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Abstract. We consider here a general Lotka-Volterra type n-dimensional periodic
functional differential system. Sufficient conditions for the existence, uniqueness and
global asymptotic stability of periodic solutions are established by combining the theory
of monotone flow generated by FDEs, Horn’s asymptotic fixed point theorem and
linearized stability analysis. These conditions improve and generalize the recent ones
obtained by Freedman and Wu (1992) for scalar equations. We also present a nontrivial
application of our results to a delayed nonautonomous predator-prey system.

1. Introduction. The n-dimensional Lotka-Volterra system takes the following
form:

(1.1) xi(t)zxi(t)<bi+ i aijxj(t)>a

where the dot denotes the differentiation with respect to ¢ and b;, a;; (i, j=1, ..., n) are
constants. This system has long played an important role in mathematical population
biology (cf. Hofbauer and Sigmund [15]). However, realistic models often require the
inclusion of effects of time delays and the changing environment. This leads us to the
study of the following more general nonautonomous Lotka-Volterra system with time
delay:

(1.2) xi(t)=xi(t)<bi(t)+ Z a;{t)x;(t)+ Z cij(t)xj(t_Tij(t))> s
j=1 j=1
where i=1, ..., n. Biologically, due to the difference in species, 7;;(t) are usually dif-

ferent. However, to minimize the technical complexity in the presentation of our results,
we assume in the rest of this paper that 7,;(t)=1(t). Nevertheless, we would like to men-
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tion here that our methods and results in this paper can be applied to the system (1.2)
even if 7;; are different. This can be seen from the proofs of the theorems to be presented
(proper adjustments are necessary).

In this paper, we assume that the environment changes periodically (seasonal
changes), which leads us to assume that b,(t), a;;(t) and c;;(t) (i,j=1, ..., n) and (t) are
continuously differentiable w-periodic functions. In addition, we assume that b;(t)>0,
a;(t)<0, 1(t)>0 for te R=(—o00, +0). In fact, we will consider the more general
system

(1 3) xi(t)='xi(t)Fi(ta xl(t)’ cees xn(t)5 xl(t— T(t))7 sy xn(t_r(t))) s

where F; are periodic with respect to ¢ for i=1,...,n. Our objective is to establish
conditions for the existence and uniqueness of nonconstant periodic solutions in (1.3).

Almost all of the existing works on the system (1.2) are concerned with the stability
of its equilibria. Results for scalar equations can be found in Haddock and Kuang [7],
Kuang [17] and the references cited therein. Results for systems can be found in
Gopalsamy [6], Kuang [17], Kuang and Smith [18], Martin and Smith [19] and the
references cited therein.

Motivated by the laboratory work of the group led by Halbach (see [2], [8]-[11],
[20], [25] and the references cited therein), Freedman and Wu [5] studied the existence
of periodic solutions of the scalar equation

(1.4) X(t)=x(t)[a(t) — b(e)x(t) + e(t)x(t —(1))] ,

where a(t), b(¢), c(t) and (¢) are continuously differentiable w-periodic functions, and
a(t)>0, b(t)>0, c(t)=0, 1(t)>0 for teR. In this paper, we will greatly improve and
generalize their results to the system (1.3) by combining the theory of monotone
semiflows generated by functional differential equations (FDEs) and Horn’s asymptotic
fixed point theorem. In addition, by a careful local stability analysis of the linearized
system, we are able to obtain sufficient conditions for the uniqueness and asymptotic
stability of periodic solutions of the system (1.3).

It should be pointed out that both our methods and results are somewhat different
from those existing ones (e.g., see [5], [1] and [14]). To some extent, our results
indicate that the uniform persistence and uniform boundedness (see the condition (A4)
in Section 3) imply the existence of periodic solutions in the system (1.3). For the
definitions of persistence and related notions, see [3], [4], [13], [24] and the references
cited therein.

The theory of monotone semiflows generated by functional differential equations
has been developed by Smith [21], Smith and Thieme [22] and others. For details we
refer to [21], [22] and the references cited therein.

This paper is organized as follows. In the next section, we present some prelimi-
naries. The existence results for periodic solutions of (1.3) are given in Section 3.
Section 4 is devoted to the uniqueness theorem for periodic solutions of (1.3). The
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final section contains applications of our main results to some well-known systems.

2. Preliminaries. In order to apply the theory of monotone semiflows generated
by FDEs, we consider first the following auxiliary nonautonomous delay system

2.1 %) =x;(0Gi(t, X,(0), - .., X, (1), X1 (E=7(1)), - .., X,(t—17()))

where i=1,...,n, x=(x;,...,x,)ER% ={xeR": x;>0}, and R, ={xeR" : x;>0}.

We assume in (2.1),

H1) 0Gi(t, xy, ... Xps Y15 - - -» Y)/0x;>0 for j#£i and 0G;(t, Xy, ..., Xp, V1, -+ -5 V)0V >
0,i,j,k=1,...,n.

(H2) Thereisa p=(py,...,p,)€R" such that

G(t,pys--sPwsP1s--->,P)<0 for teR, i=1,...,n.

It is easy to see that (H1) guarantees that the system (2.1) generates monotone
semiflows while (H2) ensures some solutions are bounded by p (see Lemma 2.2 below).

Suppose 1(t) is continuously differentiable, nonnegative and bounded above by
. We define C"={¢(0)=(¢,(0), ..., ¢,(0)) : $;(6)e C([L—17*,0], R),i=1,...,n}. For
¢ e C", the norm of ¢ is defined by ||¢| =Z:‘=l max_..g<olP:i(0)]. For x,yeR", x>y
means x;>y; and x>y means x;>y; for 1 <i<n. If ¢, y € C", we write p <y (¢ <y) if
the indicated inequality holds pointwise, with the above partial ordering on R". In the
rest of this paper we always assume that ¢(0)=0, for Oe[—1*,0], $(0)>0. It is a
well-known fact that for any given ¢ e C" with ¢(0)>0, for e[ —1*, 0], ¢(0)>0, there
exists a€(0, co) and a unique solution x(t)=x(t, ¢) of the equation (2.1) on [ —71*, &)
satisfying x(0)=¢(0), 0e[—1*, 0], and x(t)>0 for t1€[0, «). In other words, such a
solution is unique and stays positive.

In order to establish conditions for the existence of periodic solutions in the system
(1.3), we need the following lemmas.

LemMmA 2.1 (Smith [21]). Let Q be an open subset of R x C", and let f, g : 2— R"
be continuous. Suppose that the system

(2.2) x(t)=4(t, x,)

generates a monotone semiflow. Assume f(t, §)<g(t, ¢) for all (t, P)eQ. If (to, P),
(to, V)€ Q with ¢ <V, then

x(t, to, ¢, f)<x(t, to, ¥, 9)
Sor all t >ty for which both are defined, where x(t, ty, ¢, ) is a solution of
2.3) x=f(t, x,)
and x(t, to, P, g), a solution of (2.2).
LemmA 2.2.  Suppose that (H1) and (H2) hold. Then for any solution x(t, ¢) of (2.1)
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with x(to+0, @) <p for Oe[ —1*, 0] and some t, =0, there is a T>0 such that for t > T,

x(t, P)<p.

Proor. First we notice that if x;(¢y, ¢)=p;, x;(t, ¢)<p; and x;(t, $)<p; for
te[t,—1*,t,], then

xi(th d’):piGi(tls xl(tl’ ¢)5 ey xi(tls ¢)a ERRE X,,(tl, ¢), xl(tl _r(tl)a ¢)5 Ty xn(tl _T(tl)’ ¢))
<PpiGi(ty; P>+ Pis-++s Py P1s -+ > P) <O,

and so there is an ¢; >0 such that x;(t, ¢)<p, for te(t,, t; +¢,). Hence there is an ¢>0
such that x(t, ¢)<p for te(t,, t; +¢), where t; >t,.

We claim that there is a 7> 0 such that x(¢, ¢)<p for > T. If not, there must be
a t,>1, such that for some i,

Xty =P, X6 OSP,  telto—T%1),
x;(t, §)<p; for te(t,—9d,t,) and
x;(t, §)<p; for te[ty—1*t,],
where ¢ is sufficiently small, and
2.4 Xi(ts, ¢)=0.
But (H1) yields that

Xi(t2 )< PiGi(t; P15+ Pis--+s P P>+ > P) <0,
a contradiction to (2.4). 0O

We need the following two assumptions in our next lemma.
H3) Gi(t,Axyy .oy AXpy AV1s oo s AV =AGi(t, X1y ..oy Xpy Y1y -+ V) fOr 1€(0, 1], where
i=1,...,n
(H4) G;(t,xy5---»Xp V15 ---»> Yy is uniformly continuous with respect to (x,..., X,
Viseoos Y and Gyt +, X1, ooy Xy Vis o os V) =Gty X 15 ooy Xy Y15 - -+ » V) fOr some
w>0andi=1,...,n.
Note that (H3) is equivalent to
(H3Y  ZGi(t, X1seevs Xy Vi o os V) 2 Gilt, AX 1, .oy AXpy AY1, .., AY,) for Z€[1, +00), i=
1,...,n
(H3) implies that G is concave in its variables (except the time variable). It is easy to
check that if G is linear with respect to its variables except the time variable, then (H3)
and (H4) are satisfied.

LEMMA 2.3. Suppose that the system (2.1) satisfies (H1)-(H4). Then:

(i) ForanyneR",, there exists and M(n) € R". such that for any ¢ € C" with0<¢p <n
on [—1*, 0], one has 0<x(t, )< M(n) for all t>0.

(ii) There existsa Ae R such that for any ae R", , there is a constant T=T(a)>0
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such that for any ¢ € C* with0< ¢ <a on [—1*, 0], one has 0<x(t, §)< 4 for all t > T(x).
Proor. By (H2) and (H3), we have
(2.5 Gi(t, 2p1s s AP AP1s - ooy AP < AGi(t, Pis-vs Po» P1s -5 Pu) <O

fori=1,...,nand Ie[1, 4+ ).

(i) For any neR", there exists a Z,e[1, + o) such that n<,p and the con-
clusion follows from Lemma 2.2.

(ii)) Let A=p. If a<p, then Lemma 2.2 implies the conclusion. Suppose that ¢ > p.
Then there is 1, (1, + o0) such that a <A, p. Let ¢p € C" with 0< ¢ <a on [—1*, 0] and-
let x(t, ¢) be a solution. Then Lemma 2.2 yields that there is a 7, >0 such that 7, —t*>0
and x(t, §)<Aop for t>T,—1* Let y}=maxy, _a .7 Xt @) and y' =i, ..., ys).
Then y* <Z,p. If y! <p, then we are done by Lemma 2.2. Suppose y' <p is not true.
Then we can find 1, e(1, 4,) such that y! <, p. In this case, Lemma 2.2 implies that
there is a T,>0 such that 7,—t*>T,, and x(t, ¢)<Z,p for t>T,—1* Let y?=
maxy, <, <7, X:(t ¢) and y*=(y}, ..., y2). Then y*> <1, p. Repeating the above proce-
dure, we have two possibilities:

(i) For some T>0, we have x(t, p)<p for all t>T;

(i) There exist two sequences {7,,} and {1,,} such that x(t, )< 4,,p for t> T, —1*,
A.€(1, 2y) and lim,,_, , T,,= + c0.

In the following, we assume that (ii) is true. Without loss of generality, we suppose
that lim,,_, , , 1, = p. By (H4), we can find a §,>0 such that for i=1,...,n,

(26) Gi([9 (B+5O)pla e ﬁpis (ﬂ+50)p15 LR (ﬁ+50)pn)
SGi(ts ﬁpla AR ﬂpi’ L] ﬁpns ﬂpls AR ﬁpn)+£1<0 s

where 0 <e< —min, _;_,min,(0,,1Gi(t, BPys---, BPis -+-» BPw BP1, .-, BPy) and 1=(1, ..., 1).

If there is a Ty >0 such that x;(t, ¢)<pp; for all t>T,, then by Lemma 2.2, we
know that there is another T> T,+1t* such that x;(t, ¢)<pp; for all t>T, which
contradicts the definition of . Hence, there is an ie {1, ..., n} and a sequence {z,} with
lim,, , ., t,= + oo such that x;(t,, ¢)=Bp; and X;(t;, $)=>0. We choose an m,>0 such
that Am,<(B+d,) and x(t, ¢)<A,,p for t>T,, —t*. If we choose a k>0 such that
tyo> Tpnp» then (H1) and (2.6) imply that

Xi(tegy @)= BPi Gi(tig X1(tko)s - - > Xilticg)s - -5 Xnltig)s X1(tg— TEko))s - - - 5 Xt — T(tk,)))
<PBpiGi(tyyy B+60)P1s s BDis - s B+ 60)Prs (B+60)P1s -5 (B+00)P) <0,
a contradiction. This shows that (ii) cannot be true and hence (i) holds.
Let y(0)=a. Then there is a T(x)>0 such that x(¢, y)<p for all t>T(x). The

monotonicity of the solution flow of the system (2.1) implies the conclusion of the
lemma. 4

Itiseasy to see that Lemma 2.3 remains true if (H3) is replaced by the assumption
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(H3)” Gi(tafl(l)xl’ e af;l(;l)xn’fl(i)yl’ e 9f;l(j')yn) Zgi(’l)Gi(t, Xiseees Xps Vi 00 yn) fOI'
A€[0,1] and i=1,...,n, where f;,g;: [0,1]—[0, 1] satisfy that f;(0)=0,
g:(0)=0, f;(1)=9;(1)=1 and f;, g; are nondecreasing i=1, ..., n.

We will use the following result from [16] to establish the existence of an w-periodic
solution in (2.1) in the following section.

LEmMMa 2.4 (Horn’s fixed-point theorem). Let Sy, =S, = S, be convex subsets of
a Banach space X, with S, and S, compact and S, open relative to S,. Let P: S, > X
be a continuous mapping such that, for some integer m>0,

(a) PSS, 1<j<m—1
and

(b) PIS,) =Sy m<j<2m—1.

Then P has a fixed point in S,.

3. Existence of periodic solutions. We now return to the discussion of the system
(1.3), namely,

(3.1 xi(8)=x{OF;(t, x(1), ..., x,(t), X, (t = (1)), ..., x,(t = (1)) ,

where x=(x,, ..., x,) € R".. We make the following assumptions on the system (3.1):

(A1) Forl<i<n F,(t, x4, ..., X, V1, .-+, V) 18 continuously differentiable with respect
to its variables;

(A2) There is an w>0 such that for i=1,...,n,

Fi(t+w,x1a---axmy1,..‘,yn)=Fi(t’x19--~’xn7y17---5yn)'

(A3) 1(t) is a continuously differentiable w-periodic function and 7(t)>0 for te R. We
denote t* =max, ., ., 7(¢).

(A4) (i) Forany n,,n,eR" with 0##n, <#,, there exists y(#,, 772)615"+ such that for
any ¢ € C" with n, <¢(0)<n, on [—1*, 0], one has

x(t, @)=y, 12) for all t>0;

(i) There exists SeR" such that if ¢(@)eC”, $©0)=0, and ¢(0)>0,
then lim inf,_, , , X(¢, $)=>0, where lim inf,_, , _ x(t, ¢)=(lim inf,_, . , x,(t, @), ...,
liminf,, ; o x,(t, 9));

(A5) For any K>0, there exists an L(K)>0 such that if ||¢| <K, then | F(t, ¢)|=
Yo | Fi(t, )| <L(K) for teR;

(A6) There are G;: R x R*"— R such that

Fi(t’ xl(t)a reey xn(t)’ Xl(t—‘lf([)), ey xn(t - T'.(t)))
<Gty x1(2), - .., xu(2), x1(t—7(2)), ..., X, (t—1(2)) for i=1,...,n,

where G;(t, x,(2), ..., x,(t), x,(t—1(t)), ..., x,(t—7(t))) (i=1,..., n) satisfies the as-
sumptions (H1)-(H4).
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We would like to point out that the assumptions (A1), (A2), (A3) and (A5) are
almost always satisfied by those systems studied in the literature [6], [17], since most
of them are Lotka-Volterra type systems. For Lotka-Volterra type systems, F; are simply
linear functions of x,, so (A1), (AS) are satisfied as long as the coefficient functions are
bounded. (A4) (ii) is in fact the definition of the so-called uniform persistence [13],
[17]. For Lotka-Volterra type systems (A4) (ii) is often satisfied. (A4) (i) and (A6) are
technical.

LEMMA 3.1. Suppose that the system (3.1) satisfies (A1)—(A6), and G; (i=1, ..., n)
satisfies (H1)~(H4). Then there are §, Ae R", such that for any n,,n,€ R with n,<n,
and any compact subset S of C" which satisfies that S = {$(0)e C": n, <P(0) <n,}, there
exists a constant T=T(ny, n,, S)>0 such that for any ¢ €S, one has

A>x(t, §)>8  for all t>T.

PrOOF. Let x(t, ¢) be the solution of (3.1) and u(t, ) the solution of (2.1) with
¢ <y. Then Lemma 2.1 implies that x(t, ¢)<u(t, ) for all t>0. By Lemma 2.3 and
(A4) (i), we have:

(i) For any #,, nzeﬁﬂ with 5, <#,, there exists y(3,, #,), M(1,, 112)EI§'1r such
that for any ¢ € C" with n; <¢(0) <n, on [ —1*, 0], one has y(n,,1,) < x(t, §) < M(n,, 1,)
for all t>0;

(i) There exists e R". such that for any 7, n,€R" with n1<mn,, there is a
constant T, =T,(n,, #,)>0 such that for any ¢ e C" with n, <¢(0)<n, on [—1*, 0],
one has x(t, ¢)< 4 for all t>T,.

Let § be given in (A4) (ii) and 4 be given in (iiy. By (i), we can find §, A€ R",
with §<§/2< A< 4 such that for any ¢ e C" with §/2<¢(0) <4 on [ —1*, 0], one has
d<x(t, p)< 4 for all 1>0.

Letn,, n,€ R". and S be a compact subset of C" with § = {d(0)eC": n < P(0)<n,}.

By (i), there is 7> 0 such that for any ¢ € C" with , <¢(0) <y, on [ —1*, 0], one
has x(t, $)< 4 for t>T.

For ¢ €S, (A4) (ii) implies that there is an integer m(¢)>0 such that m(¢)w>T
and x(1, $)=>25/3 for t>m(d)w. The continuous dependence on the initial conditions
yields that there is a 6(¢)>0 such that if Y e C" and ||y — | <d(¢), then x(t, ¥)>5/2
for te[0, m(¢p)w+1*]. Since X, 4 mpoW) =X(KXmpo)), wWe have <x(t, )< 4 for all
t>m($)w. Since |, s{¥€C": Y —l<(¢)} = S, the compactness of S implies that
U ;‘= LWeC: Y —aill <i(¢), $;€S} o S. Let T(ny, 1, S)=max, <i<k{m(@)w}. Then
for any Yy €S, there is an ie{l, ..., k} such that |y — ;|| <(¢;) and so d<x(t, )< 4
for all t>m(¢;)w. Clearly, d<x(t, )< 4 for all t>T(n,, n,, S). O

Now we are in a position to state and prove our main result of this section.

THEOREM 3.1. Suppose that the system (3.1) satisfies (A1) ~(A6) and G, (i=1,...,n)
satisfies (H1)—(H4). If the system (3.1) has no positive constant solution, then it has a
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nonconstant positive w-periodic solution.

ProOF. Let x(t, ¢) be a solution of (3.1). Let §, 4 be given in Lemma 3.1. By (i)’
in the proof of Lemma 3.1, we can find yielé'ir, A,-eﬁ'i, (i=1,2,3) with y;<y,<y,<
§<A+2-1<4,+1<4,<A4; such that

S<p(@)<A+1 on [—1* 0] implies that y, <x(t, )< 4, for all t>0;
1. <d(0)<A4;+1 on [—1* 0] implies that y,<x(t, §)<4, for t>0;
1, <d(0)<4, on [—1*, 0] implies that y;<x(¢, §p) <4, for t>0.

For A5, (AS) yields that there is an L>0 such that for ||¢1|$[A3|=Z'i'=15i, where
A43;=(0y, ..., 0d,), one has Z?=1 | Fi(t, ¢)| < L.
Define

S={¢ec": NSHO<A,+1, 3 16.0)~ (O] <nL0—¢] for 0,66[—1*,0]}-

By repeated application of Arzela-Ascoli’s theorem, we conclude that S is compact.
Lemma 3.1 implies that there is a constant T=T7(y,, 4, +1, S)>0 such that for any
¢ €S, one has §<x(t, p)<A for t>T.

Define

So={¢ec": F<PO<T+1, Y. |4:(0)— (&)l <nL|6—¢| for e,ée[—r*,m},

i=1
Sl={¢ec": P <pO)<4,+1, Z | $:(0)— 4:(8) | <nL|0—¢| for 6, Ee[—7%, 0]},
and
Sz={¢ec": 12 <$O) <4, Z | $:(6)— $.(&)| <nL|0—&| for 6, Ee[— 1%, 0]}.

Then S, = S; = S, are convex subsets of the Banach space C". Arzela-Ascoli’s theorem
implies that S, and S, are compact. Also S, is open relative to .S,.
Define the Poincaré map P: S, — C" by

P(¢)=x,(¢)  for ¢eS,.

Then P is continuous and P™(¢)=x,,,(¢) for m=1,2,....
For ¢ € S,, we have x(t, )< 4, for t>0 and so ||x(t, ¢)||<|45|. Thus

.gl [Fi(t, x1(2), ..., X,(8), X1 (t—7(2)), ..., x,(t—7(@)) <L

and so
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| xi(t’ ¢) I = | Fi(t’ xl(t), LEREY xn(t)a xl(t_‘c(t))’ e xn(t_T(t)) | SL .
Note that [ P™(@)] = | Xma(#) <| 45]. Hence,

n

(32 i | PP(@)E1) = PRONED) < Y [xi(mo+Ey, ¢)—xi(mw+Ea, @)

i=1 =1

™M=

<

i

L&, —&,=nL|& —&,]

1

for &,,&,e[—71*,0] and m=1, 2, ... . This shows that P"(¢)eS,. Therefore, P™(S,)
S, form=1,2,....

We choose an integer m, >0 such that myw > T. Then the definition of 7 and (3.2)
imply that P"(¢)e S, for m>m,. Thus P™(S,) = S, for m>m,. By Lemma 2.4, P has
a fixed point in S, which corresponds to an w-periodic solution x(t, ¢,) of the system
(3.1) with x(t, ¢o)=>J. Also the fact that the system (3.1) has no positive constant
solution implies that x(t, ¢,) is nonconstant. O

The following assumption is clearly less restrictive than (H2).
(H2)' There exist positive w-periodic functions B,(t), ..., B,(t) and p=(py, ..., P,)E Ii';
such that

Bi(t
GHJHBJUV~,mBAﬂthJV—ﬂmyu,meﬁ—ﬂﬂ»+lesl<0
forteRand i=1,..., n.

The following theorem is slightly more general than Theorem 3.1.

THEOREM 3.2. Suppose that the system (3.1) satisfies (A1)—(A6) and G,(t, x,(¢), ...,
X, (1), x1(t—1()), ..., x,(t—7(t) (i=1,...,n) satisfy the assumptions (H1), (H2)', (H3)"
and (H4). If (3.1) has no constant solution, then it has a nonconstant positive w-periodic
solution.

ProOF. For the system (2.1), we make the following transformation:

Then the system (2.1) becomes

= Zi<Gi(t’ By(0)zy(t), ..., B(t)z,(t), By(t —1(t))z,(t —7(2)), ...,

Bzt =)~ ).

Let
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Gi(t, Zl(t), DR Zn(t)9 Zl(t - T(t)), [RRK) Zn(t - T(t)))
=Gy(t, B;()z4(1), - .., BJ(0)z,(t), By(t — ()2, (¢ —7(®)), .-,

Bi(t
Bt— s+
and consider the system
(3.3) 2,=2,Gi(t, z,(t), ..., z,(t), zy(t—T(D)), ..., z,(t —T(1))) .
Then Lemma 2.2 and Lemma 2.3 are true for (3.3) and so Lemma 2.1 implies that
Lemma 2.2 and Lemma 2.3 are still true for (2.1). O

4. Uniqueness theorems. In this section we will establish the uniqueness and
asymptotic stability of periodic solutions of the system (3.1).

Let y(t, Y)=(y(2), - .., y(t))>0 be a solution of the system (3.1). We denote for
iL,j=1,2,...,n,

OF i(t, X1s o oes Xy Vis-oos V)
aij(t)= 6 s
X G100, ey @), 1= T(D)), -.cr Pt —T(1)))
bei(t)= OF i(ty X1y -oes Xps Visooes Vn)
ij - .
ay; @10, ey 0, 1(E =T, o.cs Pt —T(1)))

Let x(t, ¢)=(x(2), - .., x,(t)) be another solution of the system (3.1), and

F=Fi(t, x,@t), ..., x,(t), x,(t—1(2)), ..., X,(t—(t)))
- Fi(t’ yl(t)’ DR yn(t)’ yl(t - T(t))’ ey y"(t—‘l'(t)))

n n

— ¥ ay(Ox;(0)—y;(O0)— Y by(O)x;(t— () — y;t— (1)) .

j=1 j=1

We make the following technical assumption:
(A,) There exist positive constants p,, ..., p,, q1, - - - » g, Such that for all z, y(t, ¥),

._Zl pila;®) |+ pja;(t)+49;<0  j=1,...,n,
i%j

and
.Zl pilbi()|—q;(1—7(t))<0, j=1...,n.

LEMMA 4.1. Suppose (A,) holds. Let y(t, ) be a solution of (3.1) with y(6)>0 on
[—t*, 0], Y(0)>0 and Yy € C". If there is an Me R, such that y(t, )< M for t=0, then
there is a 6(f)>0 such that for any solution x(t, ¢) of (3.1) with ¢ C", $(60)=0 and
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¢ —wl <o, we have

lim  (x(z, ¢)— (¢, ¥)=

t->+oo

PROOF.  Let x(t, §)=(x,(1), ..., x,(t)) and y(t, Y)=(y,(t), ..., ya(t)). Let v;(t)=(x;(t)/
¥i(?)). Then
‘}i(t) = vi(t)(Fi(t9 xl(t)’ et xn(t)7 xl(t_ T(t))9 AR ] xn(t_ T(t)))
- Fi(t’ yl(t)5 LR yn(t)’ yl(t '—T(t))a [REE} yn(t_ T(t)))) 5
that is,
i(0)= v.-(t)[ Z asOy,00,0 =D+ Y by, — 0Nyt —(0) — 1)+ F,} :
Jj= j=1
i=1,...,n.
Let u;(t)=v;(t)— 1. Then
4.1 u; ()= (u; + I)I: g a;(t)y;(Ou;(t) + ‘2"11 b;;(0)y ;(t —t(t))u;(t — (1) + Fz] s
i=1,...,n.

Let V(ut)zzyzl(mu,.(t)|+j:_t(t)q,-y,~(s)|u,-(s)lds). Denote by D* the upper right Dini
derivative. Then

4.2) D*V(u)< i [( 2. pilay(®)]+p;a U(t)+qJ>y,(t)+lF I]!u ®]

i=1
1#1

M:

(Z pilby(®)|— q,(l—f(t))>y,(t—r(t))lu (t—@)l,

1

1'

where
4.3) F i a;(t)yi(Dul(t) + Z byt — t(t))uk(t—r(t))+ j=1,...,n.

Now F ; (j=1,...,n) are continuous with respect to their arguments and y;(t) (j=
1,...,n) are bounded away from zero. Hence if ||| is sufficiently small, then the
assumption (A,) implies that D*V(u,)<0. Therefore if | ¢, || is sufficiently small, then
for the solution u(t, ¢,) of (4.1), one has lim,_, , , u(t, ¢,)=0. But u;(t)=(x;(t)— y;(£))/y:(¢)
and y;(t)< M, for t>0, where M=(M,, ..., M,). Thus there is a é())>0 such that if
$eC”, $(0)=0 and [[¢—y || <9, then lim,, ; (x(t, ¢)— Wz, ¥))=0. a

The following technical assumption is needed in our next lemma:
(A,) For any ne R, there is an M(n)e R". such that for any ¢ C" with 0< () <n
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on [ —t*, 0], one has
x(t, p)<M(n) for t>0.

LEMMA 4.2. Assume that the system (3.1) satisfies (A,) and (A,). Let S be a
compact connected subset of C" such that if p € S, then 1, = ¢(0)=n, on [—1*, 0], where
N1 M e R".. Then for any two solutions x(t, ¢) and y(t, V) with ¢, Y €S, one has

Hm  (x(t, ¢)— y(t, ¥)=0.

t=+

PrOOF. By (A,), we have M(n,)e R". such that x(t, $) < M(x,) for ¢ €S, and t>0.
For any s € S, there exists a 6(/) >0 such that if | —y || <d() for ¢ € C", then Lemma
4.1 implies that lim,_, , ., (x(¢, ¢)— y(t, ¥))=0. Clearly

Uyes BW, 00D =U,os{d€C: o=l <o)} > 5.

The compactness of S yields that there exist ¥, ..., Y,,€ S such that (T B(f;, 6(¥;))
S. Since S is connected, for y;, and y;,, iy, jo€{l, ..., m}, we can find ¢, , ..., ¢, eC"

such that n,> ¢, (0)=n, on [—1*, 0], ¢;,, ¢;, ., € B(Y;, 6()) (k=0, 1,..., land ¢, =V,
¢i,.,=V;,)- Thus Lemma 4.1 and the definition of §(y;) yield that

hm (x(t, ¢ik)_x(t9 ¢ik+l))=0’ k=0’ 15'--’1

t— + oo
and so
4.4) lim (x(t, ;) —x(t, ¥;,)=0 for i,je{l,...,m}.
t— + oo

For ¢,y €S, there exist j,,j,e{l,...,n} such that ¢eB(Y;, 6(};)) and ye B,
0(y;,)). Then lim,, , , (x(t, ¢)—x(t, ¥;,))=0 and lim,_, , ,, (y(t, ¥)—x(t, ;,))=0. The con-
clusion now follows from (4.4). O

THEOREM 4.1. Suppose that the system (3.1) satisfies (A,) and (A,). Then there
exists at most one positive w-periodic solution x(t, @) for (3.1). If x(t, @) is the positive w-
periodic solution, then it is globally asymptotically stable for C" :={¢(0)eC": $(6) =0,
$(0)>0}.

PrOOF. Suppose that the system (3.1) has two different positive w-periodic solu-
tions x(t, ¢) and y(¢t, ). Then there are n,, 7, e R", such that <o, ¥<n,.

Let S={(1—-A)¢+iy: Ae[0, 1]}. Then the fact that ¢,y eC" implies that S is
compact. Clearly, S is connected. Lemma 4.2 yields that lim,_, , . (x(t, ¢)— ¥(t, ¥))=0,
a contradiction, which shows the uniqueness.

Let x(t, ¢,) be the unique positive w-periodic solution of (3.1). For ¢ e C",, there
exists T(¢)>0 such that x(t, $)>0 for t > T(¢). Hence, without loss of generality, we
suppose that ¢(6)>0 for Oe[ —1*, 0]. Then there exist 5, #, eli'l, such that 7, < ¢(0),
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$o(0) <n, on [—1*,0].
The above arguments show that lim,, , . (x(t, ¢) —x(t, ¢,))=0. O

If we replace (A,) by the assumption:
(A,) There exist positive constants p;,...,Ps q1,..., g, and positive w-periodic
functions B;(t), ..., B,(t) such that

n

Z B;(1)| ay;(t)| + pjaj;()Bj(1)+ ¢;<0

and

M;

p;B;(t— () b;;(1)| —q;(1 -7 (®))<0

)
-

for j=1,...,n,
then we have:

THEOREM 4.2. Suppose that the system (3.1) satisfies (A,), (A,). Then there exists
at most one positive w-periodic solution x(t, ¢) for (3.1). If x(t, ¢) is the positive w-periodic
solution of (3.1), then it is globally asymptotically stable in C", .

Proor. For the system (3.1), we take the transformation: z;=x;/B;, i=1, ..., n.
Then the system (3.1) becomes

(4.5) 2i=zi<Fi(t: B (8)z4(2), - .., Bu(1)z,(t), By(t — ()2 (¢ —7(2)), - - .,

Bi(1)
B,(t—1(t)z,(t —1(t)) ——— | .
(t—(®)z,(t — (1)) Bi(t)>
It is easy to check that Lemma 4.1 and Lemma 4.2 are true for the system (4.5), and
so the theorem follows from the proof of Theorem 4.1. O

5. Applications. Now we apply the above results to some well-known systems.
5.1. Lotka-Volterra system. We consider first the system (1.2), namely, the
following n-dimensional delay Lotka-Volterra system:

(5.1 xi(t)=xi(t)<ci(t)_‘aii(t)xi(t)+ Z a;(t)x;(t) + Z bij(t)xj(t—f(t))> .
2
For the system (5.1) we assume that
(1) a;(), ci(t), b;;(t), (,j=1,...,n) and 1(t) are continuously differentiable, w-
periodic functions, and c;(t)>0, a;(t)>0, a;;(t)>0, b;;(t)=>0 and 7(t)>0 for teR.
(i) There exist positive differentiable w-periodic functions B(t), ..., B,(t) and
r=(py, ...,p,,)elé':, such that
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n

+ X payOB O+ 3. pby0B;(t—(0)

j=
Jj#i

Bi(t)
Bi(?)

pia;(t)B;(t)> Ci(t)+l

forteR and i=1,...,n.

THEOREM 5.1. Under the above assumptions, if the system (5.1) has no constant
solution, then it has a nonconstant periodic solution.

Clearly, the system (5.1) generates a monotone semiflow by the assumption (i). In
order to prove Theorem 5.1, we need the following lemma.

LemMA 5.1.  Under the assumption (i), there exists a y>0 such that for ¢ € C" with
¢>y-1, one has

x(t, p)=y-1 for t=>0.

Proor. By the assumption (i), the system (5.1) generates a monotone semiflow
and for any ¢ € C" with ¢(6)>0 on [ —1*, 0] and ¢(0)#0, one has x(t, »)>0 for 1>0.
Thus we have

(5.2) X0 =x;Olci(O)—ax()x,(0],  i=1,...,n.
Therefore, if ¢(0)>0, then lim inf,, . x;(t, ¢)=>min{c;(t)/a;(¢), t € [0, 0]} =y;. Let y=
min{y;, i=1, ..., n}. Then the conclusion of the lemma follows. O

ProOOF OF THEOREM 5.1. Let

Fit, xy(t), ..., x4(8), X, (t—1(1)), ..., x,(t — (1))
=Gy(t, x1(2), ..., x,(t), x 1 (t—7(2)), ..., x,(t — (1))

=)= au(Ox:(0)+ Y ay(O)x;(0)+ Z by;(0)x;(t —(t)) .
Y =t
The assumption (i) yields that (A1)-(A3) and (AS) hold. Lemma 5.1 guarantees that
(A4) is true. Now (H1), (H3) and (H4) are satisfied by the assumption (i) and the linear

form of functions G;. (H2) follows from the assumption (ii). Theorem 5.1 now follows
from Theorem 3.2. O

In order to state our next result, we assume further that
(iii) there exists p'=(p),...,p,)eR" and g=(q,, ..., q,) €R". such that for j=

I,...,n,

é PiB;(t)| a;(t)| — pja;;(t)B,(t) +q;<0,

.; PiB;(t' — ()| b;(t) | —q;(1—7' (1)) <O .
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THEOREM 5.2. Under the assumptions (i), (ii) and (iii), if the system (5.1) has no
positive constant solution, then the system (5.1) has a unique and globally asymptotically
stable nonconstant w-periodic solution with respect to positive solutions of (5.1).

In order to prove Theorem 5.2, we need the following lemmas.

LEMMA 5.2. Let y be defined as in Lemma 5.1. For any ¢ e C" with $(6)=0 on
[—7*, 0] and ¢(0)#0, there exists T(¢p)>0 such that for t>T(¢),

x(t, §)=>y-1.
Proor. It follows from the argument for Lemma 5.1. O
LEMMA 5.3. For any ¢ € C" and y € C" with ¢p(0)=y-1 and y(0)>y+-1 on [ —1*, 0],
one has
tlifflm (x(t, §)—x(t, ))=0.

PrOOF. Let

x)=min{ min ¢,6), min Y0}, W=max{ max ¢(6), max ¥,(6)},
—t*<60<0 —t*<0<0

—t*<0<0 —t*<60<0

where i=1,...,nand x°=(x%,...,x2), y°=09%, ..., ¥°). Then y-1<x° < ¢(0) <y° and
7:1<x°<y(0)<y° on [—1*, 0]. Thus we have

x(t, x°) < x(t, p) < y(t, y°) for t>0
and
x(t, XO) <y, p)<y(t,y°)  for t>0.

An argument similar to that in Lemma 4.1 and Lemma 4.2 shows that lim, _, , ., (x(t, x°)—
¥, y°)=0. Hence lim, . , ., (x(t, $)— y(t, ¥)) =0. O

ProOOF OF THEOREM 5.2. The existence and uniqueness parts follow from Theo-
rems 5.1 and 4.2, and the global asymptotic stability follows from Lemma 5.2 and
Lemma 5.3. O

The following corollary improves a similar result of Freedman and Wu [5] for a
scalar equation.

COROLLARY 5.1. Consider the equation
(5.3) (1) = x(t)[a(t) — b(O)x() + c(e)x(t —=(1))] ,

where a(t), b(t), c(t) and t(t) are continuously differentiable, w-periodic functions and
a(t)>0, b(t)>0, c(t)=0, =(t)=0 for te R. Suppose that

(i) the equation a(t)—b(t)K(t)+ c(t)K(t—1(t))=0 has a positive, w-periodic, con-
tinuously differentiable solution K(t).
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Then the equation (5.3) has a positive w-periodic solution Q(t). If, in addition

(ii) ming g, <, bOK()>maxo g, <, [cOK(E—1()/(1 -7 ()],
then Q(t) is globally asymptotically stable with respect to positive solutions of (5.3).

Proor. Let B(t)=K(z). Then the condition (i) implies that for t e [0, w], b(t) > c(t)
K(t—1(t))/K(t). This in turn implies that there is a p, >0 such that p, >(a(t)+| K(t)|/
K(®)/(b(t)K(t) — c(t)K(t — (1)), i.e., the condition (ii) in Theorem 5.1 is satisfied. Hence,
the existence of periodic solutions follows from Theorem 5.1. A simple calculation yields
the uniqueness and global asymptotic stability of periodic solutions. O

For the sake of comparison, we state below the main result of Freedman and
Wu [5].

THEOREM (Freedman and Wu [5]). For the equation (5.3), if (i) is satisfied, then
it has a positive w-periodic solution Q(t). Moreover, if for all te[0, ],

() b(2) > c(t)Q(z —(2))/Q(1) ,
then Q(t) is globally asymptotically stable with respect to positive solutions of (2.1).

Clearly, we have the same existence conditions. However, our condition (ii) for
the global stability of Q(t) is verifiable, while (*) is not due to the dependence of Q(t)
which is unknown.

For example, if a(t)=2+ (3 sin 8)/2, b(t)=1, c(t)=1/2, and 7(t)==. Then w=2x, and
K(t)=4+sint, K(t—1(t))=4—sin t. Clearly

3= min b(t)K(t)= min (4+sin¢)
O0<t<2m

0<t<2n

> S = max [c()K(t—1(t))/(1—-7'(t))]= max L(4 —sin?).
2 0<t<2m o<t<2n 2
Hence both (i) and (ii) of Corollary 5.1 are satisfied. By Corollary 5.1, we conclude
that in this case, the equation (5.3) has a globally asymptotically stable positive periodic
solution Q(t) (with respect to positive solutions of (5.3)).
5.2. A delay nonautonomous predator-prey system. In the following, we would
like to apply our main results to the delay nonautonomous predator-prey system

ci(H(t) ]

*(t)=x(t) [al(t) —bu(Ox(0) O)x(t) +1

(5.4)
d(t)x(t—1) :I

Wt) = y(t)[ —a,(t)—b,(t)y(t) + Ox—D+1

where q;(t), b;(¢), ¢;(t), (i=1, 2) and d(t) are nonnegative continuously differentiable, w-
periodic functions. Moreover, a;(t), b;(t) (i=1, 2), ¢,(t) and d(t) are positive. Let
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c4(0)y(1)
c(tx(t)+1 7

dit)x(t—1)
Oxt—1)+1"

F (e, x(2), y(t), x(t—=1), yt = 1)) =a,(6) — b, ()x(t) -

Fy(t, x(2), y(2), x(t—=1), y(t — 1)) = —a,(t) —b,(t)y(t) +

Gl(t’ X(t), y(t)’ X([— l)s Y(t— 1)) = al(t)_ bl(t)x(t)
and
— 1) = 1) =an()— _dxe=D)
G(t, x(1), y(2), x(t — 1), y(t — 1)) =a,(t) — b(O)y(t) + D41

It is easy to check that G; (i=1, 2) satisfies the assumptions (H1)-(H4). Clearly, F;<G;
fori=1,2.
In the following, we define

g;= max gy(t), g;= min g;t), i=1,2,
0<t<ow 0<t<o

and similarly b;, b;, ¢;, ¢;, d and d. We assume that
da,bi?

(5.5) e
ca1b1 +1

Then we have:

LEMMA 5.4. Assume that (5.5) holds. Then
(i) For any ne R%, there exists M(n)e R% such that for any ¢ e C* with 0<p<n
on [—1*, 0], one has

0<X(t,p)<M(n)  forall t=0;

where X(t, @) is the solution of (5.4) with Xo(d)=¢.

(i) Let A=(a,bi*, b3 (da,bi"/c,a,b1'+1)+a,)). Then for any ne R%, there is
a constant T=T(n)>0 such that for any ¢ e C?* with 0<p<n on [—1*, 0], one has
0<X(t, )< A4+1 for all t>T(n).

Proor. Let Y(t, ¥)=(x(t, ¥), ¥(t, ¥)) be the solution of the system
x(t) = G(t, x(2), y(1), x(t—1), yt—1)),
W)= G,(t, x(1), (t), x(t—1), p(t—1)) .

It is easy to check that (lim,, . o sup x(¢, ¥), lim,_, , ., sup y(t, ¥)) < 4. Now the conclu-
sions follow from Lemma 2.3. O

Observe that for t>0, we have X(t)<a;x(t), hence x(t)<x(t,)expla,(t—ty)] for
t>t,>0, which implies that x(t—1)>x(t)e =% for t>1.
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LEMMA 5.5. Suppose that the conditions in Lemma 5.4 hold. If
d —a b’—l

(5.6) G,<— 2 @01
ce %a byt +1

then for any 1, n, € R% with n, <n,, there exists y(n, n,) € R2 such that for any ¢ e C*
with n, < P(0)<n, on [—1*, 0], one has X(t, $)>v(n,, n,) for all t>0.

ProoF. For 7, 7, € R% with n, <#,, Lemma 5.4 implies that there exists M(,) =
(M,(n,), M(n,)) e R% such that M(y,)>#, and for any ¢eC? with n,<¢<#n, on
[—t*, 0], one has 0 < X(t, ) < M(n,) for all t>0, i.e., 0<x(t, )< M, (n,), 0< y(t, )<
M,(n,) for t>0. Hence for >0, we have

X(t) = x(t)[a; — by M () — ¢, M, (n,)]1= — Bx(t)

which implies that for ¢ > 1, x(t — 1) < x(t)e?, where —f=a, —b,M,(n,)— ¢, M,(n,)<0.
Now we would like to compare the solutions of (5.4) with those of the following
two systems of ordinary differential equations

om0 sy ey 250
(5.7) u(r)—u(t)[c_zl Buat)— 40 1}, v(r)—v(r)[ oy
and
(5.8) u(t)=u(t)[gl—51u(r)~L‘”J, ﬁ(t)=v<t)[—d2—52v(r)+_—i‘ﬂ].
cu(t)+1 e Mu(t)+1

We denote by (a(t), 9(t)) and (u(t), v(¢)) solutions of (5.7) and (5.8) with initial data
(ug, vo) € R%, respectively. We denote

.1 -
X:min{ min —d ™' (t)a,(?), aze " A(d—a,¢,)” 1} .
O<t<o
Without loss of generality, we suppose that 5,7, <(X, a,¢; !). Denote u,(t)=1u(t, n,,
M ,(n,)), 0,(t)="10(t, 1, M,(n1,)). Then there is a 7, >0 such that
ﬁl(r1)=0 and ﬁl(t)<0 for te[0,7,).

Denote u,(t)=u(t, #,(ty), 0,(,)), v,(t)=0(t, #,(1,), U4(t,)). Then there exist 0<1,<t3<71,
such that either

(@) vi(t) =112, us(r3) =11y, B1(t4) =0 and (uy(¢), v,(8)) < (11, M12) ON (T2, T3),
or

(d) u(z2)=n11, 01(t3) =112, 01(r4) =0 and (u,(2), v1(t)) > (111, N12) ON (72, T3),
where 1, =11, 112)-
We first assume (a). We define

ry={@),0,(t): 0<t<t,}, Iy={u(t),v,(t)): 0<t<1,},
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Fy={(x,0,(t4)): t1(t)) SX<M(n3)}, Ta={Mi(n2), y): 0:1(1)) Sy<M,(n5)} ,
Fs={(x, M5(n,)): N1 <x<M(n,)} .

Then |J l_5= T constitutes the boundary of a closed bounded region 2 in the x-y plane.
CrLamM. For t>0, we have X(t, )€ Q with n, <¢p<n, on [—1%*,0].

First we observe that for t>0, x(t, ¢)=(x(t), y(t)) can never leave Q from I;.

Since if (x(t), y(2)) = (@(t*), B(t*)) e I'y, then x(r)>i(t*), y(f) <o(t*). Similarly, we see that
(x(t), y(t)) cannot leave Q through I',. It is obvious that it cannot cross I';, I', and I's.
This proves the claim.

Now we assume (b). In this case, we first choose one point (x,, y,) such that
(X0, Yo)<n;. Denote

yZ(t) = l_l(t, X0, yO) s QZ(I) = y(t’ X0, yO) .
There exist 7,>13>0>1,>1, such that d,(t,) =0, u,(t5)=7,,, v5(t,)=#,, and

¢10,(ty)

(ua(74), (7)) satisfies a, —byuy(ry) =W .

Denote
uy(t)=uy(t, uy(ty), 2(t1)) s D2(E)=05(t, uy(ty), V(7)) -
Then there is a ¢, <0 such that 0,(t;)=M,(n,). Clearly, u,(t,)<#,,. We define

Iy ={@yt), 05(t): t, <t<0}, Iy={(@(t), 5:(t): 1, <t <74},
3 ={(x%, 02(14)): Up(T)) SXSM (M)}, Ta={(M(n2), y): v2(14) Sy <My(n2)} ,
Is={(x, M((n,)): i5(t) < xX<M(n5)} -
Then |J i5= , T'i constitutes the boundary of a closed bounded region €' in the x-y plane.
Similarly, the above claim is true for Q' and the proof follows. O

The accompanying Figure should be helpful in understanding the above arguments.
In the following, we need the notation:

A'=abit+1, A*=b3!

< da,bi! _>
———+a, |+1.
c,a;b7" +1

LEMMA 5.6. Assume that the conditions in Lemma 5.5 hold. Then there exists d € Ii’i
such that for any ¢(0) e C* with ¢(6)>0, $(0)>0,

lim inf X (¢, ¢)>5 .

t=+ o

ProoF. From Lemma 5.4 (ii), we know that there is a T, >0 such that for 1> T,
X(t, )< A4 +1. Therefore, we may assume that X(¢, $)<A4+1 for t > — 1. Then we have
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(0, M,(n,))
r,—
(@@(zy), o(ty)) r,
a, _Elx b
r, cx+1
©,1,,)
(uy(15), v1(12)) ‘ } 0y (t4)
0,0 / (1 (x2), 0) (M,(1),0)

(44(13), v1(73))

FIGURE. Illustration of the proof of Lemma 5.5.

X(t) = x(t)[a, — b, 4} — &, 4*]= — px(t), which implies that x(t — 1) < x(t)e” for t>1.
Now we would like to compare the solutions of (5.4) with those of the system (5.8)
and the following system of ordinary differential equations:

dePu(r) :I

. —Bau——"D | s=wol —
(5.9) u(,:)_u(t)[g1 byu(t) ], v(t)—v(t)[ 42+m

cu(t)+1

Let g =max{4'+1, 42+ 1} and X=min{min,.,.,(1/2)d " (t)a ), ae A d—a,c;)~}.
We denote by (i(t), o(t)) and (u(?), v(t)) solutions of (5.9) and (5.8) with initial data
(uo, vo) € R, respectively. We denote u(t)=1(t, X, o), i(t)=i(t, %, o). Then there exists a
7, >0, such that #i(r,) =0 and ii(t) <0 for te [0, 7,). Denote

u(t)=ult, u(t,), o(ry)), oe)=v(t, ult,), o(ry)) .
Then there is a 7, >0 such that i(z,)=0. Define
ry={(@@), o0): 0<t<t,}, Iy={W),vr): 0<t<1,},

Fy={(x, v(1,)): u(t;)<x<o}, I'y={(0,y): v(t;)<y<a},
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I's={(x,0): X<x<o}.

Then |J l.5= , I'i constitutes the boundary of a closed bounded region Q in the x-y plane.
Note that Q is independent of (x(t), y(t)).

(a) If (x(ty), y(t,)) € Q for some ¢, >0, then an argument similar to that in Lemma
5.5 shows that for t>1t,, X(¢, ¢) stays in Q.

(b) If there exists some ¢, >0 such that (x(t), y(t)) ¢ Q2 for 1>1¢,, then we have two

cases to consider:

(I) There exists a T>0 such that (x(¢), y(¢)) e 2, for t>T, where Q,={(x, y)e
R%:: x<ZX,y<o and (x,y)¢Q}. Then y(t)<0 and lim,, ,, y(£)=0, which
leads to lim sup,, , , x(t)>a,b7*. However, from (5.6), we would then have
y(t)>0 for some large ¢, a contradiction. Hence (x(t), y(t)) must leave Q;
and enter Q, through x==x, where Q,={(x, y)e R%: 6>x>%,0<y<oc and
(x, y) ¢ 2}

(I1) Tt is clear that (x(t), y(t)) cannot enter Q, from Q, since @, n Q,={(%, y)e
R% : 0<y<u(f) where u(f)=x} and on Q, n Q,, X(t)>0. Suppose that there
exist a 7>0 and a o* >0 such that for t> T,

¢y () S 5%

—b,x(t)—
a; 1x(2) XD +1

Then X(¢) > 0, which leads to lim, _, , ., x(t) = + o0, a contradiction. Hence there
exists a £, >0 such that (x(t,), y(t,)) € @ and by (a), we have that (x(¢), y(¢)) e Q
for t>t,. O

THEOREM 5.3. Suppose that the conditions in Lemma 5.5 are true. If (5.4) has no
positive constant solution, then the system (5.4) has a nonconstant positive w-periodic
solution.

ProorF. By Lemma 5.4, Lemma 5.5 and Lemma 5.6, the condition (A4) is true.
It is easy to check that the other conditions in Theorem 3.1 are satisfied. O

The above theorem implies that (5.4) has a nonconstant positive w-periodic solution
if a,(t) is small enough.
The application of Theorem 4.1 yields:

THEOREM 5.4. Suppose that the conditions in Lemma 5.5 are true. Assume that
there are positive numbers py, q,, q, such that

pi(—by(t)+cy(t)cx()4%) +q, <0,
—by(t)+pici(t)+9,<0,
d(t)—q,<0.

Then the system (5.4) has a unique and globally asymptotically stable w-periodic solution.
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Proor. By Lemma 5.4 and the property that X, ., (¢) = X{(X e (¢)), We confine
ourselves to the initial space

Cr={p(0)eC": 0<p()<4}.

Then the theorem follows from Theorem 4.1. O

The assumption of b,(t)>0 is important but not essential. Without such an
assumption, the proof will become even more technical and complicated. We leave this
case to our future work.
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