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Abstract. We consider here a general Lotka-Volterra type ^-dimensional periodic
functional differential system. Sufficient conditions for the existence, uniqueness and
global asymptotic stability of periodic solutions are established by combining the theory
of monotone flow generated by FDEs, Horn's asymptotic fixed point theorem and
linearized stability analysis. These conditions improve and generalize the recent ones
obtained by Freedman and Wu (1992) for scalar equations. We also present a nontrivial
application of our results to a delayed nonautonomous predator-prey system.

1. Introduction. The π-dimensional Lotka-Volterra system takes the following
form:

*iW=χ i(f)6> ί+ Σ Wa
\ j=ί

where the dot denotes the differentiation with respect to t and bi9 a{j (ij= 1, . . . , n) are
constants. This system has long played an important role in mathematical population
biology (cf. Hofbauer and Sigmund [15]). However, realistic models often require the
inclusion of effects of time delays and the changing environment. This leads us to the
study of the following more general nonautonomous Lotka-Volterra system with time
delay:

(1.2) xi(t) = xi(t)(bi(t)+ £ <*tjt)xj(t)+ Σ CyCOx/f-τy
\ j = ι j= ι

where / = ! , . . . , « . Biologically, due to the difference in species, τ0 (ί) are usually dif-
ferent. However, to minimize the technical complexity in the presentation of our results,
we assume in the rest of this paper that τij(i) = τ(i). Nevertheless, we would like to men-
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tion here that our methods and results in this paper can be applied to the system (1.2)
even if τtj are different. This can be seen from the proofs of the theorems to be presented
(proper adjustments are necessary).

In this paper, we assume that the environment changes periodically (seasonal
changes), which leads us to assume that bt(t\ α0 (ί) and c^f) (ij= 1, . . . , n) and τ(ί) are
continuously differentiable ω-periodic functions. In addition, we assume that Z?ί(ί)>0,
au(t)<09 τ(ί)>0 for teR = ( — co9 +00). In fact, we will consider the more general

system

(1.3) Xi(t) = Xi(t)Ft(t9 Xi(ί), . . . , xΛ(f), *ι(f-τ(ί)), . . . , xB(f-τ(t))) ,

where Ft are periodic with respect to t for /=! , . . . , « . Our objective is to establish
conditions for the existence and uniqueness of nonconstant periodic solutions in (1.3).

Almost all of the existing works on the system (1.2) are concerned with the stability
of its equilibria. Results for scalar equations can be found in Haddock and Kuang [7],
Kuang [17] and the references cited therein. Results for systems can be found in
Gopalsamy [6], Kuang [17], Kuang and Smith [18], Martin and Smith [19] and the
references cited therein.

Motivated by the laboratory work of the group led by Halbach (see [2], [8]-[l 1],
[20], [25] and the references cited therein), Freedman and Wu [5] studied the existence
of periodic solutions of the scalar equation

(1 .4) x(t) = χ(t)|Xί) - b(t)x(t) + c(t)x(t - τ(ί))] ,

where a(t\ b(t\ c(i) and τ(ί) are continuously differentiable ω-periodic functions, and
0(t)>0, fe(ί)>0, c(f)>0, τ(ί)>0 for teR. In this paper, we will greatly improve and
generalize their results to the system (1.3) by combining the theory of monotone
semiflows generated by functional differential equations (FDEs) and Horn's asymptotic
fixed point theorem. In addition, by a careful local stability analysis of the linearized
system, we are able to obtain sufficient conditions for the uniqueness and asymptotic
stability of periodic solutions of the system (1.3).

It should be pointed out that both our methods and results are somewhat different
from those existing ones (e.g., see [5], [1] and [14]). To some extent, our results
indicate that the uniform persistence and uniform boundedness (see the condition (A4)
in Section 3) imply the existence of periodic solutions in the system (1.3). For the
definitions of persistence and related notions, see [3], [4], [13], [24] and the references
cited therein.

The theory of monotone semiflows generated by functional differential equations
has been developed by Smith [21], Smith and Thieme [22] and others. For details we
refer to [21], [22] and the references cited therein.

This paper is organized as follows. In the next section, we present some prelimi-
naries. The existence results for periodic solutions of (1.3) are given in Section 3.
Section 4 is devoted to the uniqueness theorem for periodic solutions of (1.3). The
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final section contains applications of our main results to some well-known systems.

2. Preliminaries. In order to apply the theory of monotone semiflows generated
by FDEs, we consider first the following auxiliary nonautonomous delay system

(2.1) xi(t) = xi(t)Gi(t, Xl(t), . . . , xn(t), xΛί-τίί)), . . . , xn(t-τ(t))) ,

where / = ! , . . . , w, x = (xl9 . . . , xn)eR"+ = {xeR" : xt->0}, and Rn

+ = {xeR"+ : x^O}.
We assume in (2.1),

(HI) dGi(t, Xi, . . . , xn, yί9 . . . , yj/dxj>0 forj^i and 3G£(ί, x l 5 . . . , xw, >Ί, . . . , yn)/dyk>
0, f , 7 , f c = l , . . . , n .

(H2) There is a /? = ( pl9 . . . , /O e /?+ such that

Gi(t9p1,...,pn9p1,...,pn)<0 for / e / ? , i = l , . . . , w .

It is easy to see that (HI) guarantees that the system (2.1) generates monotone
semiflows while (H2) ensures some solutions are bounded by p (see Lemma 2.2 below).

Suppose τ(ί) is continuously differentiable, nonnegative and bounded above by

τ*. We define C" = {φ(θ) = (φ1(θ), . . . , φn(θ)) : 0,(0)6 C([-τ*, 0], /?), i= 1, ...,n}. For
φeC", the norm of (/> is defined by ||(/>|| =^]"= lmax_ τ*< θ< 0 | φ f(θ)|. For x,yeRn, x>y
means Xi>yt and x>>7 means xί>.yί for l<i<n. If (/>, ψeC", we write φ<ψ (φ<ψ) if
the indicated inequality holds pointwise, with the above partial ordering on Rn. In the

rest of this paper we always assume that φ(θ)>Q, for θe[ — τ*,0], φ(ϋ) >0. It is a
well-known fact that for any given φ e C" with φ(θ) > 0, for θ e [ - τ*, 0], φ(0) > 0, there
exists αe(0, oo) and a unique solution x(t) = x(t, φ) of the equation (2.1) on [ — τ*, α)

satisfying x(θ) = φ(θ), 0e[ — τ*, 0], and x(t)>Q for ίe[0, α). In other words, such a
solution is unique and stays positive.

In order to establish conditions for the existence of periodic solutions in the system
(1.3), we need the following lemmas.

LEMMA 2.1 (Smith [21]). Let Ω be an open subset ofRx C", and let f , g : Ω^Rn

be continuous. Suppose that the system

(2.2) χ(t)=g(t,χt)

generates a monotone semiβow. Assume f(t9φ)<g(t,φ) for all (t,φ)εΩ. If (ί0, φ\
(ί0, φ)eΩ with φ<ψ, then

x(t,t0,φ,f)<x(t,t0,ψ9g)

for all t>t0for which both are defined, where x(t, ί0, </>,/) is a solution of

(2.3) * = /(ί,*f)

and x(t, ί0, φ, g\ a solution of (2.2).

LEMMA 2.2. Suppose that (HI) and (H2) hold. Then for any solution x(t, φ) of(2Λ)
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with x(ί0 + 0, φ)<pfor 0e[-τ*, 0] and some J0>0, there is a T>Q such that for t>T,

x(t,φ)<p.

PROOF. First we notice that if xi(ίί,φ)=ph .̂ (ί, (/>)</?; and X j ( ί , φ ) < p j for

/e iΛ-τ*, fj], then

*i(f i, Φ)=PιGi(tl9 xjtl9 </>),..., x£(i l f φ), . . . , xΛ* ι> </>), xΛf ! -τfoX (/>),..., x^f i -τfoX φ))

^PiGi(tι> Pι» » Pi» » Pπ» Pι> » P«) < 0 >

and so there is an εx >0 such that x^ί, φ)<pt for ίe(ί1? ίt + 8^. Hence there is an ε>0

such that x(t, φ)<p for fe^, ίi+ε), where ί!>ί0

We claim that there is a Γ>0 such that x(ί, φ)<p for t> T. If not, there must be

a /2 > ̂ o sucn tnat ^OΓ some /,

ίe(ί0-τ*, ί2) ,

xi(t,φ)<pi for ίe(ί2 — <5, ί2)
 and

x, (ί, φ) < p7 for ί e [f o - τ*, t2] ,

where δ is sufficiently small, and

(2.4) *t(t29φ)>0.

But (HI) yields that

Xi(h> Φ)<PiGi(t, p l5 . . . , Pi, . . . , pπ, p l 9 . . . , pπ)<0 ,

a contradiction to (2.4). Π

We need the following two assumptions in our next lemma.

(H3) Gi(t, λxl9 . . . , λxn, λyί9 . . . , λyJ>λGt(t9 xί9...9 xn, yl9...9 yn) for A e (0, 1], where
z = l, ..., n.

(H4) Gi(t9xί9...9xn9yί9...9yn) is uniformly continuous with respect to (xl5 ...,xn,

y1? . . . , >;„) and G£(ί + ω, x l 9 . . . , xπ, yx, . . . , yn) = Gi(t9 xί9...9 xn9 yl9...9 yn) for some
ω>0 and /=!, . . . , n.

Note that (H3) is equivalent to

(H3)' lGt(t9xl9...9x^yl9...9y^Gi(t9Lcl9...9Lc^ΐyl9...9^{oτIe[.l9 +00), ί =
1, . . . ,n.

(H3) implies that G is concave in its variables (except the time variable). It is easy to

check that if G is linear with respect to its variables except the time variable, then (H3)

and (H4) are satisfied.

LEMMA 2.3. Suppose that the system (2.1) satisfies (H1)-(H4). Then:

( i ) For any ηeR\, there exists and M(η) 6 R + such that for any φeC" with 0<φ<η

on [-τ*, 0], one has 0<x(ί, φ)<M(η)for all t>0.

(ii) There exists a Δ e/?+ such that for any αe/?^, there is a constant T= 77(α)>0
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such that for any φeC" with 0 < φ < α on [ - τ*, 0], one has 0 < x(ί, φ) < A for all t > Γ(α).

PROOF. By (H2) and (H3), we have

(2.5) Gt(t, λpl9 . . . , Γpπ, Ipl9 . . . , λpn)< !Gi(ί, p l 5 . . . , pn, p l 5 . . . , pn)<0

for i=l, ..., n and Γe[l, +00).
(i) For any ηeR\, there exists a Γ0e[l, +00) such that η<λ0p and the con-

clusion follows from Lemma 2.2.
(ii) Let A =p. If α </?, then Lemma 2.2 implies the conclusion. Suppose that α >p.

Then there is Γ0e(l, +00) such that α< J0p. Let φeCn with 0<(/><α on [ — τ*, 0] and
let x(ί, (/>) be a solution. Then Lemma 2.2 yields that there is a 7\ > 0 such that Tί — τ* > 0

and x(t,φ)<λ0p for />7\-τ*. Let y^max^-^^r^ί, φ) and /=(ji, . . . , yj).
Then y1 <λ0p. If y1 </?, then we are done by Lemma 2.2. Suppose y1 <p is not true.
Then we can find λί e(l, Γ0) such that y1 <λίp. In this case, Lemma 2.2 implies that
there is a Γ2>0 such that T2-τ*>Tl9 and x(t,φ)<λίp for />Γ2-τ*. Let ^? =

max^-^^^^jCjίί, φ) and )>2 = ()>ι, ...,y2). Then y2<λίp. Repeating the above proce-
dure, we have two possibilities:

(i) For some Γ>0, we have x(ί, φ)<p for all t>T\
(ii) There exist two sequences { Tm} and { λm} such that x(ί, φ)<λmp for / > Tm — τ*,

Ime(l, I0) and limm_> 0 0Γm= +00.
In the following, we assume that (ii) is true. Without loss of generality, we suppose

that limm^ + 00Im = β. By (H4), we can find a <50 > 0 such that for /= 1, ...,«,

(2.6) Gi(

^Gi(t9βpl9...9βpi9...9βpH9βpl9...9βp

where 0<ε< -min^^^min^fo^G^ί, j8p l9..., βpi9...9βpw βpl9...9 βpn) and ! = (!,..., 1).
If there is a Γ0>0 such that jt^ί, φ)<βpt for all ί> Γ0, then by Lemma 2.2, we

know that there is another Γ>Γ0 + τ* such that xi(t,φ)<βpi for all t>T, which
contradicts the definition of β. Hence, there is an ie {1, ...,«} and a sequence {tk} with
limfc^ + 00 ί fc= +00 such that ^(ίfc, φ) = βpi and xt (ίfc, 0)>0. We choose an ra0>0 such
that Jm0<(jS + (50) and x(t,φ)<λmop for t>Tmo — τ*. If we choose a fc0>0 such that

tk0>
τm0>

 then (H1) and (2 6) imply that

, . . . , xn(ίko), x^ί^-τίίj), . . . , xn(tko-τ(tko)))

l9...9tf

a contradiction. This shows that (ii) cannot be true and hence (i) holds.
Let ψ(θ) = α. Then there is a Γ(α)>0 such that x(t,ψ)<p for all ί>Γ(α). The

monotonicity of the solution flow of the system (2.1) implies the conclusion of the

lemma. Π

It is easy to see that Lemma 2.3 remains true if (H3) is replaced by the assumption
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(H3)" Gifc/iW*!, ...9fn(X^xn9f^)yl9 ...9fn(X)yJ>giWGi(t9xl9...9xH9yl9...9yJ for
Λe[0, 1] and /=! , . . . , « , where /;,&: [0, 1]->[0, 1] satisfy that /X0) = 0,
gf.(0) = 0, t/j(l) = sf ί ( l)= 1 and/], 0f are nondecreasing / = ! , . . . , «.

We will use the following result from [16] to establish the existence of an ω-periodic
solution in (2.1) in the following section.

LEMMA 2.4 (Horn's fixed-point theorem). Let S0 a S1 a S2 be convex subsets of
β Banach space X, with S0 and S2 compact and S± open relative to S2. Let P: S2^>X
be a continuous mapping such that, for some integer ra>0,

(a) P\Sl)^S29 l<j<m-l

and

(b) P'ίSJsSo, m<7<2m-l.

Then P has a fixed point in S0.

3. Existence of periodic solutions. We now return to the discussion of the system
(1.3), namely,

(3.1) xi(t) = xi(t)Fi(t, x(t\ . . . , xn(t)9 xΛt-τW), .'. . , xΛ(ί-τ(ί))) ,

where x = (xί9 . . . , xn)e/?+. We make the following assumptions on the system (3.1):
(Al) For 1 < i < n, Ft(t, xί9 . . . , xn, yl9 . . . , yn) is continuously differentiate with respect

to its variables;
(A2) There is an ω > 0 such that for i = 1, . . . , n ,

Ft(t + ω, x l 9 . . . , χπ, yl9...9 yn) = Ft(t, xl9...9 xn9 yl9...9 yn) -

(A3) τ(ί) is a continuously diίferentiable ω-periodic function and τ(ί)>0 for teR. We
denote τ* = max0<ί<ωτ(ί).

(A4) (i) For any ηl,η2eRn

+ with Q^η^ <η2, there exists y(η^ η2)eRn

+ such that for
any φeCn with ηl<φ(θ)<η2 on [ — τ*, 0], one has

x(t,φ)>y(ηl9η2) for all ί>0;

(ii) There exists δeR\ such that if φ(θ)eCn, φ(θ)>09 and φ(0)>0,
then lim inf r^ + „ x(ί, φ) > δ, where lim inf^ + ̂  x(ί, φ) = (lim infr^ + „ x^ί, (/>),...,

(A5) For any /^>0, there exists an L(K)>0 such that if \\φ\\<K, then \F(t9φ)\ =

(A6) There are Gt : R x #2" -̂  K such that

F,(ί, Xi(ί), , xB(ί), Xι(ί - τ(ί)), . . . , xB(ί

, (ί, x ί̂), . . . , xH(ί), Xι(ί - τ(ί)λ . . , xB(ί - τ(ί))) for Ϊ=l9...9n9

where Gf(ί, x^ί), . . . , xn(t)9 x^ί-τW), . . . , xπ(r-τ(ί))) (i= 1, . . . , n) satisfies the as-
sumptions (H1)-(H4).
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We would like to point out that the assumptions (Al), (A2), (A3) and (A5) are
almost always satisfied by those systems studied in the literature [6], [17], since most
of them are Lotka-Volterra type systems. For Lotka-Volterra type systems, Ff are simply
linear functions of xt, so (Al), (A5) are satisfied as long as the coefficient functions are
bounded. (A4) (ii) is in fact the definition of the so-called uniform persistence [13],
[17]. For Lotka-Volterra type systems (A4) (ii) is often satisfied. (A4) (i) and (A6) are
technical.

LEMMA 3.1. Suppose that the system (3.1) satisfies (A1)-(A6), and Gt (i = 1, . . . , n)
satisfies (H1)-(H4). Then there are δ, AeAn+ such that for any η^ η2eRn

+ with η^<η2

and any compact subset S ofCn which satisfies that S c (φ(θ) e Cn : η^< φ(θ) < η2}, there
exists a constant T= T(ηl9 η2, S)>Q such that for any φeS, one has

A>x(t,φ)>δ for all t>T .

PROOF. Let x(ί, φ) be the solution of (3.1) and u(t, ψ) the solution of (2.1) with
φ<ψ. Then Lemma 2.1 implies that x(t,φ)<u(t,ψ) for all ί>0. By Lemma 2.3 and
(A4) (i), we have:

(i)' For any ηίy η2eR\ with η^<η2, there exists y(η^ η2), M(ηly η2)εRn

+ such
that for any φeC" with η1< φ(θ) <η2 on [ — τ*, 0], one has 7(^7 1?^2)<x(ί, φ)<M(ηl9 η2)
for all ί>0;

(ii)' There exists ΔeR\ such that for any ηί9η2eRn+ with η^<η2, there is a
constant T1 = T1(η1,η2)>Q such that for any φεC" with ηί<φ(θ)<η2 on [-τ*,0],
one has x(ί, φ)<A for all t> Tλ.

Let δ be given in (A4) (ii) and A be given in (ii)'. By (i)', we can find 5, ΔεR\
with δ<δ/2< A< A such that for any φεC" with δ/2<φ(θ)<A on [-τ*, 0], one has
δ<x(t, φ)<A for all />0.

Let η 1 , η2 e R + and S be a compact subset of Cn with S c { φ(θ) e C" : η ̂  < φ(θ) <η2}.
By (ii)', there is f> 0 such that for any φ e Cn with η1 < φ(θ) < η2 on [ - τ*, 0], one

hasx(ί, 0)<Jfor t>f.
For φeS, (A4) (ii) implies that there is an integer m(φ) > 0 such that m(φ)ω > f

and ;c(/, φ) > 2(5/3 for ί > m(φ)ω. The continuous dependence on the initial conditions
yields that there is a δ(φ) >0 such that if ψeC" and \\ψ-φ\\<δ(φ), then x(ί, \l/)>$/2
for ίe[0,m(</))ω + τ*]. Since xt+m(φ}ω(ψ) = xt(xm(φ)ω(ψ)), we have δ<x(t, φ)<A for all
t>m(φ)ω. Since \JφeS{ψεCn : \\ψ — φ\\ <δ(φ)} =) S, the compactness of S implies that
Uί^tyeC": \\ψ-φί\\<δ(φάφieS}=>S. Let T(ηl9 η2, ̂ ^max^^Jm^ω}. Then
for any ψeS, there is an /e{ l , . . . , k] such that \\ψ — φι\\ <δ(φι) and so 5<x(t, ψ)<A
for all t>m(φi)ω. Clearly, δ<x(t, ψ)< A for all t> T(η^ η2, S). Π

Now we are in a position to state and prove our main result of this section.

THEOREM 3.1. Suppose that the system (3.1) satisfies (A1)-(A6) and Gf (i = 1, . . . , n)
satisfies (H1)-(H4). If the system (3.1) has no positive constant solution, then it has a
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nonconstant positive ω-perίodic solution.

PROOF. Let x(ί, φ) be a solution of (3.1). Let δ, A be given in Lemma 3.1. By (i)'

in the proof of Lemma 3.1, we can find y^Rn

+, ^e/?+ (i=l, 2, 3) with y3<y2<yι<
δ< A+2 l<A1 + l<A2<A3 such that

δ<φ(θ)<A + l on [-τ*,0] implies that γί^x(t9φ)<sA1 for all ί>0;

yl<φ(θ}<Al + l on [-τ*,0] implies that γ2<x(t,φ)<A2 for ί>0;

y2<φ(θ)<A2

 on [-τ*, 0] implies that y3<x(ί, Φ)<A3 for ί>0.

For A39 (A5) yields that there is an L>0 such that for \\φ\\ <\A3 | = Σ"=1<5i, where

Δ3 = (δl9 . . . , δn\ one has £"=1 |F£(ί, φ)|<L.
Define

^f iLI θ-ξ\ for 0,

By repeated application of Arzela-Ascoli's theorem, we conclude that S is compact.
Lemma 3.1 implies that there is a constant Γ=Γ(y l 9 A^ + l, S)>0 such that for any
φeS, one has J< x(ί, φ) < J for t>T.

Define

-ί| for θ, ξe[-τ*,
i=ι

, Σ l^^-φ. ̂ l^πLI θ-{ | for 0, ξe[-τ*,
i = l

and

Σ \φi(ΰ)-φi(^\<tnL\θ^ξ\ for θ, ξe[-τ*, 0]} .
« = ι J

Then S0 c SΊ c S2

 are convex subsets of the Banach space C". Arzela-Ascoli's theorem
implies that S0 and S2 are compact. Also S1 is open relative to S2.

Define the Poincare map P : S2 -> Cn by

P(Φ) = *ω(Φ) for 0eS2.

Then P is continuous and Pm(φ) = xmω(φ) for m= 1, 2, . . . .
For φeSl9 we have x(ί, (/>)<J2 for ί>0 and so ||x(ί, φ)\\ <\A3 |. Thus

Σ I F,(ί, Xi(ί), - - - , x»(ίλ ^ι(ί - τ(ί)), . . . , xn(t -
ι = l

and so
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xt(t, φ)\ = \ Ft(t, Xl(t),..., xn(t), Xl(t-τ(ί)),..., xn(t-τ(ί))I <L .

Note that ||PmW>)|| = | |xm ω(</>)ll<M 3l Hence,

(3.2) t ITO)(£i)-TO)(£2)l< Σ \xt(nua + ξltφ)-xt(mω + ξ2,φ)\
i = 1 ί = 1

<Σ L\ξl-ξ2\=nL\ξl-ξ2\
i = l

for ξ1 ?ξ2e[-τ*,0] and m= 1, 2,... . This shows that Pm(φ)ES2. Therefore, P^SJc

^2 for m= 1, 2,... .
We choose an integer m0 >0 such that w0ω > Γ. Then the definition of T and (3.2)

imply that Pm(φ)εS0 for w>w0. Thus P^SJcSo for w>m0. By Lemma 2.4, P has
a fixed point in S09 which corresponds to an ω-periodic solution x(ί, φ0) of the system

(3.1) with x(t,φ0)>δ. Also the fact that the system (3.1) has no positive constant

solution implies that x(ί, φ0) is nonconstant. Π

The following assumption is clearly less restrictive than (H2).

(H2)' There exist positive ω-periodic functions B±(t\ ..., Bn(t) and p = ( p l 9 . . .,/?„)E Rn

+

such that

Gt.(ί, p^(t\ ..., PnBn(t\ p,B,(t-τ(f)\ ..., PnBn(t - τ(ί))) + ̂ T~ < 0
^ilO

for ίG/? and ΐ = l , . . . , n.

The following theorem is slightly more general than Theorem 3.1.

THEOREM 3.2. Suppose that the system (3.1) satisfies (A1)-(A6) and Gt(t9 *ι(0>...,

xn(t), x^t — τ(ί)), ...,xπ(ί — τ(ί))) (i=l, . . . ,n) .sfl/w/y rAβ assumptions (HI), (H2)', (H3)"

β«flf (H4). 7/^(3.1) /z«5 no constant solution, then it has a nonconstant positive ω-periodic

solution.

PROOF. For the system (2.1), we make the following transformation:

Then the system (2.1) becomes

ί, ̂ (φiW, , Bn(f)zn(t\ B^(t-τ(t))z^(t-τ(i)\ ...,

BΛ(f_τ(ί))Z|I(ί_τ(ί)))--

Let
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G,(ί, Zi(ί), - - - , zn(t), z,(t-τ(t))9 . . . , zB(ί-τ(ί)))

= G,(f, BΛOzΛί), . . . , BΛίJzΛί), Bι(ί

and consider the system

(3.3) z^zβfa Zi(ί), - . - , zn(ί), zι(*-τ(ί)λ , zΛ(ί-τ(ί))) .

Then Lemma 2.2 and Lemma 2.3 are true for (3.3) and so Lemma 2.1 implies that
Lemma 2.2 and Lemma 2.3 are still true for (2.1). Π

4. Uniqueness theorems. In this section we will establish the uniqueness and
asymptotic stability of periodic solutions of the system (3.1).

Let y(t, ψ) = (yι(t\ ...9yn(t))>Q be a solution of the system (3.1). We denote for

ΐ,7'=l, 2, . . . , H ,

dFi(t9xl9...9xn9yl9...9yn)

Let x(ί, φ) = (xι(ί)? 5 XfiW) be another solution of the system (3.1), and

- Ft (ί,

- Σ «o'W(^(0-^W)- Σ fol7(ί)(^(ί-τ(ί))-^ (ί-

We make the following technical assumption:
(Ax) There exist positive constants pl9 . . . , /?„, qί9..., qn such that for all /, y(t, \l/\

n

Σ Pi I «ij(01 +PA./(i) + 4/<0 7= 1,..., n ,

and

LEMMA 4.1. Suppose (Ax) /zo/^b. Lβί y(ί, ψ) be a solution 6>/(3.1) with ψ(θ)>Q on
[-τ*, 0], ^(0)>0 and\l/eCn. If there is an MeR\ such that y(t, ψ)<Mfor t>0, then
there is a (3(^)>0 such that for any solution x(t, φ) of (3.1) with φeCn, φ(θ)>0 and
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— ψ\\<δ, we have

Km (x(t,φ)-y(t,ψ)) = Q.

PROOF. Let x(t,φ) = ( x l ( t ) , . . . 9 x n ( t ) ) and y(t,ψ) = (y &),... ,yJίt)). Let vi(t) = (xi(t)/
yt(t)). Then

Λt, *!#), . . . , xn(t), x,(t - τ(ί)), . . . , xn(t -

- Ffa y,(t\ . . . , yΛ(ί), yι(ί - τ(ί)), . . . , yn(ί

that is,

Vi(t) = Vi(t)\ Σ MWXv/O-lHΣ MOyXί-τίOXvXί-
L j = l 7 = 1

i = l , . . . , n .

Let M.(ί) = Vί(ί)-l. Then

(4.1) ώi(ί) = (ιιί+ 1)Γ Σ «y(ί)^(0"Xί)+ Σ ^(ί)^(ί-τ(OK(ί-

Let K(ι/f) = Σ^1(Λ " i W I + f ί - ^ ί Λ W l M ί W I * ) . Denote by D+ the upper right Dini
derivative. Then

(4.2) D+V(ut}< Σ \( Σ Pί l
j = l | _ \ i = l

+ Σ ( Σ Λ I MO I - <&(! - τ'W) /ί - τ^)) I HJ(* -
7=1 \ i = l

where

(4.3) Fj= Σ ajk(t)yk(t)uk(t)+ f Mί)Λ(t
k = l f c = l

Now /} (7=1, . . . ,n) are continuous with respect to their arguments and yfa) (j =
1, . . . ,n) are bounded away from zero. Hence if \\ut\\ is sufficiently small, then the
assumption (Aj implies that D+V(ut)<0. Therefore if \\φl \\ is sufficiently small, then
for the solution u(t, φj of (4.1), one has lim^ + 00w(ί, φ1) = Q. But ui(t) = (xi(t)-yi(t))/yi(t)
and yι(t)<Mi for ί>0, where M = (Ml5 ..., Mπ). Thus there is a δ(ψ)>Q such that if
0 e C", (/>(β) > 0 and || φ - ψ \\ < δ, then lim^ + ̂  (x(ί, </>) - j(ί, ^r)) = 0. Π

The following technical assumption is needed in our next lemma:
(A2) For any ηεR\, there is an M(η)εRn

+ such that for any φeC" with 0<φ(θ)<η
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on [ — τ*, 0], one has

x(t,φ)<M(η) for ί>0.

LEMMA 4.2. Assume that the system (3.1) satisfies (Aj and (A2). Let S be a
compact connected subset ofCn such that ifφεS, then η2>φ(θ)>η1 on [ — τ*, 0], where
η^ η2eRn

+. Then for any two solutions x(ί, φ) and y(t, ψ) with φ, ψεS, one has

lim (x(t,φ)-y(t,φ)) = Q .
ί-* + oo

PROOF. By (A2), we have M(η2) e Rn

+ such that x(ί, φ) < M(η2) for φ e S, and t > 0.
For any ψeS9 there exists a (5(ι̂ ) > 0 such that if || φ — φ \\ < δ(φ) for φ e Cπ, then Lemma
4. 1 implies that lim^ + ̂  (x(ί, φ) - y(t, φ)) = 0. Clearly

The compactness of S yields that there exist ψί9 ...9ψmeS such that (J ™= l B(t/Ί , <
5. Since 5* is connected, for ψio and ψjo, i0,j0 E (1, . . . , m}, we can find φίί9 . . . , φh e Cπ

such that ι/2 > φίk(θ) > ηι on [ - τ*, 0], 0/k, 0ifc + 1 e B(φh δ(^) (fc = 0, 1, . . . , / and 0ίo = ̂ ίo,
φiι + i = ψjo)m Thus Lemma 4.1 and the definition of δ(ψi) yield that

lim (x(t,0J-x(f,&k+1)) = 0, fc = 0 , l , . . . , /
ί-> + 00

and so

(4.4) lim (x(t,^fio)-x(ί,^0)) = 0 for i,je{\, ...,m} .
ί-> + C30

For φ^ψeS, there exist yΊ,y' 2e{l 5 . . .,«} such that φeB(\l/h,δ(φj^) and ιl/eB(\l/J29

δ(\l/J2)). Then lim^ + 00(x(ί, <^)-x(ί, ̂ J 1)) = 0 and lim^ + ̂ Wί, φ)-x(t, ψJ2)) = Q. The con-
clusion now follows from (4.4). Π

THEOREM 4.1. Suppose that the system (3.1) satisfies (Aj ^«ί/ (A2).
α/ most one positive ω-perίodίc solution x(ί, φ)for (3.1). 7/"x(ί, φ) w the positive ω-

periodic solution, then it is globally asymptotically stable for C\ : = {φ(θ)εCn: φ(θ)>Q,

PROOF. Suppose that the system (3.1) has two different positive ω-periodic solu-

tions x(ί, φ) and y(t, ψ). Then there are ηί9 η2eRn

+ such that η1<φ, Ψ<η2.
Let S = {(l-λ)φ + λ\l/: λe[0, 1]}. Then the fact that φ,ψeCn implies that S is

compact. Clearly, S is connected. Lemma 4.2 yields that \imt^ + ̂ (xfa φ) — y(t, ψ)) = Q,
a contradiction, which shows the uniqueness.

Let x(ί, ΦQ) be the unique positive ω-periodic solution of (3.1). For φεCn+, there
exists T(φ)>0 such that x(ί, φ)>0 for t> T(φ). Hence, without loss of generality, we

suppose that φ(0)>0 for θe[ — τ*, 0]. Then there exist ηί9 η2εRn+ such that η1<φ(θ)9
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The above arguments show that lim^ + ̂  (x(ί, φ) — x(t, φ0)) = 0. Π

If we replace (Aj) by the assumption:
Ai)' There exist positive constants pl9 ...9pn, ql9...9qn and positive ω-periodic

functions /^(ί),..., Bn(t) such that

Σ PtBj(t) I fly(ί) I +pjajj(t)Bj(t) + <?; < 0

and

t-τ(ί))|by(ί)|-^(l_τ'(

for 7=!,...,«,
then we have:

THEOREM 4.2. Suppose that the system (3.1) satisfies (Aj', (A2). Γλew ί/zere exists
at most one positive ω-periodic solution x(ί, φ)for (3.1). //*x(ί, φ) is the positive ω-periodic
solution of (3.1), //ze« // w globally asymptotically stable in Cn+.

PROOF. For the system (3.1), we take the transformation: z—x^B^ i= 1, ...,«.
Then the system (3.1) becomes

(4.5) it = zi\Fi(t, B,(t)z,(t\ ..., Bn(f)zn(t\ B,(t-τ(t))z,(t-τ(t)\

It is easy to check that Lemma 4.1 and Lemma 4.2 are true for the system (4.5), and
so the theorem follows from the proof of Theorem 4.1. Π

5. Applications. Now we apply the above results to some well-known systems.

5.1. Lotka-Volterra system. We consider first the system (1.2), namely, the
following /2-dimensional delay Lotka-Volterra system:

(5.1) Xi(t) = Xi(t)\ cί(t)-aίi(t)xi(t)+ Σ aij(t)xj(t)+ Σ 6ij(t)x/(i — τ(ί)) .
\ ;;=! j = ι /

For the system (5.1) we assume that
(i) a^t), Ci(t\ bij(t), (i,j=l,..., n) and τ(ί) are continuously differentiate, co-

periodic functions, and c/(ί)>0, %(ί)>0, «0-(i)>0, bl7(ί)>0 and τ(ί)>0 for teR.
(ii) There exist positive differentiate co-periodic functions B^t), . . . , Bn(t) and

P = (PI, .. .,pn)eRn+ such that
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Bt(t)
Ptali(t)Bi(t)>ci(t) +

for teR and / = ! , . . . , n.

+ Σ Pj"ιj(t)Bj(t)+ Σ P/>ij(t]Bj(t—i
J = l J = l

THEOREM 5.1. Under the above assumptions, if the system (5.1) has no constant
solution, then it has a nonconstant periodic solution.

Clearly, the system (5.1) generates a monotone semiflow by the assumption (i). In
order to prove Theorem 5.1, we need the following lemma.

LEMMA 5.1. Under the assumption (i), there exists a y > 0 such that for φεCn with

φ>y l, one has

x(t,φ)>y l for / > 0 .

PROOF. By the assumption (i), the system (5.1) generates a monotone semiflow
and for any φeC" with φ(θ)>0 on [-τ*, 0] and 0(0)^0, one has x(ί, φ)>0 for ί>0.
Thus we have

(5.2) ^(0>^ W[^W-«α(ίK (0] , i= 1, . . . , π .

Therefore, if 0(0)>0, then liminf^x^i, ^)>min{c! (0/^(0, ίe[0, 00]}=^. Let y =
mm{yt, i=l,...,n}. Then the conclusion of the lemma follows. Π

PROOF OF THEOREM 5.1. Let

- Gj (ί, Xi(ί), . . . , xπ(ί), xt(ί - τ(ί)), - - - , xn(t -

n /i

= cί(t)-flί£(ί)xί(ί)+ Σ fly(ί)^W+ Σ fo0 (ί)^(ί-τ(0)
7=1 7=1
j^i

The assumption (i) yields that (A1)-(A3) and (A5) hold. Lemma 5.1 guarantees that
(A4) is true. Now (HI), (H3) and (H4) are satisfied by the assumption (i) and the linear
form of functions G f. (H2) follows from the assumption (ii). Theorem 5.1 now follows
from Theorem 3.2. Π

In order to state our next result, we assume further that
(iii) there exists p' = (p\, ...9p'n)eRn+ and q = (qί9 ...,qn)eRn

+ such that for j=

BjV - τ(t)) I fry (ί) \-qj(l- τ'W) < 0 .
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THEOREM 5.2. Under the assumptions (i), (ii) and (iii), if the system (5.1) has no
positive constant solution, then the system (5.1) has a unique and globally asymptotically
stable nonconstant ω-periodic solution with respect to positive solutions of (5.1).

In order to prove Theorem 5.2, we need the following lemmas.

LEMMA 5.2. Let y be defined as in Lemma 5.1. For any φeCn with φ(θ)>Q on
[-τ*, 0] and </>(0)^0, there exists Γ(0)>0 such that for t> T(φ),

x(t,φ)>γΊ.

PROOF. It follows from the argument for Lemma 5.1. Π

LEMMA 5.3. For any φe Cn and ψεCn with φ(θ) >γ land ψ(θ) > y 1 on [ - τ*, 0],
one has

lim

PROOF. Let

min φi(θ), min ι/^(0)} , y = max{ max φi(θ), max
-t*<0<0 -τ*<0<0 -τ*<0<0 -τ*<0<0

where ι= 1, . . . , Λ and x° = (x?, . . . , xj), y° = (y?, . . . , yj). Then y l<x°<φ(^)<3;0 and
° on [-τ*, 0]. Thus we have

°) for ί>0

and

x(t,x°)<y(t,ψ)<y(t,y°) for ί>0.

An argument similar to that in Lemma 4. 1 and Lemma 4.2 shows that lim^ + ̂  (x(ί, x°) —

y(t, y0)) = 0. Hence lim^ + ,. (x(ί, φ) - y(t, φ)) = 0. Π

PROOF OF THEOREM 5.2. The existence and uniqueness parts follow from Theo-
rems 5.1 and 4.2, and the global asymptotic stability follows from Lemma 5.2 and

Lemma 5.3. Π

The following corollary improves a similar result of Freedman and Wu [5] for a
scalar equation.

COROLLARY 5.1. Consider the equation

(5.3) x(ί) = x(ί)[α(ί) - ί>(ί)x(0 + c(t)x(t - τ(ί))] ,

where a(t\ b(t\ c(t) and τ(ί) are continuously differentiate, ω-periodic functions and
0(ί) >0, b(ί)>0, c(£)>0, τ(t)>0for teR. Suppose that

(i) the equation a(t) — b(t)K(t) + c(t)K(t — τ(t)) = Q has a positive, ω-periodic, con-
tinuously differentiate solution K(t).
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Then the equation (5.3) has a positive ω-periodic solution Q(t\ //, in addition

(ii) min0 < f < ω &(*)£(* ) > max0 < t < ω [c(ί)X(ί - τ(ί))/( 1 - τ'(ί))] ,

Q(ί) is globally asymptotically stable with respect to positive solutions of (5.3).

PROOF. Let B(ί) = K(f) Then the condition (i) implies that for t ε [0, ω], b(t)>c(t)
K(t-τ(t))/K(t). This in turn implies that there is a pl>Q such that pi>(a(t) + \K(t)\/
K(t))/(b(t)K(t)-c(t)K(t-τ(t))\ i.e., the condition (ii) in Theorem 5.1 is satisfied. Hence,
the existence of periodic solutions follows from Theorem 5.1. A simple calculation yields
the uniqueness and global asymptotic stability of periodic solutions. Π

For the sake of comparison, we state below the main result of Freedman and
Wu [5].

THEOREM (Freedman and Wu [5]). For the equation (5.3), if (i) is satisfied, then

it has a positive ω-periodic solution Q(t\ Moreover, if for all ίe[0, ω],

(*) b(t)>c(t)Q(t-τ(t))/Q(t),

then Q(t) is globally asymptotically stable with respect to positive solutions of(2Λ).

Clearly, we have the same existence conditions. However, our condition (ii) for
the global stability of Q(t) is verifiable, while (*) is not due to the dependence of Q(t)
which is unknown.

For example, if a(t) = 2 + (3 sin /)/2, b(t) = 1, c(t) = 1/2, and τ(ί) = π. Then ω = 2π, and
K(ί) = 4 + sinί, K(f-τ(ί)) = 4-sinf. Clearly

3= min b(t)K(t)= min (4 + sinO
0 < f < 2 π 0<ί<2π

> — = max [c(ί)X(ί-τ(ί))/(l-τ'(ί))]= max — (4-sinO
2 0<ί<2π 0 < f < 2 π 2

Hence both (i) and (ii) of Corollary 5.1 are satisfied. By Corollary 5.1, we conclude
that in this case, the equation (5.3) has a globally asymptotically stable positive periodic
solution Q(t) (with respect to positive solutions of (5.3)).

5.2. A delay nonautonomous predator-prey system. In the following, we would
like to apply our main results to the delay nonautonomous predator-prey system

x(t) = x(t)\a,(t)-b,(t)x(t)
L

y(t)=y(t)\-
L

(5.4)

y(t)=y(t)\ -a2(t)-b2(t)y(t) +
L c2(t)x(t—1)+1

where at(t)9 bt(t), ^(ί), (i= 1, 2) and d(t) are nonnegative continuously differentiable, ω-
periodic functions. Moreover, αt(t)9 bt(t) (ί= 1, 2), cx(ί) and d(i) are positive. Let
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F,(t, x(t), Xί), *(t-1), y(t- I)) = α1(ί)-b1(ί)x(ί) Cl®*t} ,
c2(t)x(£)+l

F2(ί, x(f), y(t), x(ί- 1), y(t-1))= -ίz2(ί)-MOXO+-
c2(ί)x(t-l)+l

G^ί, x(ί), Xί), x(t — 1), Xί — 1)) = flι(ί) — &i(£)*(0

and

G2(ί, x(ί), Xί), x(ί - 1), Xί -1)) = a2(t) - b2(t)y(t) +
c2(ί)*(ί-l)+l

It is easy to check that G, (i= 1, 2) satisfies the assumptions (H1)-(H4). Clearly,

for i= 1,2.
In the following, we define

at= max 0.(f), a— min α.(ί), i=l, 2,
0 < ί < ω 0 < ί < ω

and similarly ̂ , 6ί9 cί5 ct , ίίand d. We assume that

Then we have:

LEMMA 5.4. Assume that (5.5) /z0/ίfo. 77ze«
(i) For any ηeR2+, there exists M(η) e R \ such that for any φeC2 with Q<φ<η

0/ι[-τ*,0],

0<X(ί, φ)<M(η) for all ί>0;

where X(t, φ) is the solution 0/(5.4) w/7/z X0(φ) = φ.
(ii) Let A=(ά1bι\b2ί((dά1bι1/c2ά1b^l + l) + ά2)). Then for any η e R2+ , there is

a constant T=T(η)>0 such that for any φεC2 with 0<φ<η on [ — τ*, 0], one has
ί, φ)<Δ + lfor all t>T(η).

PROOF. Let Y (ί, ψ) = (x(ί, \j/\ y(t, ι/^)) be the solution of the system

x(ί) = dίί, x(ί), XO, x(ί- 1), Xί~ 1)) ,

y(ί) = G2(ί, x(ί), Xί), x(ί - 1), Xί - 1)) .

It is easy to check that (limf^ + 00supx(ί, )̂, lim^ + ̂ supXί, ψ))<A. Now the conclu-
sions follow from Lemma 2.3. Π

Observe that for ί>0, we have ±(ί)<ά^x(t\ hence x(t)<x(tQ)Q\p\_ά^(t — ί0)] for

0^^ which implies that x(t- l)>x(t)e~ά] for ί>l.
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LEMMA 5.5. Suppose that the conditions in Lemma 5.4 hold. If

then for any ηί9 η2eR2+ with η1<η2, there exists y(ηί9 η2)ER2

+ such that for any φeC2

with η1<φ(θ)<η2 on [ — τ*, 0], one has X(t, φ)>y(ηί9 η2) far all f>0.

PROOF. For ηl9 η2eR2

+ with ηί<η2, Lemma 5.4 implies that there exists M(η2) =
(Mί(η2\ M2(η2))eR2

+ such that M(η2)>η2 and for any φeC2 with η1<φ<η2 on
[-τ*, 0], one has 0<AΓ(ί, φ)<M(η2) for all ί>0, i.e., 0<x(ί, φ)<Mί(η2), 0<y(ί, φ)<
M2(η2) for ί>0. Hence for r>0, we have

x(t)>x(t)[qί-biM1(η2)-clM2(η2)-]= - βx(t) ,

which implies that for ί>l, x(ί— l)<x(ί)^, where —β = ql—b1M1(η2) — cίM2(η2)<0.
Now we would like to compare the solutions of (5.4) with those of the following

two systems of ordinary differential equations

(5.7) ΰ(t)

and

(5.8) ιi(ί) = «

We denote by (ΰ(t\ v(t)) and (u(t\ v(t)) solutions of (5.7) and (5.8) with initial data
(w0, u0)e/?+, respectively. We denote

f = min< min —d~l(t)a2(t), Q2e~β(d-q2c2}~1 \ .
( ^ 0 < ί < ω 2 J

Without loss of generality, we suppose that η^, η2<(x, a^1). Denote ΰ l ( t ) = ΰ(t,ηl,

M2(η 2)\ v1(t) = v(t, ηί9 M2(η2)). Then there is a τl >0 such that

iϊ1(τ1) = 0 and ti1(ί)<0 for telQ^J.

Denote ul(t) = u(t, ΰ^τ^, v^τ^)), v1(t) = v(t, WiίτJ, v^τ^)). Then there exist 0<τ 2 <τ 3 <τ 4

such that either

(a) U1(τ2) = ιy12, uί(τ3) = ηll9 U1(τ4) = 0 and (w^ί), t?1(ί))<(>y11, ι?12) on (τ2, τ3),
or

(b) M1(τ2) = ̂ 11, ϋ1(τ3) = ι/12, U!(T4) = 0 and (w^ί), v1(t))>(ηlί, η12) on (τ2, τ3),

where *h=foιι, ^12)-
We first assume (a). We define

Γι = {(Mι(0^ιW): 0<ί<τJ , Γ2 = {(M1(ί),ι?ι(ί)): 0<ί<τ4} ,
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Γ4 = {(M1(ιy2), y): v_1(τ4)<y<M2(η2)} ,

Then \J t

5

= 1 Γt constitutes the boundary of a closed bounded region Ω in the x-y plane.

CLAIM. For ί>0, we have X(t, φ)eΩ with ηl <φ<η2 on [ — τ*, 0].

First we observe that for f>0, x(ί, φ) = (x(t), y(t)) can never leave Ω from Γx.

Since if (x(t),y(t)) = (ΰ(t*)9 ϋ(t*))eΓί9 then x(t)>ά(t*\y(t)<ϋ(t*). Similarly, we see that
(x(ί), y(t)) cannot leave Ω through Γ2. It is obvious that it cannot cross Γ3, Γ4 and Γ5.
This proves the claim.

Now we assume (b). In this case, we first choose one point (xΌ,yo) such that

(*o>>Ό)<*/ι Denote

U2(t) = u(t, x0, y0) , υ2(t) = v(t, x0, y0) .

There exist τ 4 >τ 3 >0>τ 2 >τ 1 such that v2(τ4) = Q, u2(τ3) = ηΐί, V2(τ2) = rli2 and

("2(^1)^2(^1)) satisfies ql-blu2(τl) = — (^—!— - .
c2u2(τ^ +1

Denote

w2(0 = U2(t, w2(τι), t?2(τι)) , ϋ2(0 = ϋ2(t> "2(^1), t;2(τ2)) .

Then there is a / x < 0 such that v2(t1) = M2(η2). Clearly, ΰ2(tl)<ηiί. We define

Γ2 = {(ΰ2(t\ϋ2(t)Y τ ι<ί<τ4} ,

Then (J t

5

= χ ΓJ constitutes the boundary of a closed bounded region Ω' in the x-y plane.

Similarly, the above claim is true for Ω' and the proof follows. Π

The accompanying Figure should be helpful in understanding the above arguments.

In the following, we need the notation:

LEMMA 5.6. Assume that the conditions in Lemma 5.5 hold. Then there exists δe R2

+

such that for any φ(θ)eC2 with φ(θ) >0, 0(0) >0,

liminf X(t, φ)>δ .
t-* + oo

PROOF. From Lemma 5.4 (ii), we know that there is a Γ0 >0 such that for t > Γ0,

X(t, φ)<A + l. Therefore, we may assume that X(t, φ)< A +1 for t> — 1. Then we have
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qί-bίx =
c2x+\

(w1(τ2), ι;1(τ2))

FIGURE. Illustration of the proof of Lemma 5.5.

x(t)>x(t)lqί-ElAt-c1A
2] = -βx(t), which implies that x(t-l)<x(t)eβ for ί>l.

Now we would like to compare the solutions of (5.4) with those of the system (5.8)
and the following system of ordinary differential equations:

(5.9) u(t) = u(tL,-MO--^-], ύ(t) = v(t)\-a2 + d]"U(t}

L c2u(t)+\ J L " c2Λ(ί)+ι

Let σ = max{A1 + l,A2 + \} and x = mm{mm0<t<ω(l/2)d-ί(t)a2(t), q2e-\d
We denote by (ΰ(t), v(t)) and (w(ί), t (ί)) solutions of (5.9) and (5.8) with initial data

(MO, v0)eR2+, respectively. We denote ΰ(t) = ΰ(t, x, σ), ϋ(t) = v(t, x, σ). Then there exists a
T! >0, such that ^(τJ^O and tί(ί)<0 for ίe[0, τj. Denote

u(ί) = w(ί, M(τι), %!» , v(t) = v(t, ΰ(τ^ v^J).

Then there is a τ 2>0 such that ί)(τ2) = 0. Define

Γ, = {(ΰ(ί), ι;(0): 0< ί <τj , Γ2 = {(w(ί), *)): 0< t <τ2} ,

Γ3 = {(x, v(τ2)): u(τ2) < x < σ} , Γ4 = {(σ, >;): v(τ2) < y < σ} ,
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Γ5 = {(x,σ):x<x<σ} .

Then (J 5.= 1 Γt constitutes the boundary of a closed bounded region Ω in the x-y plane.
Note that Ω is independent of (x(f), y(t)).

(a) If (x(ίι), Xί^eΏ for some /! >0, then an argument similar to that in Lemma
5.5 shows that for ί>ί l5 X(t, φ) stays in Ω.

(b) If there exists some tί >0 such that (x(ί), XO)^ β f°r * > * i, then we nave two

cases to consider:

(I) There exists a Γ>0 such that (x(ί), y(ί))eΩι for t>T, where Ω1 = {(x, y)e
/?+ : x<x, y<σ and (x, y)φΩ}. Then j>(ί)<0 and lim^ + ̂ Xί^O, which
leads to lim sup^ + ̂ x^)^^^1. However, from (5.6), we would then have
j>(ί)>0 for some large /, a contradiction. Hence (x(ί), y(t)) must leave Ω^
and enter Ω2 through x = x, where Ω2 = {(x, y) e R + : σ>x>x, 0<j<σ and

(II) It is clear that (x(ί), y(t)) cannot enter Ωl from Ω2 since Ω^ n Ω2 = {(x, >;)e

/?i : Q<y<v(τ) where w(τ) = Jc} and on Ω1 n Ω25 x(ί)>0 Suppose that there
exist a Γ>0 and a σ* >0 such that for t> T,

>δ*.
c2x(ί)+l

Then x(ί) > 0, which leads to lim f_+ + ̂  x(ί) = + oo, a contradiction. Hence there
exists a /2 > 0 such that (x(f 2)> X^)) e ̂  and by (a), we have that (x(ί), y(t)) E Ω
for ί>ί2. Π

THEOREM 5.3. Suppose that the conditions in Lemma 5.5 are /rwe. #"(5.4) has no

positive constant solution, then the system (5.4) has a nonconstant positive ω-periodic
solution.

PROOF. By Lemma 5.4, Lemma 5.5 and Lemma 5.6, the condition (A4) is true.
It is easy to check that the other conditions in Theorem 3.1 are satisfied. Π

The above theorem implies that (5.4) has a nonconstant positive ω-periodic solution

if a2(t) is small enough.
The application of Theorem 4. 1 yields:

THEOREM 5.4. Suppose that the conditions in Lemma 5.5 are true. Assume that
there are positive numbers p^ qly q2 such that

Then the system (5.4) has a unique and globally asymptotically stable ω-periodic solution.
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PROOF. By Lemma 5.4 and the property that Xt+mω(φ) = XJ(Xmω((/>)), we confine
ourselves to the initial space

Cn = {φ(θ)εCn:Q<φ(θ)<A}.

Then the theorem follows from Theorem 4.1. Π

The assumption of b2(t)>0 is important but not essential. Without such an
assumption, the proof will become even more technical and complicated. We leave this
case to our future work.
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