A NOTE ON EXTENSIONS OF ALGEBRAIC AND FORMAL GROUPS, III

Tsutomu Sekiguchi and Noriyuki Suwa*

(Received November 20, 1995, revised May 7, 1996)

Abstract

We will give an explicit description of extensions of the group scheme of Witt vectors of length n (resp. the formal group of Witt vectors of length n) by the multiplicative group scheme (resp. the multiplicative formal group) over an algebra for which all prime numbers except a given prime p is invertible.

Introduction. Throughout the paper, p denotes a prime number, and $\boldsymbol{Z}_{(p)}$ the localization of \boldsymbol{Z} at the prime ideal (p).

Let W_{n} (resp. \hat{W}_{n}) denote the group scheme (resp. the formal group scheme) over \boldsymbol{Z} of Witt vectors of length n, and W (resp. \hat{W}) the group scheme (resp. the formal group scheme) of Witt vectors over \boldsymbol{Z}. Let $\boldsymbol{G}_{\boldsymbol{m}}$ (resp. $\hat{\boldsymbol{G}}_{\boldsymbol{m}}$) denote the multiplicative group scheme (resp. the multiplicative formal group scheme over \boldsymbol{Z}. In [3], we gave an explicit description of the groups $\operatorname{Ext}_{A}^{1}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)$ and $\operatorname{Ext}_{A}^{1}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right)$, when A is a ring of characteristic $p>0$. More precisely, we constructed isomorphisms

$$
\begin{aligned}
& \hat{W}(A) / F^{n} \xrightarrow{\sim} H_{0}^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right), \\
& W(A) / F^{n} \xrightarrow{\longrightarrow} H_{0}^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right),
\end{aligned}
$$

using the Artin-Hasse exponential series.
In Theorem 2.8 .1 of this note, we generalize these results to $\boldsymbol{Z}_{(p)}$-algebras A as follows: (It is crucial to define an endomorphism F of $W_{\mathbf{Z}}$ generalizing the Frobenius endomorphism of $W_{\mathbf{F}_{p}}$. For the definition, see Section 1.)

Theorem. Let A be a $\boldsymbol{Z}_{(p)}$-algebra. Then there exist isomorphisms

$$
\begin{aligned}
F^{n} \hat{W}(A) & \sim \\
\hat{W}(A) / F^{n} & \xrightarrow{\sim} H o m\left(W_{0, A}^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right),\right. \\
F^{n} W(A) & \xrightarrow{\sim} \operatorname{Hom}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right), \\
W(A) / F^{n} & \xrightarrow{\sim} H_{0}^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right) .
\end{aligned}
$$

After a short review on Witt vectors and the Artin-Hasse exponential series, we state and prove the main theorem, generalizing the argument developed in [3].

[^0]Notation. Throughout the paper, p denotes a prime number, $\boldsymbol{Z}_{(p)}$ the localization of \boldsymbol{Z} at the prime ideal (p), and A a $\boldsymbol{Z}_{(p)}$-algebra.
$\boldsymbol{G}_{a, A}$: the additive group scheme over A
$\boldsymbol{G}_{m, A}$: the multiplicative group scheme over A
$W_{n, A}$: the group scheme of Witt vectors of length n over A
W_{A} : the group scheme of Witt vectors over A
$\hat{\boldsymbol{G}}_{a, A}$: the additive formal group scheme over A
$\hat{\boldsymbol{G}}_{m, A}$: the multiplicative formal group scheme over A
$\hat{W}_{n, A}$: the formal group scheme of Witt vectors of length n over A
\hat{W}_{A} : the formal group scheme of Witt vectors over A
$H_{0}^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right)$ and $H_{0}^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)$ denote the Hochschild cohomology groups consisting of symmetric 2-cocycles of $\hat{W}_{n, \boldsymbol{A}}$ with coefficients in $\hat{\boldsymbol{G}}_{m, A}$ and of $W_{n, A}$ with coefficients in $\boldsymbol{G}_{\boldsymbol{m}, \boldsymbol{A}}$, respectively.

For a commutative ring B, we denote by B^{\times}the multiplicative group $\boldsymbol{G}_{m}(B)$.
For an endomorphism l of a commutative group $M,{ }_{l} M$ (resp. M / l) denotes $\operatorname{Ker}[l: M \rightarrow M]$ (resp. Coker $[l: M \rightarrow M]$).

1. Witt vectors. We start with reviewing necessary facts on Witt vectors. For details, see [DG, Chap. V] or [HZ, Chap. III].
1.1. For each $r \geq 0$, we denote by $\Phi_{r}(T)=\Phi_{r}\left(T_{0}, T_{1}, \ldots, T_{r}\right)$ the so-called Witt polynomial

$$
\Phi_{r}(\boldsymbol{T})=T_{0}^{p^{r}}+p T_{1}^{p^{r-1}}+\cdots+p^{r} T_{r}
$$

in $\boldsymbol{Z}[\boldsymbol{T}]=\boldsymbol{Z}\left[T_{0}, T_{1}, \ldots\right]$. We define polynomials

$$
S_{r}(X, Y)=S_{r}\left(X_{0}, \ldots, X_{r}, Y_{0}, \ldots, Y_{r}\right)
$$

and

$$
P_{r}(\boldsymbol{X}, \boldsymbol{Y})=P_{r}\left(X_{0}, \ldots, X_{r}, Y_{0}, \ldots, Y_{r}\right)
$$

in $\boldsymbol{Z}[\boldsymbol{X}, \boldsymbol{Y}]=\boldsymbol{Z}\left[X_{0}, X_{1}, \ldots, Y_{0}, Y_{1}, \ldots\right]$ inductively by

$$
\Phi_{r}\left(S_{0}(\boldsymbol{X}, \boldsymbol{Y}), S_{1}(\boldsymbol{X}, \boldsymbol{Y}), \ldots, S_{r}(\boldsymbol{X}, \boldsymbol{Y})\right)=\Phi_{r}(\boldsymbol{X})+\Phi_{r}(\boldsymbol{Y})
$$

and

$$
\Phi_{r}\left(P_{0}(X, Y), P_{1}(X, \boldsymbol{Y}), \ldots, P_{r}(X, \boldsymbol{Y})\right)=\Phi_{r}(X) \Phi_{r}(\boldsymbol{Y})
$$

Then as is well-known, the ring structure of the scheme of Witt vectors of length n (resp. of the scheme of Witt vectors)

$$
W_{n, \mathbf{Z}}=\operatorname{Spec} \boldsymbol{Z}\left[T_{0}, T_{1}, \ldots, T_{n-1}\right]\left(\text { resp. } W_{\mathbf{Z}}=\operatorname{Spec} Z\left[T_{0}, T_{1}, T_{2}, \ldots\right]\right)
$$

is given by the addition

$$
T_{0} \mapsto S_{0}(\boldsymbol{X}, \boldsymbol{Y}), \quad T_{1} \mapsto S_{1}(\boldsymbol{X}, \boldsymbol{Y}), \quad T_{2} \mapsto S_{2}(\boldsymbol{X}, \boldsymbol{Y}), \ldots
$$

and the multiplication

$$
T_{0} \mapsto P_{0}(\boldsymbol{X}, \boldsymbol{Y}), \quad T_{1} \mapsto P_{1}(\boldsymbol{X}, \boldsymbol{Y}), \quad T_{2} \mapsto P_{2}(\boldsymbol{X}, \boldsymbol{Y}), \ldots
$$

We denote by $\hat{W}_{n, \mathbf{Z}}$ (resp. $\hat{W}_{\mathbf{Z}}$) the formal completion of $W_{n, \mathbf{Z}}$ (resp. $W_{\mathbf{Z}}$) along the zero section. $\hat{W}_{n, \mathbf{Z}}$ (resp. $\hat{W}_{\mathbf{Z}}$) is considered as a subfunctor of $W_{n, \boldsymbol{Z}}$ (resp. $W_{\mathbf{Z}}$). Indeed, if A is a ring (not necessarily a $Z_{(p)}$-algebra),

$$
\hat{W}_{n}(A)=\left\{\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in W_{n}(A) ; a_{i} \text { is nipotent for all } i\right\}
$$

and

$$
\hat{W}(A)=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots\right) \in W_{n}(A) ; \quad \begin{array}{l}
a_{i} \text { is nipotent for all } i \text { and } \\
a_{i}=0 \text { for all but a finite number of } i
\end{array}\right\} .
$$

1.2. The restriction homomorphism of ring schemes $R: W_{n+1, \mathbf{Z}} \rightarrow W_{n, \mathbf{Z}}$ is defined by the canonical injection

$$
\begin{gathered}
T_{0} \mapsto T_{0}, T_{1} \mapsto T_{1}, \ldots, T_{n-1} \mapsto T_{n-1}: \\
Z\left[T_{0}, T_{1}, \ldots, T_{n-1}\right] \rightarrow Z\left[T_{0}, T_{1}, \ldots, T_{n}\right],
\end{gathered}
$$

while the Verschiebung homomorphism of group schemes $V: W_{n, \mathbf{Z}} \rightarrow W_{n+1, \mathbf{Z}}$ is defined by

$$
\begin{gathered}
T_{0} \mapsto 0, T_{1} \mapsto T_{0}, \ldots, T_{n} \mapsto T_{n-1}: \\
Z\left[T_{0}, T_{1}, \ldots, T_{n}\right] \rightarrow Z\left[T_{0}, T_{1}, \ldots, T_{n-1}\right] .
\end{gathered}
$$

Then the sequence
$\left(\mathrm{E}_{m, n}\right)$

$$
0 \longrightarrow W_{n, \mathbf{Z}} \xrightarrow{V^{m}} W_{n+m, \mathbf{z}} \xrightarrow{R^{n}} W_{m, \mathbf{Z}} \longrightarrow 0
$$

is exact for all $n, m \geq 1$ (cf. [DG, Chap. V.1.1]).
We denote also by $R: \hat{W}_{n+1, \mathbf{z}} \rightarrow \hat{W}_{n, \mathbf{Z}}$ (resp. $V: \hat{W}_{n, \mathbf{Z}} \rightarrow \hat{W}_{n+1, \mathbf{z}}$) the homomorphism of formal group schemes induced by $R: W_{n+1, \mathbf{z}} \rightarrow W_{n, \mathbf{Z}}$ (resp. $V: W_{n, \mathbf{Z}} \rightarrow W_{n+1, \mathbf{z}}$). We also have an exact sequence of formal group schemes

$$
\begin{equation*}
0 \longrightarrow \hat{W}_{n, \mathbf{z}} \xrightarrow{V^{m}} \hat{W}_{n+m, \mathbf{z}} \xrightarrow{R^{n}} \hat{W}_{m, \mathbf{Z}} \longrightarrow 0 . \tag{m,n}
\end{equation*}
$$

Let k, l be integers with $k \geq l>0$. We define a polynomial $S_{k, l}(\boldsymbol{X}, \boldsymbol{Y})=S_{k, l}\left(X_{0}, \ldots\right.$, $\left.X_{l-1}, Y_{0}, \ldots, Y_{l-1}\right)$ in $\boldsymbol{Z}\left[X_{0}, \ldots, X_{l-1}, Y_{0}, \ldots, Y_{l-1}\right]$ by

$$
S_{k, l}(\boldsymbol{X}, \boldsymbol{Y})=S_{k}\left(X_{0}, \ldots, X_{l-1}, 0, \ldots, 0, Y_{0}, \ldots, Y_{l-1}, 0, \ldots, 0\right) .
$$

The extension ($\mathrm{E}_{m, n}$) is defined by the 2-cocycle

$$
\left(S_{m, m}(\boldsymbol{X}, \boldsymbol{Y}), S_{m+1, m}(\boldsymbol{X}, \boldsymbol{Y}), \ldots, S_{m+n-1, m}(\boldsymbol{X}, \boldsymbol{Y})\right)
$$

of $Z^{2}\left(W_{m, \mathbf{Z}}, W_{n, \mathbf{Z}}\right)$ or of $Z^{2}\left(\hat{W}_{m, \mathbf{Z}}, \hat{W}_{n, \mathbf{Z}}\right)$, respectively.
1.3 (cf. [1, Ch.O.1.3]). Now we define an endomorphism of $W_{\mathbf{Z}}$, generalizing the Frobenius endomorphism of $W_{\boldsymbol{F}_{p}}$.

Define polynomials

$$
F_{r}(\boldsymbol{T})=F_{r}\left(T_{0}, \ldots, T_{r}, T_{r+1}\right) \in \boldsymbol{Q}\left[T_{0}, \ldots, T_{r}, T_{r+1}\right]
$$

inductively by

$$
\Phi_{r}\left(F_{0}(\boldsymbol{T}), \ldots, F_{r}(\boldsymbol{T})\right)=\Phi_{r+1}\left(T_{0}, \ldots, T_{r}, T_{r+1}\right)
$$

for $r \geq 0$. Then

$$
F_{r}(\boldsymbol{T}) \in Z\left[T_{0}, \ldots, T_{r}, T_{r+1}\right]
$$

and

$$
F_{r}(\boldsymbol{T}) \equiv T_{r}^{p} \quad(\bmod p)
$$

for each $r \geq 0$. We denote by $F: W_{n+1, \mathbf{z}} \rightarrow W_{n, \mathbf{z}}$ the morphism defined by

$$
\begin{gathered}
T_{0} \mapsto F_{0}(\boldsymbol{T}), T_{1} \mapsto F_{1}(\boldsymbol{T}), \ldots, T_{n-1} \mapsto F_{n-1}(\boldsymbol{T}): \\
\boldsymbol{Z}\left[T_{0}, T_{1}, \ldots, T_{n-1}\right] \rightarrow \boldsymbol{Z}\left[T_{0}, T_{1}, \ldots, T_{n}\right] .
\end{gathered}
$$

Then we can verify without difficulty the following:
(1) F is a homomorphism of ring schemes;
(2) $F R=R F$;
(3) $F V=p$;
(4) $V F=p$ on $W_{n, A}$ if and only if A is of characteristic $p>0$.

Note that

$$
W_{\mathbf{Z}}=\lim _{\overleftarrow{R}_{R}} W_{n, \mathbf{z}}
$$

Hence (2) implies that the system ($\left.F: W_{n+1, \mathbf{Z}} \rightarrow W_{n, \mathbf{Z}}\right)_{n \geq 1}$ defines an endomorphism F of the ring scheme $W_{\mathbf{Z}}$. It is obvious that $\hat{W}_{\mathbf{Z}}$ is stable under F. If A is an \boldsymbol{F}_{p}-algebra, $F: W_{A} \rightarrow W_{A}$ is nothing but the usual Frobenius endomorphism.
2. Statement of the theorem. We first recall the definition of Hochschild cohomology. For details, see [DG, Ch. II. 3 and Ch. III.6].
2.1. Let A be a $\boldsymbol{Z}_{(p)}$-algebra and $G(\boldsymbol{X}, \boldsymbol{Y})=G\left(X_{0}, X_{1}, \ldots, X_{n-1}, Y_{0}, Y_{1}, \ldots, Y_{n-1}\right)$ a formal series in $A\left[\left[X_{0}, X_{1}, \ldots, X_{n-1}, Y_{0}, Y_{1}, \ldots, Y_{n-1}\right]\right]^{\times}$(resp. a polynomial in $\left.A\left[X_{0}, X_{1}, \ldots, X_{n-1}, Y_{0}, Y_{1}, \ldots, Y_{n-1}\right]^{\times}\right)$. Recall that $G(\boldsymbol{X}, \boldsymbol{Y})$ is called a symmetric 2-cocycle of $\hat{W}_{n, A}\left(\right.$ resp. $\left.W_{n, A}\right)$ with coefficients in $\hat{\boldsymbol{G}}_{\boldsymbol{m}, A}$ (resp. $\boldsymbol{G}_{\boldsymbol{m}, A}$) is $G(\boldsymbol{X}, \boldsymbol{Y})$ satisfies the following functional equations:

$$
\begin{equation*}
G(\boldsymbol{S}(\boldsymbol{X}, \boldsymbol{Y}), \boldsymbol{Z}) G(\boldsymbol{X}, \boldsymbol{Y})=G(\boldsymbol{X}, \boldsymbol{S}(\boldsymbol{Y}, \boldsymbol{Z})) G(\boldsymbol{Y}, \boldsymbol{Z}) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
G(\boldsymbol{X}, \boldsymbol{Y})=G(\boldsymbol{Y}, \boldsymbol{X}) \tag{2}
\end{equation*}
$$

We denote by $Z^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{n, A}\right)\left(\right.$ resp. $\left.Z^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)\right)$ the subgroup of $A\left[\left[X_{0}, X_{1}, \ldots\right.\right.$, $\left.\left.X_{n-1}, Y_{0}, Y_{1}, \ldots, Y_{n-1}\right]\right]^{\times}$(resp. a polynomial of $A\left[X_{0}, X_{1}, \ldots, X_{n-1}, Y_{0}, Y_{1}, \ldots\right.$, $\left.Y_{n-1}\right]^{\times}$) formed by the symmetric 2-cocycles of $\hat{W}_{n, A}$ (resp. $W_{n, A}$) with coefficients in $\hat{\boldsymbol{G}}_{\boldsymbol{m}, \boldsymbol{A}}\left(\operatorname{resp} . \boldsymbol{G}_{\boldsymbol{m}, \boldsymbol{A}}\right)$.

Let $F(\boldsymbol{T})=F\left(T_{0}, T_{1}, \ldots, T_{n-1}\right)$ be a formal power series in $A\left[\left[T_{0}, T_{1}, \ldots, T_{n-1}\right]\right]^{\times}$ (resp. a polynomial in $\left.A\left[T_{0}, T_{1}, \ldots, T_{n-1}\right]^{\times}\right)$. Then $\boldsymbol{F}(\boldsymbol{X}) F(\boldsymbol{Y}) F(\boldsymbol{S}(\boldsymbol{X}, \boldsymbol{Y}))^{-1} \in Z^{2}\left(\hat{W}_{n, A}\right.$, $\left.\hat{\boldsymbol{G}}_{n, A}\right)$ (resp. $Z^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)$). We denote by $B^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{n, A}\right)$ (resp. $B^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)$) the subgroup of $Z^{2}\left(\hat{W}_{n, A}, \hat{G}_{n, A}\right)$ (resp. $Z^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)$) of the symmetric 2-cocycles of the form $F(\boldsymbol{X}) F(\boldsymbol{Y}) F(\boldsymbol{S}(\boldsymbol{X}, \boldsymbol{Y}))^{-1}$. Put

$$
H_{0}^{2}\left(\hat{W}_{n, A} \hat{\boldsymbol{G}}_{n, A}\right)=Z^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{n, A}\right) / B^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{n, A}\right)
$$

and

$$
H_{0}^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)=Z^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right) / B^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)
$$

$H_{0}^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{n, A}\right)\left(\right.$ resp. $\left.H_{0}^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)\right)$ is isomorphic to the subgroup of $\operatorname{Ext}_{A}^{1}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{n, A}\right)$ (resp. $\left.\operatorname{Ext}_{A}^{1}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)\right)$ formed by the classes of commutative extensions of $\hat{W}_{n, A}$ by $\hat{\boldsymbol{G}}_{m, A}$ (resp. $W_{n, \boldsymbol{A}}$ by $\boldsymbol{G}_{m, A}$), which split as extensions of formal A-schemes (resp. A-schemes).
2.2. Recall now the definition of the Artin-Hasse exponential series

$$
E_{p}(U)=\exp \left(\sum_{r \geq 0} \frac{U^{p^{r}}}{p^{r}}\right) \in \boldsymbol{Z}_{(p)}[[U]] .
$$

For $\boldsymbol{T}=\left(T_{r}\right)_{r \geq 0}$, put

$$
E_{p}(\boldsymbol{T} ; X)=\prod_{r \geq 0} E_{p}\left(T_{r} X^{p^{r}}\right)=\exp \left(\sum_{r \geq 0} \frac{1}{p^{r}} \Phi_{r}(\boldsymbol{T}) X^{p^{r}}\right)
$$

It is readily seen that

$$
E_{p}(\boldsymbol{T} ; X) E_{p}(\boldsymbol{U} ; X)=E_{p}(\boldsymbol{S}(\boldsymbol{T}, \boldsymbol{U}) ; X)
$$

For $\boldsymbol{T}=\left(T_{r}\right)_{r \geq 0}$ and $\boldsymbol{X}=\left(X_{r}\right)_{r \geq 0}$, we define a formal power series $E_{p}(\boldsymbol{T} ; \boldsymbol{X}) \in \boldsymbol{Z}_{(p)}[[\boldsymbol{T}, \boldsymbol{X}]]$ by

$$
E_{p}(\boldsymbol{T} ; \boldsymbol{X})=\exp \left(\sum_{r \geq 0} \frac{1}{p^{r}} \Phi_{r}(\boldsymbol{T}) \Phi_{r}(\boldsymbol{X})\right)=\exp \left(\sum_{r \geq 0} \frac{1}{p^{r}} \Phi_{r}\left(P_{r}(\boldsymbol{T}, \boldsymbol{X})\right)\right) .
$$

It is verified without difficulty that

$$
E_{p}(\boldsymbol{T} ; \boldsymbol{X}) E_{p}(\boldsymbol{U} ; \boldsymbol{X})=E_{p}(\boldsymbol{S}(\boldsymbol{T}, \boldsymbol{U}) ; \boldsymbol{X})
$$

and

$$
E_{p}(\boldsymbol{T} ; \boldsymbol{X}) E_{p}(\boldsymbol{T} ; \boldsymbol{Y})=E_{p}(\boldsymbol{T} ; \boldsymbol{S}(\boldsymbol{X}, \boldsymbol{Y}))
$$

Lemma 2.3. Let $\boldsymbol{T}=\left(T_{0}, T_{1}, T_{2}, \ldots\right), \boldsymbol{X}=\left(X_{0}, X_{1}, X_{2}, \ldots\right)$. Then

$$
E_{p}(F \boldsymbol{T} ; \boldsymbol{X})=E_{p}(\boldsymbol{T} ; V \boldsymbol{X})
$$

Here $F \boldsymbol{T}=\left(F_{0}(\boldsymbol{T}), F_{1}(\boldsymbol{T}), F_{2}(\boldsymbol{T}), \ldots\right)$ and $V \boldsymbol{X}=\left(0, X_{0}, X_{1}, \ldots\right)$.
Proof. Indeed, we have

$$
\begin{aligned}
E_{p}(F \boldsymbol{T} ; \boldsymbol{X}) & =E_{p}\left(\sum_{r \geq 0} \frac{1}{p^{r}} \Phi_{r}(F T) \Phi_{r}(X)\right) \\
& =E_{p}\left(\sum_{r \geq 0} \frac{1}{p^{r}} \Phi_{r+1}(\boldsymbol{T}) \frac{1}{p} \Phi_{r+1}(V X)\right)=E_{p}(\boldsymbol{T} ; V \boldsymbol{X}) .
\end{aligned}
$$

2.4. Let n be a positive integer. We define a polynomial $\Phi_{r, n}(\boldsymbol{X})=\Phi_{r, n}\left(X_{0}, X_{1}, \ldots\right.$, $\left.X_{n-1}\right)$ in $\boldsymbol{Z}\left[X_{0}, X_{1}, \ldots, X_{n-1}\right]$ by

$$
\Phi_{r, n}(\boldsymbol{X})= \begin{cases}\Phi_{r}\left(X_{0}, X_{1}, \ldots, X_{r}\right) & \text { if } r \leq n-1 \\ \Phi_{r}\left(X_{0}, X_{1}, \ldots, X_{n-1}, 0,0, \ldots\right) & \text { if } r \geq n\end{cases}
$$

For $\boldsymbol{X}=\left(X_{r}\right)_{r \geq 0}$, we put

$$
E_{p, n}(\boldsymbol{T} ; \boldsymbol{X})=E_{p}\left(\boldsymbol{T} ; X_{0}, \ldots, X_{n-1}, 0,0, \ldots\right)=\exp \left(\sum_{r \geq 0} \frac{1}{p^{r}} \Phi_{r}(\boldsymbol{T}) \Phi_{r, n}(\boldsymbol{X})\right)
$$

For example, we have

$$
E_{p, 1}(\boldsymbol{T} ; \boldsymbol{X})=E_{p}\left(\boldsymbol{T} ; X_{0}\right) .
$$

Remark 2.5. This definition of the formal power series $E_{p, n}(\boldsymbol{T} ; \boldsymbol{X})$ is a modification of that of $E_{p, n}(\boldsymbol{a} ; \boldsymbol{T})$ in [3,II.1.4]. As long as we treat the case of characteristic $p>0$, there is no difference between the two definitions.

Lemma 2.6. Let $\boldsymbol{X}=\left(X_{0}, X_{1}, \ldots, X_{n-1}\right), \boldsymbol{Y}=\left(Y_{0}, Y_{1}, \ldots, Y_{n-1}\right)$ and $\boldsymbol{S}=\left(S_{0}(\boldsymbol{X}, \boldsymbol{Y})\right.$, $\left.S_{1}(\boldsymbol{X}, \boldsymbol{Y}), \ldots, S_{n-1}(\boldsymbol{X}, \boldsymbol{Y})\right)$. Then

$$
E_{p, n}(\boldsymbol{T} ; \boldsymbol{X}) E_{p, n}(\boldsymbol{T} ; \boldsymbol{Y}) E_{p, n}(\boldsymbol{T} ; \boldsymbol{S})^{-1}=E_{p}\left(F^{n} \boldsymbol{T} ; \tilde{\boldsymbol{S}}_{n}\right),
$$

where $\tilde{\boldsymbol{S}}_{n}=\left(S_{n, n}(\boldsymbol{X}, \boldsymbol{Y}), S_{n+1, n}(\boldsymbol{X}, \boldsymbol{Y}), \ldots\right)$.
Proof. Indeed,

$$
\begin{array}{r}
E_{p, n}(\boldsymbol{T} ; \boldsymbol{X}) E_{p, n}(\boldsymbol{T} ; \boldsymbol{Y}) E_{p, n}(\boldsymbol{T} ; \boldsymbol{S})^{-1}=\exp \left(\sum_{r \geq 0} \frac{1}{p^{r}} \Phi_{r}(\boldsymbol{T})\left(\Phi_{r, n}(\boldsymbol{X})+\Phi_{r, n}(\boldsymbol{Y})-\Phi_{r, n}(\boldsymbol{S})\right)\right) \\
=\exp \left(\sum_{r \geq n} \frac{1}{p^{r}} \Phi_{r}(\boldsymbol{T})\left(p^{n} S_{n, n}^{p^{r-n}}+p^{n+1} S_{n+1, n}^{p^{r-n-1}}+\cdots+p^{r} S_{r, n}\right)\right)
\end{array}
$$

$$
\begin{aligned}
& =\exp \left(\sum_{i \geq 0} \frac{1}{p^{i}} \Phi_{n+i}(T)\left(S_{n, n}^{p^{i}}+p S_{n+1, n}^{S^{i-1}}+\cdots+p^{i} S_{n+i, n}\right)\right) \\
& =\exp \left(\sum_{i \geq 0} \frac{1}{p^{i}} \Phi_{n+i}(T) \Phi_{i}\left(S_{n, n}, S_{n+1, n}, \ldots, S_{n+i, n}\right)\right) \\
& =\exp \left(\sum_{i \geq 0} \frac{1}{p^{i}} \Phi_{i}\left(F^{n} \boldsymbol{T}\right) \Phi_{i}\left(S_{n, n}, S_{n+1, n}, \ldots, S_{n+i, n}\right)\right) \\
& =E_{p}\left(F^{n} \boldsymbol{T} ; \tilde{S}_{n}\right) .
\end{aligned}
$$

2.7. Now we define a formal power series $F_{p, n}(\boldsymbol{U} ; \boldsymbol{X}, \boldsymbol{Y})$ in $\boldsymbol{U}=\left(U_{0}, U_{1}, \ldots\right)$, $\boldsymbol{X}=\left(X_{0}, X_{1}, \ldots, X_{n-1}\right)$ and $\boldsymbol{Y}=\left(Y_{0}, Y_{1}, \ldots, Y_{n-1}\right)$ by

$$
F_{p, n}(\boldsymbol{U} ; \boldsymbol{X}, \boldsymbol{Y})=E_{p}\left(\boldsymbol{U} ; \tilde{\boldsymbol{S}}_{n}\right)=E_{p}\left(\boldsymbol{U} ; S_{n, n}, S_{n+1, n}, \ldots\right)
$$

Then obviously

$$
F_{p, n}(\boldsymbol{U} ; \boldsymbol{X}, \boldsymbol{Y}) \in Z^{2}\left(\hat{W}_{n \mathbf{z}_{(p)}[\boldsymbol{U}]}, \hat{\boldsymbol{G}}_{\boldsymbol{m}, \mathbf{Z}_{(p)}[\boldsymbol{U}]}\right) .
$$

Corollary 2.7.1. Let A be a $\boldsymbol{Z}_{(p)}$-algebra and $\boldsymbol{a} \in W(A)$. Then:
(1) $E_{p, n}(\boldsymbol{a} ; \boldsymbol{T}) \in \operatorname{Hom}_{A-\mathrm{gr}}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right)$ if $\boldsymbol{a} \in_{F^{n}} W(A)$;
(2) $E_{p, n}(\boldsymbol{a} ; \boldsymbol{T}) \in \operatorname{Hom}_{A-\mathrm{gr}}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)$ if $\boldsymbol{a} \in_{F^{n}} \hat{W}(A)$;
(3) $F_{p, n}(\boldsymbol{a} ; \boldsymbol{X}, \boldsymbol{Y}) \in Z^{2}\left(\hat{W}_{n, \boldsymbol{A}}, \hat{\boldsymbol{G}}_{m, A}\right)$ and $F_{p, n}\left(F^{n} \boldsymbol{a} ; \boldsymbol{X}, \boldsymbol{Y}\right) \in B^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right)$;
(4) $F_{p, n}(\boldsymbol{a} ; \boldsymbol{X}, \boldsymbol{Y}) \in Z^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)$ and $F_{p, n}\left(F^{n} \boldsymbol{a} ; \boldsymbol{X}, \boldsymbol{Y}\right) \in B^{2}\left(\hat{W}_{n, A}, \boldsymbol{G}_{m, A}\right)$ if $\boldsymbol{a} \in \hat{W}(A)$.
2.8. Let A be a $\boldsymbol{Z}_{(p)}$-algebra. We now define homomorphisms

$$
\begin{aligned}
& \xi_{n, A}^{0}: F^{n} \hat{W}(A) \rightarrow \operatorname{Hom}_{A-\mathrm{gr}}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right) ; \quad \boldsymbol{a} \mapsto E_{p, n}(\boldsymbol{a} ; \boldsymbol{X}), \\
& \xi_{n, A}^{1}: \hat{W}(A) / F^{n} \rightarrow H_{0}^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right) ; \quad \boldsymbol{a} \mapsto F_{p, n}(\boldsymbol{a} ; \boldsymbol{X}, \boldsymbol{Y}), \\
& \xi_{n, A}^{0}:{ }_{F}{ }^{n} W(A) \rightarrow \operatorname{Hom}_{A-\mathrm{gr}}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right) ; \quad \boldsymbol{a} \mapsto E_{p, n}(\boldsymbol{a} ; \boldsymbol{X}), \\
& \xi_{n, A}^{1}: W(A) / F^{n} \rightarrow H_{0}^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right) ; \quad \boldsymbol{a} \mapsto F_{p, n}(\boldsymbol{a} ; \boldsymbol{X}, \boldsymbol{Y}) .
\end{aligned}
$$

In this notation, our main result is given as follows:
Theorem 2.8.1. Let A be a $\boldsymbol{Z}_{(p)^{-}}$-algebra. Then the homomorphisms

$$
\begin{aligned}
& \xi_{n, A}^{0}:{ }_{F}{ }^{n} \hat{W}(A) \rightarrow \operatorname{Hom}_{A-\mathrm{gr}}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right), \\
& \xi_{n, A}^{0}:{ }_{F^{n}} W(A) \rightarrow \operatorname{Hom}_{A-\mathrm{gr}}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right), \\
& \xi_{n, A}^{1}: \hat{W}(A) / F^{n} \rightarrow H_{0}^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right), \\
& \xi_{n, A}^{1}: W(A) / F^{n} \rightarrow H_{0}^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right),
\end{aligned}
$$

are isomorphisms.

We verify some compatibilites for ξ_{n}^{0} and ξ_{n}^{1}, which are needed to prove the theorem.
Lemma 2.9. Let A be a $\boldsymbol{Z}_{(p)}$-algebra. Then:
(1) The diagrams

and

are commutative. Here the horizontal arrows denote the canonical injections.
(2) The diagrams

and

are commutative.
(3) The diagrams
and

are commutative.
(4) The diagrams

and

are commutative. Here the horizontal arrows denote the canonical surjections.
Proof. By Lemma 2.3, we have the equalities

$$
E_{p, n+1}\left(\boldsymbol{U} ; X_{0}, \ldots, X_{n-1}\right)=E_{p, n}\left(\boldsymbol{U} ; X_{0}, \ldots, X_{n-1}\right)
$$

and

$$
E_{p, n+1}\left(\boldsymbol{U} ; 0, X_{0}, \ldots, X_{n-1}\right)=E_{p, n}\left(F \boldsymbol{U} ; X_{0}, \ldots, X_{n-1}\right),
$$

which imply (1) and (2).
Now we prove (3). Noting that

$$
\Phi_{r, n+1}(\boldsymbol{T})-\Phi_{r, n}(\boldsymbol{T})= \begin{cases}0 & (r \leq n-1) \\ p^{n} T_{n}^{p^{r-n}} & (r \geq n)\end{cases}
$$

we obtain

$$
E_{p, n+1}(\boldsymbol{V}, \boldsymbol{T}) E_{p, n}(\boldsymbol{V}, \boldsymbol{T})^{-1}=\exp \left(\sum_{r=0}^{\infty} \frac{1}{p^{r}} \Phi_{r+n}(\boldsymbol{V}) T_{n}^{p^{r}}\right)=E_{p}\left(F^{n} \boldsymbol{V} ; T_{n}\right)
$$

Putting $\boldsymbol{U}=F^{n} \boldsymbol{V}$, we get

$$
F_{p, n+1}(F \boldsymbol{U} ; \boldsymbol{X}, \boldsymbol{Y}) F_{p, n}(\boldsymbol{U} ; \boldsymbol{X}, \boldsymbol{Y})^{-1}=E_{p}\left(\boldsymbol{U} ; X_{n}\right) E_{p}\left(\boldsymbol{U} ; Y_{n}\right) E_{p}\left(\boldsymbol{U} ; S_{n}(\boldsymbol{X}, \boldsymbol{Y})\right)^{-1}
$$

which implies that

$$
\left[F_{p, n+1}(F \boldsymbol{U} ; \boldsymbol{X}, \boldsymbol{Y})\right]=\left[F_{p, n}(\boldsymbol{U} ; \boldsymbol{X}, \boldsymbol{Y})\right] \quad \text { in } \quad H_{0}^{2}\left(\hat{W}_{n+1, \mathbf{Z}_{(p)}[\boldsymbol{U}]}, \hat{\boldsymbol{G}}_{m, \mathbf{Z}_{(p)}[\boldsymbol{U})}\right) .
$$

To verify (4), it is enough to note that

$$
\begin{aligned}
F_{p, n+1}(\boldsymbol{U} ; V \boldsymbol{X}, V \boldsymbol{Y}) & =E_{p}\left(\boldsymbol{U} ; S_{n+1, n+1}(V \boldsymbol{X}, V \boldsymbol{Y}), S_{n+2, n+1}(V \boldsymbol{X}, V \boldsymbol{Y}), \ldots\right) \\
& =E_{p}\left(\boldsymbol{U} ; S_{n, n}(\boldsymbol{X}, \boldsymbol{Y}), S_{n+1, n}(\boldsymbol{X}, \boldsymbol{Y}), \ldots\right) \\
& =F_{p}(\boldsymbol{U} ; \boldsymbol{X}, \boldsymbol{Y})
\end{aligned}
$$

Lemma 2.10. Let A be a $\boldsymbol{Z}_{(p)}$-algebra. Then the diagrams

and

are commutative. Here the horizontal arrows above denote the maps induced by $\boldsymbol{a} \mapsto \boldsymbol{a}$, and ∂ 's denote the boundary maps defined by the exact sequences of formal group schemes

$$
0 \longrightarrow \hat{W}_{n, A} \xrightarrow{V^{m}} \hat{W}_{n+m, A} \xrightarrow{R^{n}} \hat{W}_{m, A} \longrightarrow 0
$$

or of group schemes

$$
0 \longrightarrow W_{n, A} \xrightarrow{V^{m}} W_{n+m, A} \xrightarrow{R^{n}} W_{m, A} \longrightarrow 0 .
$$

Proof. The extension of formal group schemes

$$
0 \longrightarrow \hat{W}_{n, A} \xrightarrow{V^{m}} \hat{W}_{n+m, A} \xrightarrow{R^{n}} \hat{W}_{m, A} \longrightarrow 0
$$

is defined by the 2-cocycle

$$
\left(S_{m, m}(\boldsymbol{X}, \boldsymbol{Y}), S_{m+1, m}(\boldsymbol{X}, \boldsymbol{Y}), \ldots, S_{m+n-1, m}(\boldsymbol{X}, \boldsymbol{Y})\right) \in Z^{2}\left(\hat{W}_{m, A}, \hat{W}_{n, A}\right)
$$

Hence the boundary map $\partial: \operatorname{Hom}_{A-\mathrm{gr}}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right) \rightarrow H_{0}^{2}\left(\hat{W}_{m, A}, \hat{\boldsymbol{G}}_{m, A}\right)$ is defined by

$$
E_{p, n}(\boldsymbol{a} ; \boldsymbol{T}) \mapsto E_{p, n}\left(\boldsymbol{a} ; S_{m, m}(\boldsymbol{X}, \boldsymbol{Y}), S_{m+1, m}(\boldsymbol{X}, \boldsymbol{Y}), \ldots, S_{m+n-1, m}(\boldsymbol{X}, \boldsymbol{Y})\right)
$$

Noting that

$$
F_{p, m}(\boldsymbol{a} ; \boldsymbol{X}, \boldsymbol{Y})=E_{p}\left(\boldsymbol{a} ; \boldsymbol{S}_{m, m}(\boldsymbol{X}, \boldsymbol{Y}), S_{m+1, m}(\boldsymbol{X}, \boldsymbol{Y}), \ldots, S_{m+n-1, m}(\boldsymbol{X}, \boldsymbol{Y}), S_{n+m, m}(\boldsymbol{X}, \boldsymbol{Y}), \ldots\right)
$$ we obtain

$$
\begin{gathered}
F_{p, m}(\boldsymbol{a} ; \boldsymbol{X}, \boldsymbol{Y}) E_{p, n}\left(\boldsymbol{a} ; S_{m, m}(\boldsymbol{X}, \boldsymbol{Y}), S_{m+1, m}(\boldsymbol{X}, \boldsymbol{Y}), \ldots, S_{m+n-1, m}(\boldsymbol{X}, \boldsymbol{Y})\right)^{-1} \\
\quad=E_{p}\left(\boldsymbol{a} ; 0, \ldots, 0, S_{m+n, m}(\boldsymbol{X}, \boldsymbol{Y}), S_{m+n+1, m}(\boldsymbol{X}, \boldsymbol{Y}), \ldots\right) \\
\quad=E_{p}\left(F^{n} \boldsymbol{a} ; S_{m+n, m}(X, \boldsymbol{Y}), S_{m+n+1, m}(X, Y), \ldots\right),
\end{gathered}
$$

which implies the asserted commutativity of the diagram. The case of group schemes is verified similarly.

3. Proof of the theorem.

3.1. It remains to prove the case $n=1$, in view of the commutative diagrams with exact rows:

induced by the exact sequence of formal group schemes

$$
0 \longrightarrow \hat{\boldsymbol{G}}_{a, \boldsymbol{A}} \xrightarrow{V^{n}} \hat{W}_{n+1, \boldsymbol{A}} \xrightarrow{R} \hat{W}_{n, A} \longrightarrow 0,
$$

and

induced by the exact sequence of formal group schemes

$$
0 \longrightarrow \boldsymbol{G}_{a, A} \xrightarrow{V^{n}} W_{n+1, A} \xrightarrow{R} W_{n, A} \longrightarrow 0 .
$$

The following lemma implies the bijectivity of

$$
\xi_{1, A}^{0}:{ }_{F} W(A) \rightarrow \operatorname{Hom}_{A-\mathrm{gr}}\left(\hat{\boldsymbol{G}}_{a, A}, \hat{\boldsymbol{G}}_{m, A}\right)
$$

and

$$
\xi_{1, A}^{0}:{ }_{F} \hat{W}(A) \rightarrow \operatorname{Hom}_{A-\mathrm{gr}}\left(\boldsymbol{G}_{a, A}, \boldsymbol{G}_{m, A}\right)
$$

Lemma 3.2. Let A be a $Z_{(p)}$-algebra and $F(T) \in A[[T]]^{\times}$. If $F(X+Y)=F(X) F(Y)$, then there exists $\boldsymbol{a} \in_{F} W(A)$ such that $F(T)=E_{p}(\boldsymbol{a} ; T)$. Moreover, if $F(T) \in A[T]^{\times}$, then $\boldsymbol{a} \in_{F} \hat{W}(A)$.

Proof. Put

$$
F(T)=\prod_{k=1}^{\infty} E_{p}\left(c_{k} T^{k}\right), \quad c_{k} \in A,
$$

and set $\boldsymbol{a}=\left(c_{p^{r}}\right)_{r \geq 0}$ and $G(T)=\prod_{k \notin P} E_{p}\left(c_{k} T\right)$, where $P=\left\{p^{j} ; j \geq 0\right\}$. Then

$$
F(T)=E_{p}(a ; T) G(T),
$$

hence

$$
\begin{aligned}
\left(G(X) G(Y) G(X+Y)^{-1}\right)^{-1} & =E_{p}(\boldsymbol{a} ; X) E_{p}(\boldsymbol{a} ; Y) E_{p}(\boldsymbol{a} ; X+Y)^{-1} \\
& =F_{p, 1}(F a ; X, Y) .
\end{aligned}
$$

Note that

$$
F_{p, 1}(F a ; X, Y) \equiv 1+\text { the term of degree } p^{r} \quad\left(\bmod \text { degree } p^{r}+1\right)
$$

for some r. If $G(T) \neq 1$, then $G(T) \equiv 1+c T^{k}(\bmod$ degree $k+1)$ with $c \neq 0$ for some $k>0$. Then k is not a power of p, and

$$
G(X) G(Y) G(X+Y)^{-1} \equiv 1+c\left\{X^{k}+Y^{k}-(X+Y)^{k}\right\} \quad(\bmod \text { degree } k+1) .
$$

It follows that $G(T)=1$ and $F_{p, 1}(F a ; X, Y)=1$, and therefore $F a=0$.
To prove the bijectivity of $\xi_{1, A}^{1}: W(A) / F \rightarrow H_{0}^{2}\left(\hat{\boldsymbol{G}}_{a, A}, \hat{\boldsymbol{G}}_{m, A}\right)$ and $\xi_{1, A}^{1}: \hat{W}(A) / F \rightarrow$ $H_{0}^{2}\left(\boldsymbol{G}_{a, A}, \boldsymbol{G}_{m, A}\right)$, we need several lemmas. We put $P=\left\{p^{j} ; j \geq 0\right\}$ as above.

Sublemma 3.3. Let $\boldsymbol{U}=\left(U_{0}, U_{1}, \ldots\right)$. Then we have

$$
F_{p, 1}(\boldsymbol{U} ; X, Y)=\exp \left(\sum_{r \geq 0} \frac{1}{p^{r}} \Phi_{r}\left(U_{0}, U_{1}, \ldots, U_{r}\right) \frac{X^{p^{r+1}}+Y^{p^{r+1}}-(X+Y)^{p^{r+1}}}{p}\right)
$$

Proof. By definition,

$$
\begin{aligned}
& F_{p, 1}(\boldsymbol{U} ; X, Y) \\
& \quad=\exp \left(\sum_{r \geq 0} \frac{1}{p^{r}} \Phi_{r}\left(U_{0}, U_{1}, \ldots, U_{r}\right) \Phi_{r}\left(S_{1,1}(X, Y), S_{2,1}(X, Y), \ldots, S_{r+1,1}(X, Y)\right)\right),
\end{aligned}
$$

where

$$
S_{r+1,1}(X, Y)=S_{r+1}(X, 0, \ldots, 0, Y, 0, \ldots, 0)
$$

Hence we obtain the assertion, noting that

$$
\begin{aligned}
(X & +Y)^{p^{+1}}+p \Phi_{r}\left(S_{1,1}(X, Y), S_{2,1}(X, Y), \ldots, S_{r+1,1}(X, Y)\right) \\
& =\Phi_{r+1}\left(S_{0}(X, Y), S_{1,1}(X, Y), S_{2,1}(X, Y), \ldots, S_{r+1,1}(X, Y)\right) \\
& =\Phi_{r+1}(X, 0, \ldots, 0)+\Phi_{r+1}(Y, 0, \ldots, 0)=X^{p^{r+1}}+Y^{p^{r+1}}
\end{aligned}
$$

and that

$$
\Phi_{r}\left(S_{1,1}(X, Y), S_{2,1}(X, Y), \ldots, S_{r+1,1}(X, Y)\right)=\frac{X^{p^{r+1}}+Y^{p^{r+1}}-(X+Y)^{p^{r+1}}}{p}
$$

Corollary 3.3.1. Let A be a $\boldsymbol{Z}_{(p)}$-algebra and $a=\left(a_{i}\right)_{i \geq 0} \in W(A)$. Then

$$
F_{p, 1}(a ; X, Y) \equiv 1+a_{0} \frac{X^{p}+Y^{p}-(X+Y)^{p}}{p}(\bmod \text { degree } p+1) .
$$

Moreover, if $a_{i}=0$ for $i<r$, then

$$
F_{p, 1}(a ; X, Y) \equiv 1+a_{r} \frac{X^{p^{r+1}}+Y^{p^{r+1}}-(X+Y)^{p^{r+1}}}{p}\left(\bmod \text { degree } p^{r+1}+1\right)
$$

Proof. By Lemma 3.3,

$$
F_{p, 1}(\boldsymbol{U} ; X, Y)=\exp \left(U_{0} \frac{X^{p}+Y^{p}-(X+Y)^{p}}{p}+\text { terms of degree }>p\right)
$$

Hence we obtain

$$
F_{p, 1}(\boldsymbol{U} ; X, Y) \equiv 1+U_{0} \frac{X^{p}+Y^{p}-(X+Y)^{p}}{p}\left(\bmod (X, Y)^{p+1}\right) .
$$

Moreover,

$$
\begin{aligned}
& F_{p, 1}\left(0, \ldots, 0, U_{r}, U_{r+1}, \ldots ; X, Y\right) \\
& \quad=\exp \left(U_{r} \frac{X^{p^{r+1}}+Y^{p^{r+1}}-(X+Y)^{p^{r+1}}}{p}+\text { terms of degree }>p^{r+1}\right),
\end{aligned}
$$

since $\Phi_{i}(0, \ldots, 0)=0$ for $i<r$ and $\Phi_{r}\left(0, \ldots, 0, U_{r}\right)=p^{r} U_{r}$. Hence we have

$$
\begin{aligned}
& F_{p, 1}\left(0, \ldots, 0, U_{r}, U_{r+1}, \ldots ; X, Y\right) \\
& \quad \equiv 1+U_{r} \frac{X^{p^{r+1}}+Y^{p^{r+1}}-(X+Y)^{p^{r+1}}}{p}\left(\bmod (X, Y)^{p^{r+1}+1}\right) .
\end{aligned}
$$

These imply the assertion.
Lemma 3.4. Let A be a $\boldsymbol{Z}_{(p)}$-algebra and $F(X, Y) \in Z^{2}\left(\hat{\boldsymbol{G}}_{a, A}, \hat{\boldsymbol{G}}_{m, A}\right) \subset A[[X, Y]]^{\times}$. Then there exist $\boldsymbol{a} \in W(A)$ and $G(T)=\prod_{k \notin P}\left(1+c_{k} T^{k}\right) \in A[[T]]^{\times}$such that $F(X, Y)=$ $F_{p, 1}(\boldsymbol{a} ; X, Y) G(X) G(Y) G(X+Y)^{-1}$.

Proof. Dividing $F(X, Y)$ by its constant term, we may assume that $F(X, Y) \equiv 1$ $(\bmod$ degree 1$)$. Assume now that there exist $a_{i}, c_{j} \in A(0 \leq i<r-1$ and $1<j<k, j \notin P)$ such that
$F_{p, 1}\left(a_{0}, a_{1}, \ldots, a_{r-2}, 0, \ldots ; X, Y\right) G_{k}(X) G_{k}(Y) G_{k}(X+Y)^{-1} \equiv F(X, Y) \quad(\bmod$ degree $k)$,
where $r=\left[\log _{p} k\right]$, the greatest integer not greater than $\log _{p} k$, and $G_{k}(T)=\prod_{j<k}(1+$ $\left.c_{j} T^{j}\right)$. Let $H(X, Y)$ denote the homogeneous component of degree k of $F(X, Y)$ $\left[F_{p, 1}\left(a_{0}, a_{1}, \ldots, a_{r-2}, 0, \ldots ; X, Y\right) G_{k}(X) G_{k}(Y) G_{k}(X+Y)^{-1}\right]^{-1}$. Since $F(X, Y)\left[F_{p, 1}\left(a_{0}\right.\right.$, $\left.\left.a_{1}, \ldots, a_{r-2}, 0, \ldots ; X, Y\right) G_{k}(X) G_{k}(Y) G_{k}(X+Y)^{-1}\right]^{-1} \in Z^{2}\left(\hat{G}_{a, B}, \hat{G}_{m, B}\right)$, we see that $H(X, Y)$ satisfies the functional equations:

1) $H(X+Y, Z)+H(X, Y)=H(X, Y+Z)+H(Y, Z)$;
2) $H(X, Y)=H(Y, X)$.

By Lazard's comparison lemma [2, Lemma 3], there exists $a \in A$ such that

$$
H(X, Y)= \begin{cases}a\left\{X^{k}+Y^{k}-(X+Y)^{k}\right\} & \text { if } k \text { is not a power of } p \\ a \frac{X^{k}+Y^{k}-(X+Y)^{k}}{p} & \text { if } k \text { is a power of } p\end{cases}
$$

(1) When k is not a power of p, put $c_{k}=a$ and $G_{k+1}(T)=G_{k}(T)\left(1+c_{k} T^{k}\right)$. Then we have

$$
F_{p, 1}\left(a_{k} ; X, Y\right) G_{k+1}(X) G_{k+1}(Y) G_{k+1}(X+Y)^{-1} \equiv F(X, Y) \quad(\bmod \text { degree } k+1)
$$

since

$$
\left(1+c_{k} X^{k}\right)\left(1+c_{k} Y^{k}\right)\left\{1+c_{k}(X+Y)^{k}\right\}^{-1} \equiv 1+c_{k}\left\{X^{k}+Y^{k}-(X+Y)^{k}\right\} \quad(\bmod \text { degree } k+1)
$$

(2) When $k=p^{r}$, put $a_{r-1}=a$. By Corollary 3.3.1, we have

$$
F_{p, 1}(\underbrace{0, \ldots, 0}_{r-1}, a_{r-1}, 0, \ldots ; X, Y) \equiv 1+a_{r-1} \frac{X^{p^{r}}+Y^{p^{r}}-(X+Y)^{p^{r}}}{p} \quad\left(\bmod \text { degree } p^{r}+1\right)
$$

Hence we obtain

$$
F_{p, 1}\left(a_{0}, \ldots, a_{r-2}, a_{r-1}, 0, \ldots ; X, Y\right) G_{k}(X) G_{k}(Y) G_{k}(X+Y)^{-1} \equiv F(X, Y)
$$

$$
\left(\bmod \text { degree } p^{r}+1\right)
$$

noting that

$$
\begin{gathered}
F_{p, 1}\left(a_{0}, \ldots, a_{r-2}, 0, \ldots ; X, Y\right) F_{p, 1}\left(0, \ldots, 0, a_{r-1}, 0, \ldots ; X, Y\right) \\
=F_{p, 1}\left(a_{0}, \ldots, a_{r-2}, a_{r-1}, 0, \ldots ; X, Y\right)
\end{gathered}
$$

Continuing this process, we find $\boldsymbol{a} \in W(A)$ and $G(T)=\prod_{k \notin P}\left(1+c_{k} T^{k}\right) \in A[[T]]$ such that $F(X, Y)=F_{p, 1}(\boldsymbol{a} ; X, Y) G(X) G(Y) G(X+Y)^{-1}$.

Lemma 3.5. Let A be a $\boldsymbol{Z}_{(p)}$-algebra and $F(X, Y) \in Z^{2}\left(\boldsymbol{G}_{a, A}, \boldsymbol{G}_{m, A}\right) \subset A[X, Y]^{\times}$. Then there exist $\boldsymbol{a} \in \hat{W}(A)$ and $G(T)=\prod_{k \notin P}\left(1+c_{k} T^{k}\right) \in A[T]^{\times}$such that $F(X, Y)=F_{p, 1}(\boldsymbol{a} ; X$, $Y) G(X) G(Y) G(X+Y)^{-1}$.

Proof. As above, dividing $F(X, Y)$ by its constant term, we may assume that $F(X, Y) \equiv 1(\bmod$ degree 1$)$. By Lemma 3.4, there exist $\boldsymbol{a}=\left(a_{i}\right)_{i \geq 0} \in W(A)$ and $G(T)=$ $\prod_{k \notin P}\left(1+c_{k} T^{k}\right) \in A[[T]]^{\times}$such that $F(X, Y)=F_{p, 1}(\boldsymbol{a} ; X, Y) G(X) G(Y) G(X+Y)^{-1}$. We prove that $\boldsymbol{a} \in \hat{W}(A)$ and $G(T) \in A[T]^{\times}$.

Let d be the degree of $F(X, Y)$ and let a denote the ideal of A generated by the coefficients of the terms of degree ≥ 1 in $F(X, Y)$. Since the polynomial $F(X, Y)$ is invertible, \mathfrak{a} is nilpotent.

Now observe the following:

1) For $j \notin P$, put

$$
\left(1+c_{j} X^{j}\right)\left(1+c_{j} Y^{j}\right)\left\{1+c_{j}(X+Y)^{j}\right\}^{-1}=1+\sum_{k=1}^{\infty} H_{k}(X, Y)
$$

where $H_{k}(X, Y)$ is homogeneous of degree $j k$. Then the ideal generated by the coefficients of $H_{1}(X, Y)$ coincides with $\left(c_{j}\right)$, and the ideal generated by the coefficients of $H_{k}(X, Y)$ is contained in $\left(c_{j}\right)^{k}$ for $k>1$;
2) Put

$$
F_{p, 1}(\underbrace{0, \ldots, 0}_{i}, a_{i}, 0, \ldots ; X, Y)=1+\sum_{k=1}^{\infty} H_{k}(X, Y)
$$

where $H_{k}(X, Y)$ is homogeneous of degree $p^{i+1} k$. Then the ideal generated by the coefficients of $H_{1}(X, Y)$ coincides with $\left(a_{i}\right)$, and the ideal generated by the coefficients of $H_{k}(X, Y)$ is contained in $\left(a_{i}\right)^{k}$ for $k>1$. These imply the following:

1) If j is not a power of p and $(s-1) d<j \leq s d$, then $c_{j} \in \mathfrak{a}^{s}$;
2) If $(s-1) d<p^{i+1} \leq s d$, then $a_{i} \in \mathfrak{a}^{s}$.

Hence, a_{i} and c_{j} are nilpotent for all i and j, and are zero for all but a finite number of i and j.
3.6. Now we prove the bijectivity of $\xi_{1, A}^{1}: W(A) / F \rightarrow H_{0}^{2}\left(\hat{\boldsymbol{G}}_{a, A}, \hat{\boldsymbol{G}}_{m, A}\right)$ and $\xi_{1, A}^{1}$: $\hat{W}(A) / F \rightarrow H_{0}^{2}\left(\boldsymbol{G}_{a, A}, \boldsymbol{G}_{m, A}\right)$.

Lemma 3.4 and Lemma 3.5 imply the surjectivity of $\xi_{1, A}^{1}: W(A) / F \rightarrow H_{0}^{2}\left(\hat{\boldsymbol{G}}_{a, A}, \hat{\boldsymbol{G}}_{m, A}\right)$ and $\xi_{1, A}^{1}: \hat{W}(A) / F \rightarrow H_{0}^{2}\left(\boldsymbol{G}_{a, A}, \boldsymbol{G}_{m, A}\right)$, respectively.

Now assume that $F_{p, 1}(\boldsymbol{a} ; X, Y) \in B^{2}\left(\hat{\boldsymbol{G}}_{a, A}, \hat{\boldsymbol{G}}_{m, A}\right)$ for $\boldsymbol{a} \in W(A)$. Then there exists $F(T) \in A[[T]]^{\times}$such that $F(X) F(Y) F(X+Y)^{-1}=F_{p, 1}(\boldsymbol{a} ; X, Y)$. Put $F(T)=\prod_{k \geq 1} E_{p}\left(c_{k} T^{k}\right)$. Then

$$
F_{p, 1}(\boldsymbol{a} ; X, Y) F_{p, 1}(F \boldsymbol{b} ; X, Y)^{-1}=\prod_{k \notin P} E_{p}\left(c_{k} X^{k}\right) E_{p}\left(c_{k} Y^{k}\right) E_{p}\left(c_{k}(X+Y)^{k}\right)^{-1}
$$

where $\boldsymbol{b}=\left(c_{p^{r}}\right)_{r \geq 0}$. As in the proof of Lemma 3.2, we see that $c_{k}=0$ if k is not a power of p, hence $F_{p, 1}(\boldsymbol{a} ; X, Y)=F_{p, 1}(F \boldsymbol{b} ; X, Y)$. It follows that $\xi_{1, A}^{1}: W(A) / F \rightarrow H_{0}^{2}\left(\hat{\boldsymbol{G}}_{a, A}, \hat{\boldsymbol{G}}_{m, A}\right)$ is injective. It is similarly seen that $\xi_{1, A}^{1}: \hat{W}(A) / F \rightarrow H_{0}^{2}\left(\boldsymbol{G}_{a, A}, \boldsymbol{G}_{m, A}\right)$ is injective.

Remark 3.7. $\operatorname{End}_{A-\mathrm{gr}}\left(\hat{W}_{n, A}\right)\left(\right.$ resp. $\left.\operatorname{End}_{A-\mathrm{gr}}\left(W_{n, A}\right)\right)$ acts on $H_{0}^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right)$ (resp. $\left.H_{0}^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)\right)$ by the pull-back. We can describe the action under the identifications $H_{0}^{2}\left(\hat{W}_{n, A}, \hat{\boldsymbol{G}}_{m, A}\right)=W(A) / F^{n}$ and $H_{0}^{2}\left(W_{n, A}, \boldsymbol{G}_{m, A}\right)=\hat{W}(A) / F^{n}$ as follows:

Let [b] denote the endomorphism of $\hat{W}_{n, A}$ or $W_{n, A}$, defined by $\boldsymbol{b}=\left(b_{r}\right)_{0 \leq r \leq n-1} \in$ $W_{n}(A)$. Then $\boldsymbol{a}[\boldsymbol{b}]=\left(F^{n} \boldsymbol{b}\right) \cdot \boldsymbol{a}$.

Remark 3.8. It is more or less known that $H_{0}^{2}\left(\hat{\boldsymbol{G}}_{a, A}, \hat{\boldsymbol{G}}_{m, A}\right)=0$ and $H_{0}^{2}\left(\boldsymbol{G}_{a, A}\right.$, $\left.\boldsymbol{G}_{\boldsymbol{m}, \boldsymbol{A}}\right)=0$ if A is of characteristic 0 . We can also verify these facts, noting that the homomorphism F is surjective on $W(A)$ and on $\hat{W}(A)$.

References

[1] L. Illuse, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12 (1979), 501-661.
[2] M. LaZARD, Sur les groupes de Lie formels à un paramétre, Bull. Soc. Math. France 83 (1955), 251-274.
[3] T. Sekiguchi and N. Suwa, A note on extensions of algebraic and formal groups I, II, Math. Z. 206 (1991), 567-575; 217 (1994), 447-457.
[DG] M. Demazure and P. Gabriel, Groupes algébriques, Tome 1, Masson-North-Holland, Paris-

Amsterdam, 1970.

[HZ] M. Hazewinkel, Formal groups and applications, Academic Press, New York, 1978.

Department of Mathematics	Department of Mathematics
Chuo University	Tokyo Denki University
13-27 Kasuga 1-chome, Bunkyo-ku	Kanda-Nishiki-cho, Chiyoda-ku
Tokyo 112	Tokyo 101
Japan	Japan

[^0]: * Partially supported by Grant-in-Aid for Scientific Research No. 07640069.

 1991 Mathematics Subject Classification, Primary 14L05; Secondary 13K05, 20G10.

