ( — l)ι</r_ί+ . Therefore, if A is a Gorenstein

ring, we get qr_1=qr_3 = qr-5= = 0 because ,4 is a Cohen-Macaulay ring with

(4) Suppose that A is a normal domain. Then we have a natural isomorphism

φ: Ar_1(SpecA)Q-^C\(A)®zQ such that ^ f o . ^ 0 1 ( ^ / 2 holds ([12, Lemma 3.5]).

Here c\(KA) stands for the isomorphism class which the reflexive A -module KA belongs

to. Especially, in this case, qr_1=0 is satisfied if and only if cl(KA) is a torsion element

of C\(A).

It seems to be natural to ask the following question:

QUESTION (2.9). When does τ([A]) = qr hold? (When A is a complete Noetherian

local ring of characteristic p > 0 with perfect coefficient field, the equality τ([^4]) = qr

holds if and only if \}A] =prlA] is satisfied in K0(A)Q (cf. (2.6)).)

As we saw in (2) of Remark (2.8), τ(J_A]) = qr is satisfied if A is a complete

intersection. Furthermore, by (4) of Remark (2.8), we know qr-1φθ if A is a normal

domain whose canonical class cl(A^) is not a torsion element in its divisor class group

C\(A), and therefore, we can easily make examples of Cohen-Macaulay normal rings

with #Γ_i # 0 . Hence we would like to discuss Question (2.9) in the case where A is a

Gorenstein ring. By using the main theorem (Theorem (1.3)), we shall construct an

example of a Gorenstein ring with qr_2Φθ in Section 3 (cf. (3.3)).

In the rest of this section, we state some properties of a local ring with τ([AJ) = qr.

We can find many examples of Noetherian local rings which satisfy τ([A~]) = qr by

Corollary (1.6).

REMARK (2.10). (1) As Roberts [16] pointed out, if a Noetherian local ring A

satisfies τ([v4]) = #r, then the vanishing theorem holds, i.e., Σ.(—l)ΊA(Torf(M, N)) = 0
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is satisfied for finitely generated ^-modules M and N such that pdAM< oo, pάAN< oo,

lA(M®AN)<co and dim M + dim TV < dim .4.

Therefore, if ^ is a complete intersection, then the vanishing theorem holds (cf.

Roberts [16] and Gillet-Soule [7]) since τ{[A]) = qr is satisfied by (2) of Remark (2.8).

We note that there are many examples of Noetherian local rings such that the vanishing

theorem holds but τ([A])Φqr (see [16], [12]).

(2) Assume that A is a complete Noetherian local ring of characteristic p>0

whose coefficient field is perfect.

Let d: F-+G be an ,4-linear map of free .4-modules. By choosing free bases of F

and G, we denote by (rff</) the matrix corresponding to the ^4-linear map d. For a positive

integer e, let ed: F ^ G denote the v4-linear map corresponding to the matrix (dff). Let

F . : 0 ^Λfi-i-^—^fo -0

be a complex of finitely generated free yl-modules such that H^F.) has finite length for

every /. Choosing bases of Fo,..., Fh we define a complex Fle] by

It is easy to see that Fle] is certainly a complex and is uniquely determined, i.e., the

construction does not depend (up to isomorphism) on the choice of the bases of

Fo, . . . , i v Furthermore Hi(Fle]) has finite length for every /. (As is easily seen, Fle]

coincides with F.® A

eA regarded as an ev4-free complex.)

In the notation as above, Szpiro [20] conjectured the following:

CONJECTURE (2.11). Put r = ά\mA. Then

It is now known that there exists a counterexample to the above conjecture. Indeed,

let k be a perfect field of characteristic p ( > 0) and put

It is easy to see that B is a Cohen-Macaulay normal domain of dimension 3. Modifying

the famous example due to Dutta-Hochster-MacLaughlin [4], one can construct a finite

£-free complex G. such that ΣMHi(G™))*P3ΣMHi(G'))
Here assume that A is an r-dimensional Noetherian local ring which satisfies

τ(\_A~\) = qr. Then we obtain [eA~]=pre[A~] in K 0 ( ^ ) Q for every e. Then, it is easy to see
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(2.12)

As a result, Szpiro's conjecture (2.11) is true if τ([A]) = qr is satisfied. Therefore, for
example, when A is a complete intersection, that is true (by (2) of Remark (2.8)) as it
has been already pointed out by Gillet-Soule [7, Theorem B].

In the notation as in Conjecture (2.11), we put

(2.13) DA(F.)= lim - ^ Σ ( - l)^(^ f(fΐβ ]))
e^oo pre i

and call it the Dutta multiplicity. It is known that DA(F.) is a rational number (cf. Dutta
[2]). In general, DA(F.) need not coincide with ^ ( - l y / ^ - ί F . ) ) (see [4]). By (2.4),
we have

in general. (Therefore, once τ([A~]) = qr is satisfied, we immediately get DA(F.) =
Xt (— l)7yl(//j(/Γ.)).) Geometrically, the Dutta multiplicity is nothing but the localized
Chern character (cf. [5]), i.e., we have

DA(F.) = c h l ^ m ) ( f . ) n [Speφί)]

by [17], where m is the maximal ideal of A. Calculation of localized Chern characters
plays important roles in studying intersection multiplicities.

3. An application. In this section, using Theorem (1.3), we shall make an example
of a Gorenstein ring A of dimension r with qr_2 =£0, as we announced before. Here,

(3.1) τ : K 0 ( Λ ) β ^

is the Riemann-Roch map and we put

(3.2) τ(|>Γ|) = <7r + <7r_1+<7r_2+ -- +qθ9

As far as the author knows, it is the first counterexample to Question (2.9) when A is
a Gorenstein ring. (In the present section we shall prove that #Γ_2 does not coincide
with 0 when

where R is the ring defined in (3.5).)
Let A: be a field. Let n and m be positive integers such that n<m. Furthermore, let

r and d be the integers satisfying r = d+ 1 =n + m+ 1. We denote by Pn (resp. Pm) the
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projective space over k of dimension n (resp. m), i.e., put Pn = Proj(A:[x0, . . . , x j ) (resp.

P m = Proj(fc|>0, . . . , c j ) ) . Setting X=Pn x Pm, let

(3.4) Z c L > p » ι m + π + m

be the Segre embedding. Obviously X is a smooth projective variety over k of dimension

d. Let R be the homogeneous coordinate ring of the embedding (3.4), i.e.,

(3.5) R = k[{XiJ\i = 09...,«; 7 = 0, . . . , /n}]//2(xy)

where kl{xu \ i = 0, . . . , n j=0, . . . , m}] is the polynomial ring with variables

{xtj I / = 0 , . . . , n 7 = 0 , . . . , m) and I2{Xij) is the ideal generated by all 2 by 2 minors of

the n+\ by m + 1 matrix (x^ ). Then it is well-known that the graded ring R is a

Cohen-Macaulay normal domain of dimension r. Furthermore, it is a Gorenstein ring

(resp. complete intersection) if and only if n = m (resp. n = m=\) is satisfied (cf. [1]).

The Chow ring of the projective spaces are well-known. Indeed, we have an

isomorphism of graded rings

where a = c1(Θpn(\)) (cf. [5]). We set degα= 1. In the same way, we get an isomorphism

where b = cι(Θprn(\)).

In this case, it is known (cf. [5]) that the Chow ring of X= Pn x Pm is isomorphic

to the tensor product of CH(P") Q and CU(Pm)Q. Therefore, we get

(3.6) CH(P" x Pm)Q = C H ( P % ®QCU(Pm)Q = Q\_a, bl/(an+\ bm + *)

Let/?!: X->Pn a n d ^ 2 : X->Pm be the projections. Then the line bundle Θx{\) with

respect to the Segre embedding (3.4) coincides with pf(9pn(\)®C)χpξΘpm(\). Hence

we obtain

(3.7) c1(Θx(l)) = a + beQla,by(an + \bm+1) = CH(PnxPm)Q.

Let A be the local ring of R at the homogeneous maximal ideal (x o | i= 1 , . . . , n

7 = 1 , ...,m). As we noted before, A is a Cohen-Macaulay local ring of dimension

r = n + m+ i. Then, by Theorem (1.3), we have an isomorphism ξ of graded modules

such that ξπ(td(Ωx)) = τ([A]\ where

^ U CH(X)Q/(a + b ) ^ A*(Spec A)Q ^ - K0(A)Q .

In order to determine the decomposition (3.2), we shall investigate π(td(Ωχ)) e CH(X)Q/

(α + ft).
Since n is at most m, we have an isomorphism of graded rings as
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(3.8)

Then we note that the composite map

(3.9) CU(X)Q = β[α, fo]/(α"+ \ bm+1) — CH(Λf)β/(β + b) = Qίa]/(an+1)

is given by π(a) = a, π(b) = — a.
We shall calculate the Todd class of the tangent bundle of X. The following results

are immediate consequences of the definition of Todd classes (cf. [5, chap. 3]).

REMARK (3.10). (1) If the sequence

0 -• M1 -• M 2 -• M 3 -• 0

of locally free sheaves is exact, then td(M2) = td(M1) td(M3) holds.

(2) Let L be an invertible sheaf on X and put c = c1(L)n[Z]GCH1(Ar)Q. Then
we have

td(L) = — = l + i - c + — c2+ ••• .
\-e~c 2 12

(c/(l -e~c) is contained in CK(X)Q= ®d^0CR\X)Q, since CHl(X)Q = (0) for /»0. Note
that td(L) = 1 e CH(X)e if c = 0).

Since X is the fibre product of Pn and Pm, we have

(3.11) Ωx=p*Ωpn®p*Ωprn.

Furthermore, we have the following famous exact sequence of locally free sheaves on Pn\

(3.12) 0 -> Ωpn -> ̂ p n ( - l)w + 1 ^ d?pn _ o .

We refer the reader to [8] for basic facts on algebraic geometry. Take the inverse image
by pf of (3.12) and take the tf^-dual. Then we obtain the following exact sequence of
locally free tf^-modules:

(3.13) 0 -> 0 , ->/>f <M1)" + 1 -Pfβ?» - 0

In the same way, we get

(3.14) 0^&x-*p*2&pm(ir + 1^pϊΩϊm-+Q.

Then by (1) in Remark (3.10), (3.11), (3.13) and (3.14), we have

(3.15) td(Ωχ) = td(p?ΩP

/

n) td(p%ΩP

/

rn) = td(p?Θpn(l))n+1 td(pfΘPm(l))n

\m+l

\-e~
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Then, by (3.9) and (3.15), we have

(3.16) π(td(βί)) = ( a

\-e~a \\-e

-a2 V + 1 / -a

l-ec

It is easy to see that

(3-17) ί-^-) = (Σ
l-e'J \kto(k+l)\

By the equations (3.16), (3.17) and (3.18), we get

By the isomorphisms (3.8) and (1.5) in Theorem (1.3), we have ξ( — (m — n)a/2) = qr_ί

(see (3.2)). Here note that, if m is bigger than n, then —(m — n)al2eCH(X)Ql(a + b) =
6M/( f l B + 1) is n o t equal to 0. Therefore qr_ίΦ0 if and only if nΦm. (Since A is a
Cohen-Macaulay normal domain of dimension r, we have r̂r _ x =0 if and only if the
canonical class cl(Λ^) is a torsion element in the divisor class group C\(A), as we saw
in (4) of Remark (2.8). In fact, A is a Gorenstein ring if and only if n = m is satisfied.
Furthermore, when nφm is satisfied, cl(Λ^) is not a torsion element in Cl(v4). We refer
the reader to [1] for the ring-theoretic properties of A.)

Assume n = m, i.e., A is a Gorenstein ring. Then we have

Therefore, if n is at least 2, then -(n+l)a2/l2φ0eCH(X)Q/(a + b) is satisfied. Hence,
when n = m>2 is satisfied, we get qr-2=

zζ( — 0*+ l)α2/12)/0.
That is to say, in this case, A is a Gorenstein ring with qr_2Φ§.
In the case n = m=l, A is a complete intersection. Therefore, by (2) of Remark

(2.8), τ([AJ) coincides with qn i.e., td(ΩJ)= 1 eβ[α]/(fl2) is satisfied.
In the case where a local ring 4̂ has an isolated singularity, Theorem (1.3) sometimes
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enables us to calculate τ([^]). If the singular locus has positive dimension, however, it

is very hard to calculate

4. Proof of the main theorem. In the present section we shall prove Theorem (1.3).

To begin with, we shall investigate the relation between A^Speci?) and

A ^ S p e c / ^ ) . The following lemma must be well-known, but we shall give a proof

because the author does not know an adequate reference.

LEMMA (4.1). Let T= ®i>0 Tt be a Noetherian graded ring such that To is afield.

(T need not coincide with ^ [ Γ J . ) We denote by n the homogeneous maximal ideal

0 . > 0 Tt. Then we have an isomorphism of graded modules

φ: A^Spec T) -> A^Spec Tn)

such that, for each prime ideal p in T,

,4.2, ί,:Spec»Γ,rt]) { ;
I 0 otherwise

is satisfied.

PROOF OF LEMMA (4.1). We define Ratj( —) and Z t ( —) as in [5, Chap. 1]. For

each /, we define φt\ Zf(Spec r)-»Z f(Spec Tn) by

(4.3, ΦΛS^TimJ^ ^
I 0 otherwise.

Note that, if p is a prime ideal of T such that dimT/p7"=/ and p^n, then we have

dimΓn/pΓn = /. Hence φt is well-defined and is surjective. Let q be a prime ideal in T

such that dimΓ/q = / + l . For deQ(T/q)\{0}, we have

0 otherwise,

where Q(T/q) is the field of fractions of Γ/q, and divS p e c ( Γ / q )(<i) (resp. divS p e c ( Γ π / q T n )(έ/))

is an /-cycle defined by

divSpec(r/q)(^) = Σ ° rd S p e c ( Γ / p ) (</) ' [Spec(Γ/p)]
htp/q=l

( r e s P dίvS p e c ( Γ π / q Γ i i )(rf) = Σ ord S p e c ( Γ i t / p Γ i t ) ( ί/) [Spec(Γn/p Γ n )]

\ htpΓπ/qΓn=l

(cf. [5, Chap. 1]). Therefore

(4.4) ^(RatiίSpec Γ ) ) = R a t ί ( S p e c Tn)

is satisfied and we get an induced map φi: A^(Spec r )^A t (Spec Tn) which makes the



Ratt. (Spec

1
Rat (Spec

T) -> Z, (Spec

I *
-> Zj(Spec

T) -> A,(Spec T)

j ,
-» A,(Spec Tn)

- 0

- • 0 .
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following diagram commutative for each /:

0

(4.5)

0

Put φ = 0 t ^ . By definition (cf. (4.3)), it is easily checked that φ satisfies (4.2).
Next we shall prove that φ{ is an isomorphism for each /. Since φt is surjective, so

is φι. Therefore we have only to show that φt is injective for each ί. By (4.4), we have
only to show the following:

CLAIM (4.6). In the notation as in Lemma (4.1), let p be a prime ideal with dim T/p = i
such that pφn. Then we have [Spec(Γ/p)] = 0 in A^SpecΓ).

PROOF OF CLAIM (4.6). Let p be a prime ideal with dimΓ/p = / such that pφn.
We denote by p* the ideal generated by all homogeneous elements contained in p. Then
it is easy to see that p* is a homogeneous prime ideal with dimΓ/p* = / + l . Let
/ : Spec(77p*)-»Spec T be the closed immersion. Then we get an induced homo-
morphism /^: A5|c(Spec(Γ/p*))^Asje(SpecΓ) such that /5|c([Spec(Γ/p)]) = [Spec(Γ/p)]
(cf. [5, Chap. 1]). Therefore, replacing Γby T/p*9 we may assume that Γis an integral
domain and p is a prime ideal with htp = 1 such that pφn.

Suppose that p is a prime ideal in a Noetherian graded domain T such that ht p = 1
and pφn. Then note that p* coincides with (0). Let T be the normalization of T. It
is well-known that Γhas the natural structure of a graded ring, i.e., Γis a graded ring
0 . ^ o fj such that To is a field and Ti^Ti for each /.

Since T^ Γis (module-)finite, the associated morphism g: Spec Γ-»Spec Γis proper.
Hence we have an induced m a p ^ : A^Spec f ^ A ^ S p e c T) (cf. [5, Chap. 1]).

On the other hand, T®τ Tp is the normalization of Γp. Put

(4.7) M= {a I a is a non-zero homogeneous element of T} .

Since p* = (0), we have p n M= 0. Therefore Tp is a local ring of T\M~ *]. It is easy to
see that Γ [ M - 1 ] is isomorphic to a one-dimensional Laurent polynomial ring over a
field. In particular, Tp is normal. Hence we have Tp = f®τ Tp. Therefore, there is only
one prime ideal p (in T) lying over p. Furthermore,

(4.8) Γp = 7>

is satisfied.
By the definition of g^ (cf. [5, Chap. 1]), we obtain

^([Spec(f/p)]) = [β(f/p): β(Γ/p)] [Spec(Γ/p)] ,

where Q(-) is the field of fractions. By (4.8), [β(f/p): β(77p)] = l is satisfied. Hence
we have gf*([Spec(f/p)]) = [Spec(Γ/p)]. Therefore we have only to show [Spec(f/p)] =0
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in A^Spec T). Replacing T by f, we may assume that T is a normal domain.

Suppose that T is a normal domain and p is a prime ideal in T such that ht p = 1

and pφn. Put r = dimT'. By definition, we may identify A r_x(Spec T) with the divisor

class group Cl(7). Hence it suffices to prove p ~ T as a Γ-module.

The rest of this proof is due to Kei-ichi Watanabe. The author thanks him for

his important suggestions.

Since Γ [ M - 1 ] is a principal ideal domain (cf. (4.7)), there exists an element a in

p such that p Γ [ M " 1 ] = α Γ [ M ~ 1 ] . Take the minimal primary decomposition of aT\

(4.9) aT=p nq1n n q r .

If aT=p, then there is nothing to prove. Suppose r > 0 . qf is a homogeneous primary

ideal for each /, since p Γ [ M ~ 1 ] = α Γ [ M ~ 1 ] . Put Vi = yfc\i. Since Tis normal, there is a

positive integer n{ such that qf coincides with the «Γth symbolic power pίn<) of pt. Let

& be a homogeneous element such that

< ) ( ) + 1 ) u ••• u p r

( n - + 1 ) ) .

Take the minimal primary decomposition of bT;

(4.10) bT=p^n ••• np r

( # I" )nq r + 1n ••• n q t .

Then, by (4.9) and (4.10), we have

c l ( p ) = - d ( q 1 ) - ••• -cl(qΓ) =

where, for a divisorial ideal /, cl(7) stands for the isomorphism class (in C1(Γ)) which

/belongs to. Put / = q r + 1 n nq f . Then /is a homogeneous ideal, since b, q r + 1 , . . . , c\ι

are homogeneous. By the construction of /, we have cl(p) = cl(7). Therefore p is

isomorphic to / as a Γ-module. Then pTn coincides with Tn because pφn. Therefore

we have ITn~pTn=Tn. Hence we get

(4.11) dimΓ/n(//n/) = άimTn/nTn(ITJnITn) = άimTn/nTn(Tn/nTn) = 1 .

Since / is a homogeneous ideal, the equality (4.11) implies that / is a principal ideal.

Therefore p is isomorphic to T. q.e.d.

Now we start to prove Theorem (1.3). We define /c, R, m, X as in the beginning

of this paper.

PROOF OF THEOREM (1.3). Put R = k[xθ9..., xj/l, where fc[x0,..., x j is the

graded polynomial ring with deg(x f)= 1 for / = 0 , . . . , n and / is a homogeneous ideal.

Consider the morphisms

X=Pτoj(R) c^Proj(/r[x 0 , . . . , x J ) = P " = V+(xn + 1) ^Pn+ι =Proj(/c[x 0,. . ., xn + j).

Here V+(M) stands for the closed subscheme of a projective space defined by a set of

homogeneous polynomials M and we denote by D+(M) the complement of V+(M).
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We put ί = (0, . . . , 0 , l ) e P " + 1 and X= V+{Ik[_x0,..., x π + 1 ] ) <^Pn+1. Since X=Jtr\

V+(xn+1)^Pn+1, we have

Then we have

where J=(f(xo/xn+1, ..., xjxn + 1)\fel). Therefore we have an isomorphism

X\X~SpacR of A>schemes. Let /: Xci^XXl/} be the inclusion and η: X\{ή-^X

t h e p r o j e c t i o n , i .e., η((sθ9 ...,sn+ί)) = (s0, . . . , sn):

Then it is easy to see that η coincides with the vector bundle Specx(Sym 0 X ( — 1))->X

and / is its zero section. (Here Specx(Sym 0 X ( — 1)) is the vector bundle on X whose

sheaf of sections coincides with 0χ(l).) In particular, η is a smooth morphism of relative

dimension 1 whose relative tangent bundle is isomorphic to η*Θx(\). Let /: X-*X,

it\ {t}->X, j: X\{t}-+X, k\ X\X^X be immersions. Note that η, j and k (resp. /

and ίt) are flat (resp. proper) morphisms. Then we have a diagram

0

(4.12)

jft).

= Aφ(/) A#(SpecΛ)

where the vertical and horizontal sequences are exact. Since η is a vector bundle, η * is

the direct sum of isomorphisms A ; (X)->A i + 1 (Z\{ί}) (i = 0 , . . . , d) and A 0 (T\{/}) =

(0) is satisfied. Taking the homogeneous component of degree 0 of (4.12), we obtain

the following diagram:
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(4.13) A0(*)-ίϊ- A0(X) - ^ A0(X\X)

A o (0 A0(SpecR)

Since the sequences in the diagram (4.13) are exact, A0(Speci?) is generated by

A:*(zί)i|s([/]) = [Spec(Λ/m)]. Since [Spec(i?/m)] is a torsion element of A0(Spec R), we

have

(4.14) A0(Spec R)Q = A0(Spec Rm)Q = (0)

by Lemma (4.1).

Let v be a positive integer and take the homogeneous component in degree v of

(4.12).

0

I
(4.15)

Av{X)-^> AV(X)

0 Av(SpecR)

Here note that η* is an isomorphism. By the diagram (4.15), we have an exact sequence

':*°*} V > AP(^\Z) . 0 .

Since l*=j*i* (cf. [5, Proposition 1.7]), we obtain (rj*)~1j*i^ = (rj*)~1l^. Furthermore,

by [5, Example 3.3.2], (η*)~1l^(oc) = c1(Θx(l))n(x is satisfied for any oceAv(X) since

77: .?\{ί}—^JΓ is the vector bundle whose sheaf of sections coincides with Θx(\).

Therefore, for each v > 0, we have the following exact sequence:

>Aυ(X\X)

Put c = c1((P j r(l))eA< f M(Jί0 = CH1(J!0. Let π be the map (1.1). By the exact sequence

(4.16), we have an isomorphism ξ'd-v + 1: CHdv+ί(X)Q/c CHd-υ(X)Q-+Aυ(X\X)Q

such that
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(4.17) WΓV^-.+ î -Γ+i

holds, where πd_v+1 is the homogeneous component of π of degree d—v+ 1. On the
other hand, by Lemma (4.1), we have an isomorphism

φ,: Af(Spec R)Q -> A;(Spec Rm)Q

for i = 0,. . .,r. Put

(4-18) ξί = ^ ;

for i = 0,..., r. Then & satisfies (1.5) in Theorem (1.3) (cf. (4.14)).
put ξ=e; ξt, ξ'=®t ξi and ^ = e > , -
Next we shall prove £π(td(ΩJ)) = τ([/?m]), where τ is the Riemann-Roch map (cf.

(1.2)). By the Riemann-Roch theorem ([5, Chap. 18]), we have a commutative diagram

I η * t d ( T ' ) ' ;*

(4.19) Q

I A * I fc*

— ^ ^ A,(SpecΛ)β

where τx, τjf\{(|, τ ; and τ j \ X are the Riemann-Roch maps ([5, Chap. 18]). Here note
that

(4 m

Since η: X\{ή->X is the vector bundle whose sheaf of sections is &x{\), the relative
tangent bundle T, coincides with η*Θx(\). Then, by (4.19) and (4.20), we have

(4.21) τί M ( ,([<^ M l } ]) = r? χ{()θ7 *([(P J ) ) = td(T,) n η *τx&&xl)

(4.22)

(4.23)

By (4.21), (4.22) and (4.23), we get
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(4.24) η *([td(tfx (1)) n τ x ( M ) L - ΰ

(4.25) J*(ίτχ(lΘmv) = [τj?N

(4-26) k*(ίτχ(ί&mv) =

where [ —]„ denotes the homogeneous component of degree υ. By the equations (4.24),

(4.25) and (4.26), we obtain

(4.27) k*(j*)~ *η*([td(0jr(l)) n ^ ( [ 0

We define rational numbers dί9 d2,... by

1 —

where ^ = ̂ ( ^ ( 1 ) ) . It is known that dx = 1/2, d2 = 1/12, rf3 = 0, rf4= -1/720,. . . ([5,

Example 3.2.4]). Then we have

(4.28)

By the exactness of (4.16), we get

(4.29) / * * 0 > )

Then, by (4.27), (4.28) and (4.29),

(4.30) [τ([^])] y = k*(j*) ~ ̂ * ( C τ χ ( [ ^ ] ) ] y - 0

is satisfied. By (4.14), (4.17) and (4.30), we get τ(lK]) = ξ'π(τx([Θx])). Since Xis smooth

over k, τx([_@χΐ) = td(Ωx) holds by the definition of the Riemann-Roch map τx (cf. [5,

Chap. 18]). Therefore we obtain

(4.31) τ&K]) = ξ'π(td(Ωx)).

Let S=k[x0,..., x j be a polynomial ring. Recall that R is a homomorphic image of

S, i.e., R = S/I (I is a homogeneous ideal of S). Let

be a minimal free S-free resolution of R. Then, by definition,

(4.32) τ([Λ]) = chiKSftF.) n td(O£/k) n [Spec S]

where c h ^ ^ ^ F . ) is the localized Chern character ([5, Chap. 18]). Since the differential

module Ωs/k is a free S-module, we obtain td(Ω^/fc) = 1. On the other hand, by definition,

we have
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(4.33) τ ( [ Λ J ) = chlltf^SF. ®s Sm) n [Spec 5 m ]

where m = (x0, .., xn). By (4.32), (4.33) and the commutativity of the diagram

I
A*(SpecS)Q _ ^ ! ^ Λ A ^ S p e c ^ Q

A*(SpecSm)β

 C h s £ e c R l " ( j F ® ^ J > /

we get ψτ([K]) = τ(£Rm~]), where ψ's are maps defined in Lemma (4.1). Then, by (4.18)

and (4.31), we obtain

τ([* m ] ) = Ψ<LK]) = ψξ'π(td(Ωϊ)) = ξπ(tά(Ω^x)) .

q.e.d.
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