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Abstract. We shall construct a periodic strong solution of the Navier-Stokes
equations for the prescribed external force in unbounded domains.

Introduction. The purpose of this paper is to show that if the incompressible fluid
in unbounded domains is governed by the periodic external force, the Navier-Stokes
equations have a periodic strong solution with the same period as the external force.
Let Ω be a domain in Rn («>3), not necessarily bounded, with smooth boundary dΩ.
Consider the following Navier-Stokes equations in Ω:

du A

— Δw + w Vw + V/? = / , xeΩ, teR,
ot

(N-S)
divw = 0, xeΩ, teR,

where u = u(x, i) = (wx(x, ί ) , . . . , un(x, t)) and p=p(x, t) denote the unknown velocity
vector and pressure of the fluid at point (x, t)eΩxR, respectively; while / =
f(x9 t) = (f1(x, ί), . . ., /n(x, t)) is the given periodic external force.

Under some restrictive conditions, Serrin [20] gave a criterion for the existence of
periodic solutions of (N-S) when Ω is a three-dimensional bounded domain whose
boundary moves periodically in time. Kaniel-Shinbrot [11] considered a simpler case
such as bounded domains whose boundary is fixed in time and realized the criterion
of Serrin. Having introduced the notion of reproductive property, they showed the
existence of periodic strong solutions with periodic small forces /. In two-dimensional
bounded domains, Takeshita [23] obtained the same result as Kaniel-Shinbrot [11]
without assuming the smallness of /. The original problem posed by Serrin had been
treated by Morimoto [19] and Miyakawa-Teramoto [18] who showed the existence of
periodic weak solutions. Later on, Teramoto [25] constructed periodic strong solutions
in a situation such that the boundary moves slowly in time.

All of these results are obtained in two- or three-dimensional bounded domains.
On the other hand, few results are known in unbounded domains. Recently, Maremonti
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[15], [16] showed the existence of periodic strong solutions in the three-dimensional
whole space R3 and the half space /? + , respectively. However, the result corresponding
to exterior domains has not been obtained up to the present. The main difficulty in
unbounded domains stems from the lack of exponential decay in time for solutions to
the initial value problem of (N-S). Indeed, Serrin [20] and Kaniel-Shinbrot [11] made
full use of the fact that ||w(0ll2 a n d IIVw(/)||2 decay exponentially in t provided the initial
data at t = 0 are prescribed. Such a decay property is due to the Poincare inequality in
bounded domains, and invertibility of the Stokes operator in L2 makes it easy to obtain
better asymptotic behaviour of solutions at t-χχ>.

To overcome this difficulty, Maremonti [15], [16] first showed the algebraic decay
rates in time of strong solutions for initial value problem of (N-S) in R3 and in /? + .
As a by-product, he constructed periodic strong solutions for periodic small external
forces. His method is based on the skillful energy estimates in L2 for higher derivatives
of solutions. Although our results are not altogether new, our approach is different and
gives more results than those by Maremonti [15], [16]. We do not employ the energy
estimates in L2 but the ZΛthoery of the Stokes operator. Making use of LP-U estimates
for the semigroup generated by the Stokes operator, we shall show the existence and
uniqueness of periodic strong solutions more directly than Maremonti [15], [16].
Compared with the energy estimates in L2, our Lp method can cover also the higher
dimensional cases. Unfortunately, we cannot obtain the same result in three-dimensional
exterior domains because the corresponding LP-U estimate is still an open problem.

We shall first reduce our problem to an integral equation, the solution of which
is necessarily periodic with the same period as the external force. The solution will be
constructed in the class of functions defined on the whole interval R with values in
Ln(Ω). Then by a regularity criterion similar to Serrin's [21], we shall show that our
solution is actually a strong solution. For that purpose, we shall estimate a time-interval
of the existence of local strong solutions for the initial-boundary value problem to (N-S)
in terms of the given data. Our estimate extends the result obtained by Giga [7, Theorem
4]. The stability of periodic solutions will be discussed in a forthcoming paper.

1. Results. Before stating our results, we need to impose the following as-
sumption on the domain Ω:

ASSUMPTION 1. (Case I) Ω is the whole space Rn or the half-space R\, where
n>3.

(Case II) Ω is an exterior domain in Rn with C2+|i(μ>0)-boundary δΩ, where π>4.

The reason why we exclude three-dimensional exterior domains in (Case II) is due
to the restriction on gradient bounds for the Stokes semigroup in LP (see Lemma 2.1
(2) below).

We shall next introduce some notation and function spaces. Let C^σ denote the
set of all real vector C°°-functions φ = (φ1

9 . . . , φn) with compact support in Ω such
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that div φ = 0. Uσ is the closure of CQG with respect to the ZΛnorm || ||r; ( , ) denotes
the duality pairing between U and U\ where l / r+l/r '=l . U stands for the usual
(vector-valued) Z/-space over Ω, l<r<oo. When A" is a Banach space, its norm is
denoted by || ||^. Then Cm([/l5t2); X) is the usual Banach space, where ra = 0, 1, 2,...
and tx and t2 are real numbers such that tί < t2. BCm(\_tu t2); X) is the set of all functions
ueCm&tu ί2);X) such that suptί<t<t2\\dmu(t)/dtm\\x<co.

Let us recall the Helmholtz decomposition:

U = Uσ 0 Gr(direct sum), 1 < r < oo ,

where Gr= {VpeU ;peUloc(Ω)}. For the proof, see Fujiwara-Morimoto [4], Miyakawa
[17] and Simader-Sohr [22]. Pr denotes the projection operator from U onto Uσ along
Gr. The Stokes operator Ar on Uσ is then defined by Ar=—PrA with domain
D(Ar) = {ueH2r(Ω); u\δΩ = 0}nUσ. It is known that the dual space {Uσ)* of Uσ and the
adjoint operator A* of Ar are respectively

(Uσr = Lζ9 A* = Ar.9

where l/r+ \/r'= 1. Moreover, we have:

PROPOSITION 1 (Giga [5], Giga-Sohr [9]). Le/ l<r<oo. 77ẑ « — Ar generates a
uniformly bounded holomorphίc semigroup {e~tAr}t>0 of class C° in Lr

σ.

Applying the projection operator Pr to both sides of the first equation of (N-S),
we have

du
(E) +Aru + Pr(u Vu) = PJ on Z/σ, teR.

at

The above (E) can be further transformed to the following integral equation:

(I.E.) u(t)= e-«-s)Λ'Prf{s)ds- Γ e~(t-s)ArPr(u Wu)(s)ds.
J — oo J — oo

Concerning the external force /, we impose the following assumption:

ASSUMPTION 2. Let the exponents r and q be according to the (Case I) and (Case
II) of Assumption 1 as

(Case I) 2 < r < n, n/2 < q < n;
(Case II) 2n/(n - 1) < r < n, n/2 < q < n.

For such r and q, we assume that / belongs to the class

(1.1) fGBC(R;LpnLι)

for l</7, /<oo with l/r + 2/n<l/p, l/q<l/l<l/q+l/n provided n>4 in both (Case I)
and (Case II).

If n = 3 in (Case I), assume moreover that
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(1.2) Ppf(s) = Aδ

pg(s)(seR) with some geBC(R; D(Aδ

p)) and feBC(R;Lι)

for 1 </?<min{r, q} and δ>0 satisfying 3/2p + δ>\ +max{l +3/2r, 1/2 + 3/2*?} and for

Our result now reads:

THEOREM 1. Let Ω and f satisfy Assumption 1 and Assumption 2, respectively.

Suppose that f(t) = f(t + ω) for all teR with some ω > 0 . Then there is a constant

η = η(n, r,q,p9l,δ)>0 such that if

sup \\Ppf(s)\\p + sup WPJWW^η for n>4 in (Case I) and (Case II),
seR seR

+ sup| | JP (/(ί) | | 1< f 7 for « = 3 in (Case I ) ,
seR

we have a periodic solution u of (I.E.) with the same period ω as fin the class BC(R; Uσ)

withVueBC(R\Lq).

Such a solution u is unique within this class provided supseR\\u(s)\\r + supseR\\Vu(s)\\q

is sufficiently small.

Concerning the existence of solutions to (E), we have:

THEOREM 2. In addition to the hypotheses of Theorem 1, let us assume furthermore

that f is a Holder continuous function on R with values in Ln. Then the periodic solution

u given by Theorem 1 has the following additional properties:

(1) ueBC(R;Ln

σ)nC1(R;Ln

σ);

(ii) u(t)eD(An) for all teR and AnueC(R; Ln

σ);

(iii) u satisfies (E) in Ln

σfor all teR.

REMARKS. (1) Taking n = 3, 2<r<3 and q = 2in (Case I), our theorems include

Maremonti [15, Theorem 1] and [16, Theorem 2].

(2) The first condition of (1.2) seems to be artificial, but it may be replaced by

f(s) = divF(s) with some F={FiJ}iJ=ia^eBC(R; Hlp(Ω)) for 1 < / ? < O O satisfying

(3) When Ω is a bounded domain in Rn (n>2), the above results also hold and

we can relax the assumption on the external force. Indeed, it suffices to assume that

feBC(R; U) with supseR||JP/(5 ι)||/. small for r>n/2. Under such a hypothesis, there is a

periodic solution u of (I.E.) in the class ueBC(R; D(Al12)).

2. Preliminaries. Throughout this paper, we shall denote by C various constants.

In particular, C=C(*, ••*,*) will denote the constants which depend only on the

quantities appearing in parentheses. Since Pru = Pqu for all ueUnLq and since Aru = Aqu

for all ueD(Ar)nD(Aq), for simplicity, we shall abbreviate Pru, Pqu as Pu for ueUnLq

and Aru, Aqu as Au for ueD(Ar)nD(Aq), respectively. Let us first recall the following
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Lp-U estimates for the semigroup {e~tA}t>0:

LEMMA 2.1 (Kato [12], Ukai [26], Giga-Sohr [9], Iwashita [10], Borchers-
Miyakawa [1], [2]).

(1) Let Ω be as in {Case I) of Assumption 1. Then there holds

\\e~tAa\\r<Crn(1/p~1/r)/2\\a\\p, \<p<r<oo

\\Ve-tAa\\r<Crnil/p-1/r)/2-1/2\\a\\p, \<p<r<oo

for all aeLζ and all t > 0, where C = C(n, p, r).

(2) Let Ω be as in {Case II) of Assumption 1. Then there holds

\\e-tAa\\r<CΓnil/p-1/r)l2\\a\\p, \<p<r<oo

\\Ve-tAa\\r<CΓnil/p-1/r)/2-1/2\\a\\p, \<p<r<n

for all aeLζ and all t>0, where C = C{n, p, r).

Using this lemma, we shall estimate the nonlinear term of (I.E.).

LEMMA 2.2. Let r and q be as in Theorem 1 according to the {Case I) and {Case

II) of Assumption 1. Define a function space Y and a bilinear operator G ( , •) on Y by

Y={ue BC(R; Ua); Vu e BC(R;

G(u,v\t)=- Γ e'{'-s)ΛP(u Vυ\s)ds u,veY,
J — oo

respectively. Then we have G{u, v)eY with

(2.1) sup \\G{u, v)(s)\\r< CΛ sup ||u(s)||rsup | | φ ) | | r + sup ||u(s)||r
seR \seR seR seR seR

(2.2) sup||VG(M,ι;Xs)||,^c/sup||«(s)||rsup||Vφ)||, + sup||VM(s)||,
seR \seR seR seR seR

for all u,veY, where C\ = Cx(n, r, q).

PROOF. Set

, v){t)= - Γ e-{t~s)AP{u Vυ){s)ds- Γ e-(t~s)AP{u Vv){s)ds
J — oo J ί — 1

(2.3)

By integration by parts and Lemma 2.1 we have
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\(h(t),Φ)} = T
J - oo

(u(s) Ve-{'-s)Aφ,v(s))ds

I (/-ί)- n ( 1 / r - 1 / ( r / 2 ) ' ) / 2 - 1 / 2 ι
J — oo

<Csup||φ)||,sup||φ)||
seR seR

seR seR

for all φeCQσ and all /G/?, where C=C(n,r). Note that, in (Case II), on account of
such restriction as Lemma 2.2 (2), we need (r/2)'<«, i.e., 2ri<r. By duality there holds

(2.4) l|/iWL<Csup||w(5)|| rsup||φ)|| r for all teR,

where C=C(n, r). Similarly, Lemma 2.1 and the Holder inequality yield

(2.5)
J r - l

<sup||u(s)|| rsup||Vφ)||β

for all teR with C=C(n, r, ^). Now (2.1) follows from (2.3)-(2.5).
To show (2.2), we make use of the following inequality of the Sobolev type due

to Giga-Sohr [9, Corollary 2.2 (ii)]:

(2.6) with q* = nq/(n-q) for all φsU with VφεLq,

where C=C(n, q). It should be noted that (2.6) holds even though φ does not vanish
on the boundary dΩ. Now it follows from Lemma 2.1 and (2.6) that

< Γ ' \\
J-oo

rt-i

<C\
J — oo

(u Wv)(s)\\qds+ Γ
Jί-1

Vυ)(s)\\qds
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Γ (/-^)-" ( 1 / ί ϊ*+ 1 /^1^ ) / 2-1 / 2 | |w(5)||
Jr-1

f '{t-sy^
J _ 0 0

)||, Γ (ί-ί)-"
J ί _ 1

+ C

^Csup||«(s)|| rsup||Vφ)||
seβ seR

seR sell

<C( sup||M(S)Lsup | |Vφ)||4 + sup || Vφ)||βsup || Vφ)|
\selt seR seΛ seR

for all te R with C=C(n, r, g), which yields (2.2). This completes the proof of Lemma 2.2.

We shall next show bounds for the external force.

LEMMA 2.3. Let f be as in (1.1) and (1.2) of Assumption 2. Let

F(t)=\ e~(t-s)ΛPf(s)ds, tsR.
J - oo

we have Fe Y and the following estimates hold:

sup||F(ί)||Γ 1

(2.7) suP||VF(,)|| - C '
seR

with C= C(n, r, q, p, /) provided f satisfies (1.1);

(2.8)
sup\\F(s)\\r

seR
SUp||VF(ί)| |, VseR - seR

<C sup 110(5

with C= C(n, r, (7, p,l,δ) provided f satisfies (1.2).

PROOF. If/ satisfies (1.1), we have by Lemma 2.1

\\F(t)\\r< Γ ' |k-(t-β [
J — 00 J ί — 1

Λ f - l

(/-^)-w ( 1 / p- 1 / r ) /

J-00

, f (/-^)-"(1/ί-1/r

Jt-i

for all teR, where C=C(n, r, q, p, I). Since n/2<q and r<«, we have by hypothesis on
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/ that \/l<2/n+\/r and hence the second integral above converges. So does the first
integral by hypothesis on p and we obtain (2.7) for sup s e R ||F(s)||r. Similarly, we have
by Lemma 2.1

J-oo

Csup||P/(,s)||I I ' (t-sΓn(l/ι-1/q)/2-1/2ds

for all teR with C=C(n,r,q,p,l). Since l/p>l/r + 2/n>l/n+l/q, the first integral
above converges and we obtain (2.7) for sup s e Λ ||VF(5)||β.

To show (2.8), we shall make use of the estimate

(2.9) \\Aδe-tΛa\\P<Crδ\\a\\p for all aeLζ, t>0

with C=C(p, δ). This is an immediate consequence of Proposition 1. Therefore, if /
satisfies (1.2), it follows from Lemma 2.1 and (2.9) that

\\F(t)\\r< f * \\e-^-s)AAδg{s)\\rds+ Γ \\e-«-s)APf(s)\\rds
J-oo J t- 1

rt-ι

<C (t-s)-3il/p-1/r)/2\\Aδe-{t-s)A/2g(s)\\pds
J — oo

+ c\ (t-s
Jt-1

ssR

f
(t—i

Jr-1

<C llβφHp
seR

for all tsR with C= C(n, r, q, p, /, δ). This yields (2.8) for supS6R 11 )̂11,. Similarly, we
can deal with VF to show (2.8) for supseΛ||ViΓ(ιs')||ί and the proof of Lemma 2.3 is
complete.

3. Existence of periodic solution; Proof of Theorem 1. Using Lemmas 2.2 and
2.3, we shall prove the existence and uniqueness of solution to the integral equation
(I.E.) by successive approximation. Let us recall the function space Y and the bilinear
operator G( , •) on Y introduced in Lemma 2.2. Equipped with the norm || ||F defined
by
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H r = sup || M(S) ||, + sup || Vφ) | |,,
seR seR

Fis a Banach space. We construct a periodic solution of (I.E.) according to the scheme

(3.1) « o ( 0 = | e-{t-s)APf(s)ds,
J - oo

(3.2) um+1(t) = u0(t) + G(um,um)(t), m = 0,l,....

By Lemma 2.3, we have uoeY with

(3.3) K l
\ seR

provided / satisfies (1.1);

(3.4) f p
\seΛ sell

provided / satisfies (1.2). Since / is a periodic function with period ω, we can easily

verify that u0 is also periodic with the same period ω. By induction and Lemma 2.2,

so is um for all ra = 0, 1,.. . . Moreover, it follows from (2.1) and (2.2) that

I K + illr< R l l r + \\G{um9 uJ

where C5|e = 2C 1. Hence if

(3.5)

then there holds

(3.6) \\uΛγ<
λJX*C*^L^K<^-- for all « = 0,l,....

By (3.3) and (3.4), we can take the constant η in Theorem 1 so that the condition (3.5)

is satisfied.

Now assume (3.5). Setting wm = um—um_ί ( M . ^ O ) , we have

wm+1(t) = G(um, Kj ίO-Gίu,,- ! , M m_1)(ί) = G(wm, « J ( 0 - G ( « « - i , wj(/)

and Lemma 2.2 and (3.6) yield

(3.7)
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for all m = 0, 1, . . . . Since um(t) = YdJ==owj(t)9 we see by (3.6) and (3.7) that there exists

a function ueY such that

(3.8) um-+u in Y as ra->oo .

Clearly, such a limit u(t) is also periodic in t with the same period ω as /. As in (3.7),

we have by (3.6) that

\\G{um, um)-G(u, u)\\r< \\G{um-u, um)\\y+\\G{u, um-u)\\r

(3.9) <CJum-u\\r\\um\\r + CJu\\r\\um-u\\¥

<II««-«IIF

for all m, from which follows that

(3.10) G(um, um) -+ G(u, u) in Y as m-+oo .

Now letting m->oo in (3.2), we see by (3.8) and (3.10) that u is a desired periodic

solution of the integral equation (I.E.).

It remains to show the uniqueness. Suppose that veYis another solution of (I.E.)

with |M| F <K, where K is the same constant as in (3.6). Then we have as in (3.9) that

Since 2C^K< 1, there holds u = v and the assertion on uniqueness follows. This proves

Theorem 1.

4. Regularity of solutions to (I.E.); Proof of Theorem 2. In this section, we shall

show that the periodic solution u constructed in the preceding section is actually a

solution of the differential equation (E). To this end, we need the local existence of

strong solutions to the initial-boundary value problem for (N-S). In particular, it is

important to give the time-interval of existence in terms of the prescribed data. Here

we follow the argument of Kato [12] and Giga [7].

Let us first define the strong solution of the initial value problem for (N-S).

DEFINITION. Let a e Ln

σ and let PfeC((t0, ty); L"), where t0 < t1. Then a measurable

function y o n Ω x ( / 0 , tx) is called a strong solution of (N-S) on (t0, t^ with the initial

data a at t0 if

( i ) VE BC(ίt09 tά Ln

σ) n C\{t0, O ; Ln

σ);

(ii) v(t)eD(An) for / 0 < ί < ί 1 and AHueC((tθ91,); Ln

σ);

(iii)

dv
A P(Vυ) = Pf in L" for to<t<tl9dt

v(to) = a.

Our result on the local existence of strong solutions now reads:
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LEMMA 4.1. Let nβ<q<n and let 1 < / < O O satisfy \/q<\/l<\/q+l/n. Assume
that aeLn

σ(\Lq* with q* = nq/(n — q)9 feBC(R; Lι) and that Pf( •) is a Holder continuous
function on R with values in Ln

σ. Then there exists T>0 such that for every toeR, we
have a unique strong solution v 0/(N-S) on (/o, t0 + T) with the initial data a at t0. More-
over, v has the additional property υeBC([t0, to + T); Lf) with

(4.1) sup |Wί)ll,*<C2,
to < t < to + T

where C 2 = C 2(| |α| |^, II^/HBC(K;L')) i s independent of t0. Here T is estimated as

(4.2) ^C^iμil^+IIP/ll^;^))-2^*-^

with C3 = C3(n, q, I) independent of a, f and t0.

REMARK. When / = 0 , Giga [7, Theorem 4] obtained (4.2) by making use of the
fact that A ~ 1/2Pr(d/δxj) (j= 1,...,«) is a bounded operator from U into Uσ for 1 < r < oo.
Our proof below seems to be rather elementary; we use Lemma 2.1 and integration by
parts.

PROOF OF LEMMA 4.1. The proof is similar to that of Kato [12] and Giga [7].
However, we give it for completeness. It suffices only to construct the solution v of the
integral equation:

f e-
(t-s)APf{s)ds- Γ e~{t

J ίo Jt0

(4.3) v(t) = e-(t-t0)Λa+ f e-
(t-s)APf{s)ds- Γ e~{t-s)AP{v Wv)(s)ds , to<t<to+T

in the class

(4.4) υeBC(lt09t0 + T);Ln

σnLΪ) with (ί-/0)
1/2VϋeΛC([f0, Ό + T); Ln).

Indeed, with the aid of Kozono-Ogawa [13, Lemma A.4], the assumption on Pf and
a general theory of holomorphic semigroup guarantee that the solution v of (4.3) in
the class (4.4) satisfies the properties (i), (ii) and (iii) of Lemma 4.1 (see, e.g., Tanabe
[24, Theorem 3.3.4]).

Since this lemma deals with only local existence of solutions, we may assume that
0< T< 1. Let us solve (4.3) by successive approximation:

(4.5) Γ e-(t

Jίo

Jto
(4.6) vm + 1(t) = v0(t)- Γ e-«-*AP{υm Vvm)(s)ds .

Jto

Taking tx = n/q— 1, we have by assumption 0 < α < 1 and q* = n/a. Let us first show

(4.7) sup {t-tor-^\\vm(t)\\«
to<t<to + T
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with some constant Km. In fact, by Lemma 2.1 and the Sobolev inequality (2.6), we have

P
\\vo(t)\\n/a<\\e~(t~to)Aa\\n/a+ \\e-(t-s)APf(s)\\n/ads

Jto

<C\\a\\n/a-

<c\\a\\m+c[' {t-sy
Jt0

for all to<t<to + T with C= C(n, q, /) independent of ί0. Since l/l<l/q+l/n, we have

(1 — α)/2 < (3 — n/l)/2 and hence the above estimate yields

sup (ί-/o) ( 1"α ) / 2ll^o(ί)L/α<C4Γ<1-α>/2(| |β | | / I / α+
ί < ί < ί + Γ

Then Ko may be chosen as

(4-8) K0 n/a+ \\Pf\\BC(R.,L.J,

where C4 = C4(n, q91) is independent of t0. Suppose that (4.7) is true. By Lemma 2.1

and integration by parts there holds

(-Γ -»AP(vm Vvm\s)ds,φ = (vm(s) Ve-«-°>Aφ,vm(s))ds

< ί'
Jίo

<c ί'(t-sy
Jto

-α/2-1/2 \vm(s)\\2

n/ads \\n/(n-ιx)

<CB((l-oc)/2,oc)Ki(t-tor
{1-a)/2\\Φ\\n/in-Λ)

for all φeC^σ and all / G ( / 0 , ô + ̂ K where B( , •) denotes the beta function and

C= C(n, q). By duality we have

ί' e-<'-«AP(vm Vvm){s)ds to<t<to+τ
n/a

and hence we may define Km+1 as

(4.9) Km+1=

where C5 = C5(n, q) is independent of t0. An elementary consideration shows that if
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1
(4.10) Ko<

then there holds

(4.11) Km< l ^ l ACsKθ- = k<— for all m = 0, 1 , . . . .
2C 5 2C 5

Assume (4.10) for a moment. Then in the same way as in (3.8), the uniform estimate

(4.11) with respect to m yields a function v with (ί - t o ) ( 1 ~x)/2v( ) e BC([t0, t0 + T); LTj")

such that

(4.12) lim sup (t-to)
(1-°)/2\\vm(ή-v(ή\\φ = 0 -

m->oo <o<ί<to + T

We shall next show that if Ko is sufficiently small, then the limit υ also satisfies

(?-ίo)
1/2Vt>( )eBC([to, to+T); L") with

(4.13) lim sup {t-to)
ιι2\\Vvm(t)-Vυ{t)\\n = Q •

m- -oo to<t<to + T

To this end, let us prove that

(4.14) sup ( / - ί o ) 1 / 2 l i V t ; m ( 0 | | π < L m for m = 0, 1 , . . . .
ίo < t < to + T

By Lemma 2.1, there holds

| |Vi>oL^C(ί-ί o Γ 1 / 2 IM^ for all te(tθ9 to + T)

and hence we may take Lo as

where C= C(n) is independent of t0. Moreover, it follows from (4.7), (4.11) and (4.14) that

v!

<CKmL P

for all t0 < t < t0 + T, where C 6 = C6(n, ̂ f) is independent of t0. Hence we may take Lm + γ

as

which shows that {Lm}^= 0 is a linear recurrence. If
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(4.15) k<l/C69

then we have a uniform bound of {Lm}™=0 as

= L for all ra = 0, 1 , . . . .

Assume (4.15) for a moment. Then it is easy to see that the limit v satisfies (4.13).

To prove veBC([t0, to + T)\ Ln

σ n Lf), we need to show

(4.16) sup \\vm(t)\\n/μ<Mμ,
f o < t < to + T

= 0, 1,...) for μ = oc and μ=\ .

Calculation similar to (4.7) and (4.14) yields Mμ0 as

L / f l t+ \\Pf\\BC(R;L>J , A/lfO = C(|

where C=C(n, I μ) is independent of /0. Notice that O < Γ < 1 . Suppose that (4.16) is

true. Then by Lemma 2.1, (4.11) and integration by parts, we have

(-Γ
\ •'to

-{t-s)A P(vm

Γ ll^)L/αll^)IL/

CKmM^m [ {t-s)- \\φ\\nl{n-μ)

-α)/2, (1 +*)β)\\φ\\nl{n-μ)

for all 0 G Cotσ and all ί0 < t < t0 + Γ, where C= C(n, q, μ). By duality we may take M μ m + x

as

^ , m +1 = Mμ,0 + CηkMμ^m for μ = α, 1 ,

where C 7 = C7(n, q, μ) is independent of t0. If

(4.17) * :<1/C 7 ,

then there holds

M ° for all /w = 0, 1 , . . . ,M μ , m < ^ (μ = α,l)
1 —C7/r

which yields v e ^C([ί 0 , /0 + Γ); L^ n L^/α) with
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(4.18) lim sup \\vm(ή-v(t)\\nlli = O for μ = a, 1 .
m-+αo to<t<to + T

In particular, the constant C 2 in (4.1) can be given as C 2 = Mα 0/(l — Cηk). Now we see

that under the conditions (4.10), (4.15) and (4.17), the limit v belongs to the class in

(4.4). Moreover, there holds

e-(t-s)AP(vm Vvm){s)ds^ e-(t

Jt0 J to

(4.19) e-(t-s)AP(vm Vvm){s)ds^ e-(t-s)AP(vVv)(s)ds in Ln

σ

Jt0 J to

uniformly in te\_t0, to + T) as ra-»oo. Indeed, by Lemma 2.1, (4.11) and (4.14) we have

Vv)(s)dse-(t- s)AP(Vm . yVm)(s)ds - e~{t- s)ΛP{v
J to Jto

< P \\e-«-*AP((vm-υ) VvJ(s)\\nds+ P \\e-«-»AP(v V(ι>m-ι>
J to Jto

+

<CB(\-OC/2,OL/2)[L sup (s-to)
{1-a

\ to<s<to + T

+ k sup (s-to)
1'2\\Vvm{S)-'Vv(s)\\n

to<s<to + T

for all to<t<to+T, from which and (4.12-13) we obtain (4.19). Now, letting ra->oo

in (4.6), we see by (4.18) and (4.19) that v is a solution of (4.3). The proof for uniqueness

is standard, so we may omit it (see [3], [8]).

It remains to estimate the time-interval T of existence in terms of the prescribed

data. Since k is determined by (4.11), there exists a constant κ = κ(n, q, I) independent

of t0 such that if K0<κ, then all conditions (4.10), (4.15) and (4.17) are satisfied. Now

from (4.8) we see that T may be chosen as

v2/(l-α)

.CMa\\n/a+\\Pf\\BC(R.,L>J

which shows (4.2) and proves Lemma 4.1.

PROOF OF THEOREM 2. Let u be the periodic solution of the integral equation

(I.E.) given by Theorem 1. Since we Y, we have by (2.6) that ueBC(R; Ln

σt\Lq*), where

q* = nq/(n-q). Let
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where C3 is the same constant as in (4.2). Then by Lemma 4.1, for every toeR there

exists a unique strong solution v of (N-S) on (t0, to + T) with the initial data u(t0). By

(3.6) and (4.1), we have

(4.20) sup | |φ) | | ,* + sup \\Vu(s)\\q<C2 + K=
ίo < s < to + T to<s<to + T

where C8 is independent of t0. By (4.3) with a replaced by u(t0) and by (I.E.), it is easy to

see

u(ί)-v(t)= - e-{t~s)AP{u - Vu)(s)ds+ e-
{t-s)AP(v Vv)(s)ds

J ίo J ίo

(4.21) = - I ' e-{'-s)AP((u-v) VM)(J)Λ- Γ e-«-s)AP{v V(u-v))(s)ds
J ίo J ίo

= J1(ή + J2(ή,

By Lemma 2.1 there holds

(4.22)
<Csup| |Vφ) | | β sup \\u(s)-v(s)\\n(t-t0)

1~nl2q,
seR to<s<to + t

for all ΐ0 < t< t0 + T, where C=C(n, q) is independent of t0. By integration by parts we

have

I f'

< C
Jίo

<C sup | |φ) | | β , sup
ίo<s<ίo+Γ ίo<s<ίo

<C sup | | φ ) | | ^ sup \\u(s)-v(s)Ut-to)
1-nl2<>\\φ\\n,

to<s<to + T to<s<to + t

for all φeC£σ and all to<t<to+T, where C=C(n, q). By duality,

(4.23) μ 2(0L<C sup | |φ) | |^ sup \\u(s)-v(s)\\n(t-toy-n^
ίo < s < ίo + T ίo < s < ί0 + ί

for all to<t<to + T. Now it follows from (4.20-23) that
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\\u(t)-v(t)\\n<C9 sup llM^-φJH^-to)1-"^, to<t<to+T
tO<S<to + t

with C 9 independent of t0. Defining τ = min{(l/2C9)
2q/{2q~n\ Γ}, we obtain from the

above estimate that

I M O - i M I U C p τ 1 - " ' 2 * sup \\u(s)-υ(s)\\n

to<s<to + t

< — sup \\u(s)-v(s)\\n

2 tO<S<to + t

for all t0 < t < t0 + τ, which yields

w = i; on [ ί 0 , 'o

Since τ can be taken independently of t0, we have

u = v on [ ί 0 ,/ 0 + Γ) .

Now, since t0 is arbitrary, it follows from Lemma 4.1 that u has the desired properties

(i), (ii) and (iii) in Theorem 2. •
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