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Abstract. We discuss two kinds of compactifications of the configuration space of
six points in the complex projective plane. One is Naruki’s cross ratio variety and the
other is a toric variety obtained from the regular triangulations of the product of two
copies of the 2-simplex. The former admits a biregular action of the Weyl group of type
E,. The latter admits a biregular action of S5 x S;. The complement of the complex
torus of the toric variety consists of normal crossing divisors. The action of S; x S;
leaves the set of normal crossing points invariant and decomposes this set into five orbits.

We explicitly show that the natural birational map between the two varieties is
locally biregular around the normal crossing points of the toric variety and the
corresponding points of the cross ratio variety. Utilizing this map, we study fundamental
systems of solutions of the hypergeometric system E(3, 6) on the cross ratio variety which
is a natural domain of definition of the hypergeometric functions of type (3, 6).

1. Introduction. We consider the integral
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and (By, ..., B,) is a parameter with ) B;=n—k. We can naturally regard f(yy, ..., ¥,
as a function on the configuration space P(k, n) of n points on the projective space P*~*:

P(k, n)=GL(k, C)\{k x n matrices of which all k x k minors are not 0}/(C*)".

The projective space P~ Y ~k~1) {5 a compactification of the configuration space P(k, n).

The function f(y,,...,y,) satisfies a holonomic system of differential equations on
pk-H=k=1) which we denote by E(k, n) and has been intensively studied by a lot of
people (see, e.g., [1], [12] and their bibliography).

We are interested in the following problems:
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(A1) Construct a compactification X of the configuration space P(k,n) so that
X— P(k, n) is the union of non-singular hypersurfaces with normal crossings.

(A2) Construct fundamental series solutions of the holonomic system on X around
the normal crossing points.

We explain results concerning the problems (A1), (A2) for the Appell-Lauricella
hypergeometric function Fy(a, by, ..., b,, ¢; x4, ..., Xx,) (cf. [2]) which is interpreted as
a solution to E(2,n+3) on P(2,n+3) in a natural manner. In this case, Terada [37]
constructed a compactification of P(2, n+ 3) which is called the n-dimensional Terada
model in [24]. We denote it by .#, for a moment. The Terada model .#, has some nice
properties:

(B1) .4, is non-singular.

(B2) The configuration space P(2, n+3) is regarded as a Zariski open subset of .4,
and its complement S is the union of divisors with normal crossings.

(B3) S coincides with the pull-back to .#, of the singular locus of the holonomic
system for Fp,

(B4) Permutations among n + 3 points of the projective line naturally induce a biregular
action of the symmetric group on n+3 letters on .#4,.

The properties (B1)—(B4) of the Terada model give an answer to the problem (Al)
for the case of P(2, n+3). As to the problem (A2) for the Appell-Lauricella case, it is
possible to solve it for small n. For example, an answer for E(2, 5) (the Appell function
F,) is given in [33], but it is not solved for general #. One reason for that is the difficulty
in classifying the normal crossing points of .#, with respect to the natural action of the
group S, 3.

Let us return to the configuration space P(k,n) and the system E(k,n) on it
(k>3,n>2k). No one has yet tried to solve the problems (Al) and (A2). The toric
variety constructed in [11] is a compactification of P(k, n) related to holonomic systems
E(k, n), but it does not satisfy the properties corresponding to (B1) and (B2). For this
reason, it is worthwhile to solve the problems above.

Compared with the general case, the three spaces P(3, n) (n=6, 7, 8) have fruitful
geometric background related with classical topics on del Pezzo surfaces (cf. [6], [18]).
For example, since a non-singular cubic surface in P3 is obtained as a six-point blowing
up of P2, P(3, 6) is regarded as a moduli space of cubic surfaces. In this case, from a
purely geometric motivation to study a moduli space of marked cubic surfaces, Naruki
[21] succeeded in constructing a compactification € of P(3, 6) having properties similar
to (B1) and (B2). In this paper, we call ¥ Naruki’s cross ratio variety following [13].
Since % enjoys the properties analogous to the properties (B1)-(B4), € can be regarded
as a solution to the problem (A1) for P(3, 6).

Noting these in mind, we focus our attention to the holonomic system E(3, 6) in
this paper. Our interest therefore lies in the following:

(C1) Study the compactification y(N'(Z(4, x 4,))) (for definition, see §4) which is a
modification of the toric variety constructed by the method in [11] in this case.
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(C2) Clarify the relationship between € and the compactification y(N'(Z(4, x 4,))).
(C3) Determine the normal crossing points of ¢ and those of x(N'(2(4, x 4,))) and
study the correspondence among them.
(C4) Construct fundamental solutions to the pull-back to € of E(3, 6) around normal
crossing points of € which correspond to those of x(N'(Z(4, x 4,))).
We can say little about (C1) and (C2) and leave them for further study. As to (C3), we
obtain a rather satisfactory results; we determine all the regular triangulation of the
product of the 2-simplices 4, x 4, and, roughly speaking, these correspond to normal
crossing points of y(N'(Z(4, x 4,))). Moreover, we clarify the correspondence in a
concrete manner among these points and normal crossing points of € which we call
normal crossing points of ¥ attached to triangulations in this introduction. As a
preparation for treating (C4), we construct three kinds of power series in four variables
denoted by

F(a.e).A(/l; X, X5, X3,X,), F,(3,6),B(A; X1, X5, X3,X,),

1)
F(3.6),c()~; X, X5, X5,X,)

depending on parameters
A=(Ay, Ags A3, Agy Ass Ag) (A1 + A+ A3+ A4+ As+46=0).

Then our main result is that each fundamental solution of E(3, 6) around each normal
crossing point of ¢ attached to a triangulation is expressed in terms of one of F3 ) 2
(Z=A4, B, C), only changing variables and parameters in a certain manner. This result
is partly contained in a general theory of hypergeometric functions on P(k, n) (cf. [11]),
but it is stressed here that it is sufficient to use three kind of power series introduced
above. There are normal crossing points of € which are not attached to triangulations.
We do not enter into the construction of fundamental solutions around such points in
this article and only give a remark at the end of §5.

We are going to briefly explain the contents of this article. Section 2 is devoted to
the construction of a 4-dimensional toric variety associated to the triangulations of the
product of two copies of the 2-simplex 4,. The product 4, x 4, admits an S5 x S;3-action
induced from the natural S;-action on 4,. Our study starts with showing a result of
Postnikov [12] on the S5 x S5-orbital structure on the set of triangulations of 4, x 4,.
By a general theory of [11], we construct a 4-dimensional toric variety associated to
the triangulations and finally introduce a non-singular model of the toric variety and
a power series to each triangulation. They are solutions of the holonomic system. In
Section 3, we first review the definition of the configuration space of six points in P2
and its compactification ¢ due to Naruki. Naruki’s cross ratio variety ¢ admits a
biregular W(E)-action, where W(Ej) is the Weyl group of type Eg. It naturally contains
S,. Noting that the hypergeometric system of type (3, 6) is preserved by the Se-action,
we see Sg-orbits of normal crossing points of €. By studying the intersections of
hypersurfaces of ¥, we determine that there are nine Se-orbits denoted by (NC.i)



382 J. SEKIGUCHI AND N. TAKAYAMA

(i=1,2,...,9). In Section 4, we study the correspondence between the totality of
S5 x S5-orbits of triangulations investigated in Section 2 and those of normal crossing
points of €. The types of such points are (NC.i) (i=2, 4, 5, 6, 7). Noting this, we are
going to construct fundamental solutions of the holonomic system around each normal
crossing point whose type is one of (NC.i) (i=2,4,5,6,7). We show that each
fundamental solution of the holonomic system around each normal crossing point whose
type is one of (NC.i) (i=2, 4, 5, 6, 7) is expressed in terms of one of the functions above
by a suitable choice of variables and parameters. Finally, we discuss fundamental
solutions at other normal crossing points.

2. Triangulation of the product of two copies of 2-simplices. This section is devoted
to a brief introduction of a toric variety associated to triangulations of the product of
2-simplices. Let 4, be a 2-simplex. We first state a theorem due to Postnikov on the
enumeration of all triangulations of 4, x 4,. Secondly, under the guidance of the general
theory due to [11] and [14], we will construct a 4-dimensional toric variety associated
to these triangulations and study properties of it. Finally, we will construct series
solutions of the hypergeometric system of type (3, 6) on the toric variety based on the
general method developed in [11].

We begin this section with giving an embedding of 4, x 4, into the 6-dimensional
Euclidean space: 4, x 4, is the convex hull of the nine column vectors of the following
matrix 4 regarded as points in RS:

111000000
000111000
L_|000000 1 11
1100100100
010010010
001001001

We denote by {i,j} the (3(i—1)+j)-th column vector of the matrix 4. By a
triangulation of 4, x 4,, we mean a triangulation of the product of the simplices of
which each vertex is one of the nine vectors {i, j}. We can show that any triangulation
of 4, x 4, consists of six 4-simplices. So each triangulation is given by six sets of five
points.

Let  be the set of all triangulations of 4, x 4,. Since the 2-simplex 4, admits an
action of the group S5 of the permutations on three letters, 4, x 4, naturally admits
an action of the product §; x §;. The set J is decomposed into S x S;-orbits. The
representatives of such orbits are given in the following theorem.

THEOREM 1 (cf. Postnikov [12, p. 249]). The set I is decomposed into five
S5 x S5-orbits whose representatives are the triangulations T, (i=a, . .., e) below:
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(L1, {12}, {13}, 2.3}, (3,3
L1, {12, 22, 2.3, 3.1
A (L1 21 22 23 31
(1,2, 22, 23 31, (3.3)
L2, 2.2, 3.1, 3.2, 3.3
(L1, (1,2, 23, 3.1, 3.3

L {12}, (L3}, 2.3, 3.2
L {12, 22, 2.3, 3.2
(L1, 21, 2.2 230 (3.2)
T 21, 23 3 (3.2)
L1, 2.3, 3.1 3.2, 3.3
L1, {13}, 23, (3.2, (3.3

L1, {12, {13}, 23} 3.1
L1, (L2, 22, 2.3, 3.1
L_ (L1, 21 22 23 (3.1
T2, 22) 2.3 3.1 (3.2
(L3, 2.3, 3.1, 3.2, 33
(L2}, (1,3}, 23}, 3.1, (3.2

L1, (1,2, (L3}, 2.3, 3,1)
L1, (L2, 22, 2.3, 3.1
_{L1, 21 22, 23 31
T2 22, 23 31 (3.2)
(L2}, 2.3, (3.1}, 3.2, (3.3
L2, {13}, 2.3, 3.1}, 33

{L1}, {12}, {1,3}, {2,3}, {3, 1}
L1, (1,2, 22, 2.3, 3.1
T {1,1}, {2,1}, {2,2}, {2,3}, {3,1}
T L2 2.2 23, (3.1, (3.3
{1,2}, {2,2}, {3,1}, {3,2}, {3,3}
{1,2}, {1,3}, {2,3}, {3,1}, {3,3} .
The lengths of the orbits of T,, T, and T, are 12, 6 and 18, respectively. The lengths of
the orbits of T,and T, are 36. The product 4, x 4, admits 108 triangulations. Furthermore,
these triangulations are regular (coherent) triangulations in the sense of Definition 2.3 in
[12, p. 228].

REMARK 1. Theorem 1 was firstly obtained by Postnikov around the end of the
1980’s. Though there is no reference on how he derived it, it is possible to check his

T,

T,
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result in the following manner. We first enumerate and triangulations of the boundary
of A,x A,. Next we check the possibility of extensions of the triangulations of the
boundary obtained above to those of 4, x 4,. (We are deeply indebted to Mathematica
in carrying out this idea.)

Although no algorithmic method to obtain all triangulations is known, we have a
systematic method to get all regular triangulations; computer programs are available
to enumerate all regular triangulations (cf. [17] and [19]). Actually the 108 regular
triangulations of 4, x 4, can be obtained in a few minutes by means of these programs.
The readers who are interested in the algorithm may consult [4] and [12, pp. 231-233].
Here, we only note that the enumeration is done by utilizing the circuits of the nine
points. A subset Z of the nine points is called a circuit if any proper subset of Z is
linearly independent but Z itself is linearly dependent. Let us denote by the 3 x 3 matrix
(c;j) a circuit of the nine points; the set of {i,j} for which ¢;; #0 is the circuit and
moreover (c;;) corresponds to the relation

chl{i,j}=0 .
)

In the case of 4, x 4,, the 3 x S5-orbits of

1 —10 0o 1 -1
c1=<—1 1 0>, c2=< -1 0 1 )
0 0 0 1 -1 0

are all the circuits. The enumeration of the regular tiangulations is done by modifying
a given triangulation along a suitable circuit. Modifications along circuits and flops of
hypergeometric functions have a close relationship. As to this topic, see [36].

Let T'be a regular triangulation of 4, x 4,. We define a vector ¢ =((¢7);;), (1 <i<3,
1<j<3) in Z3*3 by letting (¢7); to be the number of the appearances of the vertex
{i,j} in the triangulation 7. For example

6 22
¢Tb= 226),
2.6 2

where the triangulation T, is as given in Theorem 1.

The secondary polytope (4, x 4,) is the convex hull of the 108 vectors {¢1| Te T }
in R**3, The following theorem is shown by an implementation of the algorithm
obtaining the convex hull of a given set of points by Edelsbrunner (cf. [7, Chap. 8]).

THEOREM 2. (i) The secondary polytope Z(A, x A4,) is a 4-dimensional polytope in
R®. It has 108 vertices corresponding to the 108 regular triangulations. The numbers of
1-, 2-, 3-faces are 222, 144, 30, respectively.

(ii) The secondary polytope X(A4,x A,) has two types of vertices corresponding
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to the properties (1) and (2) below:

(1) The numbers of the adjacent 1-, 2- and 3-faces are 6, 9 and 5, respectively.

(2) The numbers of the adjacent 1-, 2- and 3-faces are 4, 6 and 4, respectively.
¢, is of the type (1) and @1, (i=a, c, d, e) are of the type (2).

(iii) The triangulation T, has support on the circuit c, in the sense of [12, p. 232,
Definition 2.9].

(iv) The facets of the secondary polytope decompose into three S, x S5 orbits. Let
f1, f> and f5 be representatives of the orbits respectively. The 3-polytope f, has twelve
facets consisting of four 4-gons, four 5-gons and four 6-gons. The 3-polytope f, has twelve
facets consisting of eight 4-gons and four 6-gons. The 3-polytope f has six facets consisting
of six 4-gons.

ReEMARK 2. The statement (iii) can be understood as a combinatorial counterpart
to the fact that the power series Fi3 6, 5(X;, X5, X 3, X,) introduced later (cf. §5) is reduced
to the generalized hypergeometric function ;F,(X,) when X, =X, =X;=0. Details on
this subject will be discussed elsewhere (see also [36]).

We consider the normal fan N(Z(4, x 4,)) of the secondary polytope Z(4, x 4,);
the normal fan is the collection of the normal cones at the faces f:

N(Z(4, % 4,), f)={v|<{v,p—q) =0 for all pe 2(4, x 4,) and all gef} .

We are going to consider the 4-dimensional toric variety y(N(Z(4, x 4,))) defined
by the normal fan. Let C be a cone of the fan N(Z(4, x 4,)). We can get the semi-group
ring defined by the integral points of the dual cone C[C¥ nZ3*3]. The toric variety
1(N(Z(4, x 4,))) is obtained by gluing the spectra of the semi-group rings corresponding
to the cones of the fan by the incidence relations among the cones; the semi-group rings
are the coordinate rings of the affine charts of the toric variety (see [23, §2], or [9,
§81.3, 1.4 and 1.5] for the definitions on toric varieties). Noting the definition in mind,
we are going to look at the semi-group ring corresponding to each of the normal cones
at the vertices ¢ . We put

vo="(1 1 1).
Let 7 be a simplex of a regular triangulation 7 in . Then there exist four vectors b{"”
({i,j} ¢7) in Z**3 such that
(Dl) (bgj))ij=1
(D2) B")u=0 ({k, 1} ¢, {k, 1} #{i,j})
(D3) bideker(A: Z3*3—2Z5), ie., bPy="b{"y=0.
We can show that the conditions (D1), (D2) and (D3) uniquely determine the vector
by, For example, if 7 is given by the five points

{1,1}, {1,2}, {1,3}, {2,3}, {3, 3},

then the four vectors b2V, b2?, 31 b33 are as follows:
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-10 1 0 -1 1 -1 1 0 0 1 -1
< 1 0 —l>, <0 1 —1>, (0 0 0>, <0 0 o .
0 0 O 0 0 O 1 —-10 0 -1 1

(The explicit forms of b corresponding to the triangulations 7, T}, T,, T,, T, will be
given in Section 6.)

PROPOSITION 1. The normal cone at the vertex ¢y, is given by
N(Z(AZ X A2), ¢T|-)={XER3 x3 | <x’ b&pq)>20, TE Ti, {p, q} ¢T} .

Proor. The normal cone to the secondary polytope at the point ¢, agrees with
the cone of the weight vectors for the regular triangulation T; (cf. [12, p. 228, Theorem
2.4]). The cone of the weight vectors are characterized by the right-hand side of the
proposition by [4, Lemma 4.2]. q.e.d.

Consider 3 x 3 indeterminates u;; (1<i<3,1<j<3). For each b=(b;;)e Z*>*>, we
put u® =], ui}’. The following proposition is a consequence of Proposition 1; what we
have only to do is to show that {b?*|teT, {p,q}¢1} generates the semi-group
N(Z(4, % 4,), ¢1)° n Z**3 which follows from case-by-case computations.

PROPOSITION 2.
CIN(Z(4, % 4,), ¢1)' 0 Z>*3]=C[u*" |t T, {p, q} ¢71] .

The ring given in the proposition is the coordinate ring of the affine toric variety
defined by the normal cone at the vertex ¢r,. The coordinate ring is isomorphic to
C[x,, X5, X3, X4] in the case of T, T, but not isomorphic in the case of T;=T, from
the following theorem and a general argument in the theory of toric varieties.

THEOREM 3. There exist two types of maximal cones;

(1) N(2(4;,x 4y), ¢r,) is the direct sum of a linear space and a 4-dimensional
unimodular cone where i=a, c,d, e.

(2) N(2(4,x 4,), ¢r,) is not unimodular.

The theorem can be shown by explicit presentation of the secondary polytope
2(4,x 4,) as a convex hull of 108 vectors {¢}.

It is well-known in the theory of toric varieties that the toric variety defined by a
given fan is non-singular if and only if all the cones are unimodular (cf. [23, Theorem
1.10] or [9, p. 29]). In our case, since the cone at the point ¢, is not unimodular, the
toric variety y(N(Z(4, x 4,))) is singular. We look at the coordinate ring for the cone
at ¢, and refine the cone to get a unimodular fan as follows.

THEOREM 4. (i) The semi-group

N(E(A; x 4;), §,)" 0 2373 =:S*



HYPERGEOMETRIC SYSTEM OF TYPE (3, 6) 387

is generated by the following six vectors:

-1 10 0 00 -10 1 0 0
<1 _10>,y~;=<_1 1 0>< 000 )( 0—1>,
0 00 1 —-10 1 0 -1 —-10 1

0 1 -1 0 -1 1
f+J7“I3=(0 0 o >, 15+c7—)?=<0 1 —1)
0 -1 1 0 0 O

fi
C[S¥] = C[x,y,p,q, xyp” ", pgx ']

f2
= C[x1, X2, X3, V15 V2o YVal/(X1V2— XY 15, X1V3— X3V 1, X2V3—X3)2),

where [, is defined by

and

wWox, Wy uop ulig
and f, is defined by

1 1

XXy, Y Y3, PPV, Xy, XYp X3, pgxo Ty,

(i) Put
p,1=(0,0,0,1), p,=(1,0,0,1), p3=(0,1,0,0),
p4=(1,0,1,0), ps=(0,1,1,0)
and
4,=(1,0,0,0), ¢,=(0,1,0,0), ¢5=(0,0,1,0),
q,=(0,0,0,1), gs=(1,1, -1,0), g6=(—1,0,1,1).
Then

5 v 6
C[( ) Rzopi) ﬂZ“]=C[ > Zzoq,-] ~ C[x,y,p,q, xyp~ ", pgx ']
i=1 j=1

where

1 1

919X, 429Y, 439D, qaq, dsOXYP 5 de > PIxX .
(iii) Put

Ci=(R,op1 + R op3+ R, apa+ R, 0ps), Co=(R.opy+RoP2+ R, 03+ R 0Ps) -
The cones C, and C, are unimodular and Cyu C, =Zi5= (R op;.
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(iv)
C[CynZ*]~C[x 'p,x,xyp" ", 4],
CICynZ*] = Clxp Yy, p,x7 1, pq]
where the correspondence between the monomials and lattice points is that of (ii).

Proor. The statement (i) follows from Proposition 2.

Let us show (ii). We first note that g, (j=1,...,6) are exponent vectors of
monomials x, y, p, g, xyp~ !, pgx~!. Taking the dual cone of Zf=1R20qj, we obtain
vectors p;. The isomorphisms of the rings in (ii) can be easily checked.

We have (iii), because |det(py, p3, P4 Ps)|=|det(py, P2, p3, P4 |=1.

The statement (iv) is easy to prove. q.e.d.

The cone C; in Theorem 4 (iii) above defines the corresponding cone contained in
the cone of the fan N(X(4, x 4,)) that we also call C;. The orbit of the cone C, by the
action of S5 x S5 consists of twelve elements which contains C, (we checked this fact
by Mathematica). The other cones in the orbit is outside of C, u C,, which means that
the action of S x §; is compatible with the refinement by C, and C,. Thus, we obtain
a refined fan N'(2(4, x 4,)) by taking the S5 xS orbit of the cone C, in the fan
N(Z(4, x 4,)). This fan consists of 114 maximal cones and admits the action of S x §;.
The toric variety y(N'(2(4,x 4,))) is non-singular. The proper regular map from
1(N'(Z(4, x 4,)) to y(N(Z(4, x 4,))) is denoted by r.

Before closing this section, we review the construction due to [11] of series solutions
of the hypergeometric system of type (3, 6) which is denoted by E(3, 6) from now on.
We regard the series as functions on the non-singular toric variety that has been
constructed. In the sequel, we take parameters o, &,, &3, 8, B2, B3 with the condition

2 o +o,+ay=p+B,+pB;.
We put
a=Ya; a, a3), B="(B. B, B3).

We take a regular triangulation 7 of J and its simplex 7. Then there exist four
vectors b ({i,j} ¢ 1) with conditions (D1), (D2), (D3). Associated to the four vectors,
we introduce a semi-lattice L(t) defined by

L@)= ), Z,b?,
(i, j}¢r

which is on a four-dimensional subspace of R3*3,
On the other hand, we take a 3 x 3 matrix y=(y;;) such that

(3) yv=a, '7”=ﬂ,
“4) ;=0 if {i.j}¢t.
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We now consider a 3 x 3 matrix

Uy Uyp Ugs
) U=\ Uzy Uzp Uzz
U3y U3z Usz

and by using the semi-lattice L(t) and the 3 x 3 matrix y introduced above, we define a
formal power series in u

(6) F.r= ), u**/F(1+k+y),
keL(r)
where
) uktr= [[ui-‘;f”*f ,
L]
®) F(1+k+y) =[] +k;j+y;).

ij
Let t,=7, 7, ..., T¢ be the six simplices of 7. Then

Ftl,T’ th,T’ Fz;,T’ Fr..,T, Frs.T9 Fts.T

are linearly independent over C for generic choices of the parameters ; and B;. These
functions are naturally regarded as solutions of the hypergeometric system E(3, 6).

Later, we shall compute explicit forms of the functions defined by the series of the
form (6).

3. The configuration space of six points in P2. In this section, we will first reviw
the configuration space P(3, 6) of six points in P2 and its compactification € due to
Naruki. For details on this subject and related topics, see [21], [30], [31]. There exist
seventy-five non-singular hypersurfaces whose union coincides with the complement of
P(3, 6) in ¥. It is better to consider one more hypersurface denoted by Y, of ¢ when
we treat € as a variety with W(E)-action. As a preparation for our purpose, we will
study normal crossing points of the 76(= 75+ 1) hypersurfaces of €. In particular, we
will determine the S¢-orbit decomposition of the set of such points, regarding S, as a
subgroup of W(E,) in the standard manner.

We begin with defining the configuration space of six points in P2. For this purpose,
we first introduce the linear space M; ¢ of 3 x 6 matrices:

X11 X12 X313 X1a4 X35 Xi16
M; = Xa1 Xz Xp3 Xp4 Xps Xz |3 X;€C(1<i<3,1<j<6) ».
X31 X32 X33 X34 X35 X3¢

Clearly M ¢ admits a left GL(3, C)-action and a right GL(6, C)-action in a natural way.
For a moment, we identify (C*)® with the maximal torus of GL(6, C) consisting of



390 J. SEKIGUCHI AND N. TAKAYAMA

diagonal matrices and consider the action of GL(3, C) x (C*)® on M, ¢ instead of that
of GL(3, C)x GL(6, C).
Let M ¢ be the open subset of M; ¢ defined by
X11 X12 X313 X4 X15 X16
36= Xa1 X33 Xa3 Xpa Xas Xpe €W Dliy, iy, i3) #0 (1<iy <i; <i3<6) »,
X31 X32 X33 X34 X35 X36
where
X1y Xti; Xiiy
D(iy, iy, iz)=det| x,;, X5, Xz
X3iy X3i;, X3i,
Then for any element X e M, 4, there exist (g, h)e GL(3, C) x (C*)°® and (x,, x5, ¥1, V1) €
C* such that

1001 1 1
0011 y

In this sense, P(3, 6)=GL(3, C)\M} ¢/(C*)° is identified with an open subset of C*. In
this article, P(3, 6) is called the configuration space of six points in P2. Transpositions
of column vectors of X e M ¢ induce birational transformations on C* with coordinate
system (x,, X5, y;, ¥,). Let § (1<j<5) be the birational transformation on C*
corresponding to the transposition of the j-th column vector and (j+ 1)-column vector
of Xe M ¢. Then, by an easy computation, we obtain

~ . I 1 y y
S0 (X1 X0, Y15 Yo) — | — — — — ),

§20 (X105 X2, Y15 ¥2) — (V15 V2 X1, X2)

5. X1—YV1 X2—)2 Y1 V2
§3: (X1, X5 Y15 ¥2) — 1—y ' y » y R a1 s
21 —)2 1~ 2~

x 1 x, 1 y
S4: (X1, X2 V15 Y2) — <x—’ x_z, y—, y_z) ’
1 1 1 N

55: (xla X2, V15 y2)_'(x2’ X15 ,V2,y1) .

Let Ss be the symmetric group on six letters. If s; is the transposition of j and
Jj+1, S¢ is generated by s,,...,ss. Then, from the construction, it is clear that the
correspondence s;— §; (1 <j<5) induces a birational action of Ss on C*. In the sequel,
we frequently identify S with the group generated by §; (1<j<5) and we frequently
use s; and §; interchangeably. The birational transformations s; (j=1,...,5) are
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nonsingular outside the union of the fourteen hypersurfaces R;={p;=0} (1<j<14),
where

P1=X1Y2—X2Y1—X1+Xa+Y1—Y2, P2=y1—1, p3=x;—1, py=y,—1,
Ps=X;—1, pg=y1—Yy, P1=X1—Xy, Pg=X1—Y1, Po=X;—);,
Pio=X1V2—X2V1, P11=X25 P12=X1, P13=V2, P1a=)1 -
Let s, be the birational transformation on C* defined by
500 (%15 X35 Y15 ¥2) — (1/x4, 1/%5, 1)y, 1/y,) .

Then the group G generated by s, ..., ss and s, is isomorphic to the Weyl group of
type Eg as will be seen soon. We define the hypersurface Rys={p,5s=0}, where

Pi5=X1V(1=y )1 =x;)—x,,(1=x,)(1—y,).

It follows from the definition that s, ..., 55, 5, and therefore all the elements of G are
biregular outside the union R of the hypersurfaces R; (1<j<15).

We are going to introduce the root system 4 of type Eq. For this purpose, we
consider the 8-dimensional Euclidean space E with a standard basis ¢, ..., &5. Let
{+, +> be the inner product on £ defined by

<8j5 &) =5jk
and let E be the linear subspace of £ spanned by the six vectors
€y...,85, E=Ec—E;—Eg.

We introduce the thirty-six vectors
1 ~
r= —7 (81 +82+£3+E4+85 +8) .

ryj=—gj_1+ry, 1<j<7

Fik=8€j—1—&-1, 1<j<k<T
Fijg=—8—1—&-1, 1<j<k<T
Tig=—8—1—&_1—&-1+ry, 1<i<j<k<T

following [13], where
1
ro=— (61 +&,+e3+e,+es—8).

It is possible to take
Xy =ryp, =T33, A3=rFp3, Ag=r3q, As=Tl4s5, Xg=Tls¢

as a set of positive simple roots. Then the Dynkin diagram is as in Figure.
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oO—O0—O0—0——0
oy o3 (L Oy s o
7]
FIGURE.

Moreover, r, ry, r;; defined above are the totality of positive roots of 4 and r is the
longest root.

Let g; be the reflection on E with respect to «; (j=1,...,6) and let g, be the
reflection on E with respect to r. Then the Weyl group W(E) of type E, is generated
byg;(j=1,..., 6). The relation between W(E) and the group generated by the birational
transformations §; (j=1, ..., 5) and s, is given by the following lemma.

LemMA 1. (i) The correspondence
g5, g2-—50, g3-—5,, gak—353, gst—354, get—3s
induces a group isomorphism ® of W(Eg) to G.
(1) If co=D(go), then

Xy = (X1, =Xy )V = DAx2 = p2)(y1 —y2)
Xy = (X1, =Xy )V = DA =y )y —2)
Y1 b= (1, = X591 )0 — DAy — X,5)(x, = y2))
Y2 = (X1, = X2y )y — DA, — x2)(6, = 4)) -

Let G, be the group generated by S and c,. Since ¢ =id by definition and since
¢, centralizes S¢, we find that Gy~ Sg x Z,.

REMARK 3. We now introduce an involution ¢ on C* defined by

C: (X1, X35 Y15 V2) = (V25 X325 Y15 X1) -

Then it is easy to show that c,=c-(14)(26)(35), where (ij) means the transposition of
i and j. In particular, G, is also generated by S and c.

We write
=L, ty, j=1,...,5, te=<{&¢t)
for any € E. Then the linear forms A, hj, h;; given in [30] correspond to positive roots
¥, Tjks Tijes that is,
h=<r,t), hp=<rp,t>, hz=<rjmt>.

We are going to define an embedding of P(3, 6) into Naruki’s cross ratio variety
along the line in [30] and [31]. Let Z(4) be the Zariski open subset of P* defined by

h’ ],_.[hjk. l—[ hl_]k¢0

J<k i<j<k
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We now recall the definition of the D,-cross ratio maps (cf. [31]). A D,-cross ratio
map of Z(4) to CR(P) is given by

t > (h3shyashaehaae 1 —hashaashsshsae i hashasahsehyse)

where CR(P) is the hyperplane of P? with homogeneous coordinate &=(¢,:¢&,:¢&;)
defined by &, + &, + ¢3,=0. By permutations of indices among 1, 2, 3, 4, 5, 6, we obtain
thirty maps of the form above. There is another D,-cross ratio map defined by

t > (hy35h24sha36h1a6 1 —h23shiashisehaas - hi2h3shseh) .

In this case, by permutations of indices among 1, 2, 3, 4, 5, 6, we obtain fifteen maps
of the form above. As a result, we obtain 45 (=30+15) D,-cross ratio maps of Z(4)
to CR(P).

By taking the product of these maps, we define a map cr, p, of Z(4) to CR(P)**
which is actually W(Es)-equivariant. Let €' =cr, p (Z(4)) and let € be its Zariski closure
in CR(P)*>.

THEOREM 5 (cf. [21]). (i) € is 4-dimensional and non-singular.

(ii) The W(E¢)-action on € is biregular.

(iii) ¥ —%' is a divisor with normal crossings. There exist seventy-six irreducible
components of € —€' each of which is smooth.

Following [13], we call ¥ Naruki’s cross ratio variety.
We define a map F of Z(4) to C* by

F(t)=(x(t), x,(t), y1(2), y2(2)) ,
where

hyahyzshyshyss x,(t)= hya*hazahishise
,(t)=

x(t)= ,
' hig*hyzehys hyss

hig*hyizehyehyse ’

) hys*h his*h hys*h high
y.()= 34" N334 ° N5 125, J(t)= 34" N334 N6 ° N126
his*hizahys hyss hia*hizahsehise

as in [30]. Then it follows from [30, Theorem 4.4] that F is W(E¢)-equivariant and its
image F(Z(4)) coincides with

15
Py(3, 6)={(x1, X2, V1> Y2) Hlpj?éo}
j=

which is an open dense subset of P(3, 6).
We now put

Z(A)h={tEEC; H B H hijk7é0}-

Jj<k i<j<k
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Clearly Z(4), contains Z(4) and both of the maps cr, , and F are extended to Z(4),.
Then it is easy to show that F(Z(4),) coincides with P(3, 6). On the other hand, ¢’
is naturally identified with F(Z(4)). Indeed, the identification is established by the
correspondence

Cryp,(t) — F(t) (Ve Z(4)) .

On the other hand, the hypersurface p,s=0 is non-singular outside the hypersurface
1"+ P14=0. Therefore P(3, 6) is regarded as a Zariski open subset of €. This embedding
of P(3,6) in € is Gy-equivariant, where G,=S8, x Z,. This follows from the fact that
the G,-action on € preserves p,s=0 outside p,* - -p,,=0.
We are going to write down the seventy-six irreducible components of ¥ —%". Each
component is described in terms of a subroot system of 4. Noting this, we put

= YA.D4({ irij})
Yin= YA.D4({ * "ijk})
Y,=Y,p({xr})

following the notation in [31]. Then Y;; and Y;; are hypersurfaces in ¥. Roughly
speaking, the subvariety Y;; is the image of h;;=0 by the map cr p,.
We now take three subsets Ay, 4,, 4,4 of 4 with the following condition:

ConpITION 1. (i) Each of A4,, 4,, 45 is a root system of type A,.
(ii) 4,, 4,, 45 are mutually orthogonal.
(ii)) The vectors of A,uAd,U 45 span E.

Let Y, p,(4;) (j=1, 2, 3) be the subvarieties of ¥ defined in [31]. Then as is shown
in [31, Lemma 3.5],

YA,D4(A 1)= YA.D4(A2)= YA,D4(A3) .

We determine the triples {4,, 4,, 45} satisfying Condition 1. It is easy to see that there
are two kinds of such sets. The first one is of the form

Ay ={%rii Triiy Tl
Ay={triuy, trige Tl
Ay={xr, £ i) -
We denote by Z, ;,, .i.i, the hypersurface Y, p.(4,) in this case. The second one is of
the form
Ay ={trii» triiio TTiisia} »
Ay={triip trisisier Tlisisic) >
Ay={Friie, TTiisiss Tlisisie) -
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We denote by Z; the hypersurface Y, p (4,) in this case.

1i2,i3ia,isi6
REMARK 4. From the definition, we have
@) Ziyisisiaisic = Lisisisuiziaiz
(b) Zi =Zi5i5,i1i2,i3i4¢z
In the sequel, we denote by Q the totality of the seventy-six divisors in € —%".
Then Q is decomposed into the following five Gy-orbits:
Q4~= {Zilizig._hjzjg; {il’ i2’ i3’jl’j2’j3} = il’ 2’ 3’ 4’ 5’ 6}} ’
Q5= {Zi,iz.i3i4,i5i6§ {i1, iz, 13, i, Is, ig}=1{1,2,3,4,5, 6}} .
The hypersurfaces contained in Q, uQ, uQ; (resp. Q,UQ;) are called hypersurfaces of
the first kind (resp. of the second kind) (cf. [30]). Then we have the following.

1i2,i3ia,isi6 i1iz,isi6,i3ia°

ProrosiTioN 3 (cf. [21], [31]). Hypersurfaces of the first kind (resp. of the second
kind) are isomorphic to the 3-dimensional Terada model My (resp. (P')3).

The Terada model was constructed in Terada [37] (see also [24]).

We are going to describe the intersection relations among the seventy-six divisors
above shown in [21] (see also [31], Theorem 3.6]). Let Y be one of the seventy-six
hypersurfaces above.

(i) If Y intersects Y,, then Y is isomorphic to one of the hypersurfaces

Yii (#))s Ziiigjuis Wi ia i3 1 J2J3y ={1,2,3,4,5,6}) .

(ii) If Y intersects Y,,, then Y is isomorphic to one of the hypersurfaces
Yra Y34a Y355 Y365 Y45, Y469 Y56a Y1235 Y124a Y125’ Y1269 Y3459 Y346’ Y3565 Y456,
Zl23.4567 2124,356’ 2125.3469 2126.345’ 212,34,567 212,35,46’ 212,36,45a
Z12.56,34’ ZIZ,46,35’ 212,45,36'

(iii) If Y intersects Y,,3, then Y is isomorphic to one of the hypersurfaces
Y127 Y23’ Y13a Y45a Y465 Y56a Y145’ Y1565 Y146’ Y245, Y256’ Y2469 Y345’ Y356’ Y346’
2123.456’ 212,56.34’ 212.46,353 212.45.36, Zl3,56.24a Zl3,46,25, Zl3,45,26’
223,56,14! ZZ3,46,155 Z23.45,16 .

(iv) If Y intersects Z,,; 456, then Y is isomorphic to one of the hypersurfaces
Yr, Y12’ Y23a Y13’ Y45’ Y46a Y569 Y123’ Y456'

(v) If Yintersects Z,, 34 56, then Y is isomorphic to one of the hypersurfaces
Y127 Y34’ Y56’ Y1349 Y234’ Y356’ Y456’ Y125’ Y126 .

The action of S¢ on the set © is same as that of S¢ on the indices of Y;;, Yy,
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Z; isis juisis Liriniisiaisic 35 @ permutation group. In particular, Y, is left invariant by S.
On the other hand, the action of g, on Q is given as follows. The hypersurfaces in Q;
(j=1, 2, 4) are fixed by g,. Moreover, if {i;, i,, i3, i, is, s} ={1, 2, 3,4, 5, 6}, then

9o: Yixizia Yi4i5i6 ’ Zixiz.isia.isis Zixiz.isis.isia .

The property of € given in the following proposition might be of some interest,
although we do not use it in our later discussion.

PROPOSITION 4. Let @ be a biregular transformation on € such that € —%' is left
invariant by @. Then there exists g€ W(Eg) such that o(Y)=g(Y) for any YeQ.

ProoF. We consider the action of ¢ on the hypersurface Y,. Since ¢(Y,)is contained
in Q, in virtue of Proposition 3 we find that ¢(Y,) is contained in the union of Q;
(j=1, 2, 3). Since W(E,) acts on the set of root hyperplanes in E transitively, there exists
ke W(E) such that k(¢(Y,))=Y,. Noting this, we may assume from the beginning that
o(Y)=7,.

We put

DiviY)= |J Y,nY.
YeQ,uQ4
Then we find that any geS¢ acts on Y, as a biregular transformation and
g(Div(Y,))=Div(Y,). Moreover the action of S, on Y, is faithful. This combined with
the results in [37] implies that there exists geSg such that go@(y)=y for any yeY,.
Therefore we may assume from the beginning that ¢ fixes Y, pointwise. As a consequence,

o(YinY,=o(Y )ne(Y)=e(Y;nY)=Y;n¥,.

This shows that ¢(Y;;)=Y;;. Similary, we find that @(Z, ;,;, j,i,is) = Zi,izis,jsjajsr

We now consider the image of Y,,; by ¢. We first note that ¢(Y;,3) is contained
in Q,. Since Y,,; intersects Y,,, Y3, Y,3, so does ¢(Y,,3). These combined with the
intersection relations imply that ¢(Y,,;) coincides with Y,,; or Y,s,. We may assume
that ¢(Y,,3)=Y,,3. Indeed, suppose ¢(Y,,3)= Y,s¢. Since g, permutes Y;,; and Y5,
it follows that g0 @(Y,,3)= Y,,3. Noting that g, fixes Y, pointwise, we may take gy
instead of ¢ in this case. Then @(Y,s¢)= Y,s6.

We next treat Y,,,. Since Y,,, intersects Y,,, Y4, Y,,and Y, s, s0 does @(Y;,,).
Then we conclude that ¢(Y,,,4)=Y,,4. For the same reason, we find that ¢(Y;;)= Y.
We finally treat Z; ;, ;... isic- Since Z; ;. .. .. intersects all of Y, ;.. Y, ., Yoo, Yiii,s SO
does @(Z,,;, i5i4.i5is)- Noting that o(Z; ;, i.;..i.i) €25, we conclude that @(Z; ;, i.iisie) =
Ziliz.i3i4.i5i6'

We have thus proved the proposition. g.e.d.

REMARK 5. As an easy consequence of Propositions 4 and 3, we find that if ¢ is
a biregular transformation on % such that ¢ leaves the set Q invariant, then ¢(y)=y

for all ye ¥ —%". It is conjectured that such a biregular transformation ¢ on € is the
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identity transformation on %. If this is the case, then W(E) coincides with the group
of biregular transformations on ¥ leaving ¢’ invariant.

For later purpose, we are going to determine normal crossing points of four
hypersurfaces of 2 and their isotropy subgroups in W(Ej).

Let H,, H,, H;, H,eQ be mutually distinct four hypersurfaces such that
H,nH,nH;nH, is not empty. Then H,n H,n Hyn H, consists of a unique point, say
p, and H,, H,, H;, H, have normal crossing at p and there is no other hypersurface
of Q containing p. Moreover, under the action of G, the quadruple (H,, H,, H5, H,)
is transformed to one of the points (nc.1)+(nc.9) given in Table 1.

We are going to explain the notation in Table 1 briefly. Let p be the normal crossing
point which is the intersection of the hypersurfaces given in (nc.j) (j=1,...,9). The
determination of the isotropy subgroup of p in S¢ and the cardinality | G, - p| are easy
exercises and are left to the reader. In Table 1, Dh(8) and W(B;) mean the dihedral
group of order 8 and the Weyl group of type Bj, respectively. Moreover, noting that
S, is regarded as the quotient of W(B;), we denote by W(Bj),, the pull-back of the
alternating group (S;, 83) in W(B,). In the sequel, a normal crossing point that is
conjugate to the point (nc.i) by the Sg-action is called a normal crossing point of type
(NC.i).

PROPOSITION 5. Local coordinates in the neighborhoods of normal crossing points
(nc.i), i=2,4,5, 6,7 are given in Table 2.

TABLE 1. Types of normal crossing points.

p=H nH,nH,nH, The isotropy of pin 8¢ | |Gy p|
(nc.1) Y123n Y1450 Yy460 Vs Sa 30
(nc.2) Y34n Y sn Y30 Y, s Dh(8) 90
(nc.3) Yi1,nY3unYsen?, W(B3) 15
(nc.4) Y334NZ16,25,34N Y136N Y125 Z, 240
(nc.5) Y3340 Z16,25,34N Y34 N Y125 z, 360
(nc.6) Zys53426NYsNY34n Y 55 Z,xZ, 180
(ne.7) Z5,3426N Y15NY34Nn Y34 W(B3)an 30
(nc.8) Y,nY,nYs6NZ, 53456 Dh(8) 90
(nc.9) Y 3N Y4sn Y5302, 53 456 Z,x2Z, 180

TaBLE 2. Local coordinates at normal crossing points.

(nc2) ( X25 X1/%3 YalXa, X2Y1/%1Y2)
(nc4) ( X1, Ya/xy, X2/Y25 y1/y2)
(nc.5) ( X1, Xa/Xy, Va2, Y1/y2)
(nc.6) ( 1/x,, X1, Y2, X2Y1/%X1Y2)
(nc.7) ( Y1/X1Y2s X1, Yas X1Y2/X2)1)
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Proor. It is clear that in the (x,, x5, y;, y,)-space, the origin is not a normal
crossing point of the union R of the fifteen hypersurfaces introduced before in this
section. We are going to blow up R in the following manner:

(10) X1=2125, Xp=Zy, Y1=Z1232324, Y2=2Z3.
Let R, p,ce be the pull-back of R by the map
(21522, 23, 24) = (X1, X2, V1, V2) = (2122, 215 212223245 2123) -

Then it is easy to show that in the z-space, the origin is a normal crossing point of
R, (pace- On the other hand, by direct computation, we have (cf. (9), (10))

R hasha34hy6hyse _ X1 _ hyehysehyishyas

1 =X=0— 0, ==,
hishyi3aha6hase Xy hiehizehashass

23=&= hsshy34ha6hyze _ Xa) _h 25h125h36M136

) 4 - .
Xy hyshizahiehyse X1Ys  hishizshaehize

It is shown that the hypersurfaces z; =0, z,=0, z;=0, z,=0 are local defining
equations of Y34, Y;s, Y4, Y, .5, respectively. Indeed, this is proved as follows. We
treat the case z; =0. By definition, z; =0 is equivalent to A,,h,34h,¢h,36=0. Therefore
there exist four possibilities

hye=0, hy3,=0, his=0, hy;3;6=0.

In the three cases except 4,3, =0, at least one of z,, z5, z, becomes infinity. This implies
that z, =0 is a local defining equation of Y,;,. Similarly, we show that z,=0, z; =0,
z,=0 are local defining equations of Y,s, Y;,, Y;,5s. Therefore we conclude that
z=(zy, 2,, 23, 2,) is regarded as a local coordinate system of ¥ whose origin is
Yy34n Y snY3unYy,s.

By an argument similar to the one above, we can determine local coordinates of
Table 2 in neighborhoods of the normal crossing points (nc.i), i=4, 5, 6, 7. q.e.d.

It is clear from the definition that there exist hypersurfaces R ;(=1,...,15 on ¥
corresponding to the hypersurfaces R; (j=1, ..., 15). Then the following proposition
is easy to show.

PROPOSITION 6. The following relations hold:
[Ri1=[Yase], [RI=[Yasl, [R3]=[Yass], [RJ=[Y2sel, [Rs]1=[Y3s6l,
[Rel=[Y2s6], [R71=[Y3s6], [Rsl=[Y14s],
[Rol=[Yis6l, [Riol=[Yise], [Rii1=[Yi36], [Ri:1=[Y13s],
[ﬁ13]=[Y126]a [§14]=[Y125] > [-§15]=[Yr] .
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4. Triangulations and normal crossing points. The purpose of this section is to
study the relationship between the toric variety y(N(4, x 4,)) introduced in Section 2
and the normal crossing points of Naruki’s cross ratio variety €.

As was pointed out in Section 3, the set of normal crossing points of € is decomposed
into nine Sg-orbits. Among these nine orbits, we focus our attention on five orbits
which are denoted by (NC.2), (NC.4), (NC.5), (NC.6), (NC.7) in Section 3. We take
representatives of such orbits by giving the relations among local coordinates of the
points in question and (x, X, ¥;, V,)-

Let T be a regular triangulation of 4, x 4, and let t be a simplex of 7. Then there
exist four vectors b ({i,j} ¢ 1) satisfying the conditions (D1), (D2), (D3). Then u®"
({i,j} ¢ ) are monomials in the matrix entries of u=(x;;). We now pay our attention to

the restriction of u to the matrix
1 1 1
I x; x, ).
1 yi »,

Then u**” ({i,j} ¢7) turn out to be rational functions of x, x,, y;, y, which were

introduced in the previous section. We are going to compute the functions thus defined

for simplices of the triangulations T,, T}, T,, T, T,.
Here is the result:

PrOPOSITION 7. The relation between the simplices of the triangulations T,, Ty, T,
T,, T, and the variables x,, x,, y,, y, introduced in the previous section are given as fol-
lows:

{11}, {12}, {1,3}, {2,3}, {3,3} l/xy xi/x; 1/y, Y1/y2
L1}, {12}, (2,2}, {2,3}, (3,1} xy/x, 1/x Y1 X1Y2/%2
T ={l, 1}, {2,1}, {2,2}, {2,3}, (3,1} 1/x, 1/x, y1/%y Yalxa
“{L2), {2,2), {2,3), (3,1}, {3,3} xwa/xy xi/x2 yafx, X2Y1/X1Y2
{1,2}, {2,2}, {3,1}, {3,2}, {3,3} J1 Y1/¥2 Y1/%, X2Y1/X1Y2
{1L1}, {1,2}, {2,3}, {3, 1}, {3,3} 1/ya yafxs X1ya/x, Y1

(L1}, {12}, {1,3}, {2,3}, {3,2} 1/x; xi/x; 1y Ya/y1
{1,1}, {1,2}, {2,2}, {2,3}, {3,2} xy/x, /%, 1/y, X1V2/X2 V1
_{1, 1}, {2,1}, {2,2}, {2,3}, {3,2} 1/x, 1/x, Xi1/V1 X Va/X2)1
_{1’ 1}’ {2, 1}, {2’ 3}’ {3, 1}, {3’ 2} 1/y, 1/x, X1/y1 Valx,
{1, 1}, {2, 3}’ {3’ 1}’ {3’ 2}’ {39 3} 1/y, 1/y, Valx, X1Y2/X2)1
{1, 1}, {1,3}, {2,3}, {3, 2}, {3,3}  yan 1/x;  x1pa2/X2)4 1/y,

T,
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6).

T,

(4

T,

T,

e

ProrosITION 8.

The two propositions above are direct consequences of the table on b¢? (see Section

J. SEKIGUCHI AND N. TAKAYAMA

{L 1}, {12}, {1,3}, {2,3}, {3, 1}
{11}, {1,2}, {2,2}, {2,3}, (3,1}
{1}, 2,1 {2,2) {2,3) (3,1}
{1,2}, {2,2}, {2,3}, {3,1}, {3,2}
{1,3}, {2,3}, (3,1}, {3,2}, {3,3}
(1,2}, {1,3}, {2,3}, {3, 1}, {3,2}

(L1, (L2}, (1,3} 2.3}, 3,1}
(L1}, {12}, 2.2}, 2,3} (3,1}
_{L1, 21 {2.2), 2.3}, (3.1)
T{L2) (2.2, 2.3} (3.1}, (3.2)
(L2}, 2.3}, (3.1}, 3,2}, (3,3}
{1,2}, {1,3}, {2,3}, {3, 1}, {3,3}

L1} {12}, (13} 2,3} (3,1}
(L1}, {12}, 2.2}, 2,3} (3,1}
_{L1 21 2.2, 23] 3.1)
T(L2h 2.2), (2.3}, 3.1} (3.3)
(L2}, 2.2}, (3.1}, (3,2}, (3,3}
(L2}, {13}, 2.3}, 3,1}, {3,3)

1/x,
X1/%,
1/x,
Y1
Y2
Y1

1/x,
X1/%,
1/x,
Y1
1
Y2
1/x,
X1/%,
1/x,
X1Y2/%,
Y1
Y2

X1/%3
1/x,
X1/%3
X1/%3
Ya/¥1
Y1/%2
X1/%,
1/x,
1/x,
X1/%,
2!
Ya/x,
x1/%,
1/x,
1/x,
X1/%,
Y1/Y2
Ya/%,

Y1
Y1
Y1/%4
Y1/%4
Ya/xa
X1/%3

J1
Y1
Y1/%4
Y1/%,
1/x,

X1/x2

1
Y1
i/
Ya/%a
Y1/%
X1/%,

CLSy 1= Clxy/y 15 1/y2, X1/%3, Y2/¥1s 1/X1, ¥2/%,1]
CLS: 1= CLY/xy, X4/X2, ¥y, Ya/¥1d s
CLSi 1= CLy1/y2s Y2, X1¥2/%291, 1/%4]
CLS ] = CL1/xy, X1/X3, Y2, X21/%1¥2] -

Y2
X1Y2/%2
Yalx,
X1Y2/%X2¥1
X1Y2/X2)1
Ya/n

Y2
X1Y2/%,
Va/%,
X1Y2/%2¥1
X1Y2/X21
Y1/¥2

Y2
X1Y2/%2
Ya/x;
X2Y1/%1Y2
X2Y1/X1Y2
Y1/y2

We put " =N(2(4, % 4,), $1,)" NZ*>*3 (k=a, b, c,d, e). Then,
C[Sy ] = C[1/y,, x1Y2/%2, X2Y1/%1Y2, 1/%4]

By using the system of coordinates (x,, x,, ¥;, ¥»), we find that the complex torus

(C*)4= {(xla X2, yb y2) | x.-e C*’ yje C*}

is embedded into the toric variety y(N(Z(4, x 4,))):
[ (C* — x(N(Z(4, x 4,)) -

Regarded as a Zariski open subset of (C*)*, the configuration space P(3, 6) is naturally
embedded into y(N(Z(4, x 4,))) by the composite of the natural inclusion P(3, 6) —» (C*)*
and f"
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11 PG, 6)— (CY* L yN(E(, x 4,)) .

By definition, the map f is birational. There exist birational actions of the elements of
S, on the configuration space P(3, 6). Among them, the actions of s,, s,, s, and s5 can
be extended to biregular actions on the toric variety y(N(Z(4, x 4,))); they act on each
of the coordinate rings of the toric variety as follows:

s ) st w5l ) s ub s b

010 100
S12=<1 0 O) and 523=<0 0 1).
001 010
On the other hand, we defined in Section 3 a birational map from the configuration

space P(3, 6) into the cross ratio variety €:

g: P3,6)—%.

where

Therefore the composite
fog™': € — x(N(Z(4; x 4,)))
is also birational.

THEOREM 6. The birational map f g~ " is locally isomorphic at the normal crossing
points which are contained in the S5 x Ss-orbits of the four points

Y5340 Y150 Y340 Y 55, Y2340Z16 534N Y1360 Y25,
Y334nZ16,253aN Y3uN Y135, Zi53426N Y150 Y340Y, 55,
whose types are respectively, (NC.2), (NC.4), (NC.5), (NC.6) (cf. Table 2).

ProoF. Each of the local coordinate rings given in Table 2 is isomorphic to the
corresponding ring given in Table 3 by the following actions of S5 x Sj:

TABLE 3.
( Wi, W2, W3, Wa)
T, (NC.4) ( 1y, X1YalX2  Xo¥1/X1Y2, 1/xy)
T, (NC.7) C yafxy, X1/y1s 1/y,, X1/%2)
O x1/y2 /x4, Yaly1s Yalx1)
T, (NC.2) ( 1xy, X1/X5, Y1 Ya/y1)
T, (NC.6) ¢ y1/y2 V2 Xi1YalX2¥1s 1/x4)
T, (NC.5) ( 1/xy, X1/X3, Y2 X2Y1/X1y2)
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(NC.2):s558;, (NC.4):s,555,, (NC.5):s5,, (NC.6):5,5,85(5,5,5,) .
q.e.d.

The birational map fog~! is not locally isomorphic at the normal crossing points
contained in the 3 X S3-orbit of Z; 5 34 26N Y50 Y3,n Y4 of type (NC.7) (cf. Table 2).

THEOREM 7. The birational map

-1

rlo fog™t: € — x(NM(Z(4; x 4,)) —— x(N'(E(4, x 4,)))

is locally isomorphic in a neighborhood of the point Zs 34260 Y 5N Y3,n Y, of type
(NC.7).

Proor. Indeed, applying s,s,5, (resp. s,) to the local coordinate rings of Table 2
of type (NC.7), we get the local coordinate ring C[Cy n Z*] (resp. C[Cy nZ*]) given
in Theorem 4 (iii). q.e.d.

REMARK 6. The correspondence among the variables s, y, p, ¢ in Theorem 4 (iv)
and the variables w,, w,, ws, w, for the triangulation 7} in Table 3 are as follows:

Vo/Xy=x"p xy/y1=x 1fy,=xyp~' x,/x,=¢

xy/V2=xp~ " 1/x;=y y,/y1=p Yi/%2=x"'pq.

Noting that y(N'(Z(4, x 4,))) admits an S; x S;-action, we now pose a problem
concerning the relationship between € and y(N'(Z(4, x 4,))).

PROBLEM 1. 1. Does there exist an S5 x Ss-equivariant surjective map of € to
X(N'(2(4, x 4,)?
2. Study the correspondence of hypersurfaces on € and y(N'(Z(4, x 4,))).

REMARK 7. Kapranov [14] constructed compactifications of the configurations
spaces called the Chow quotients. Then it is interesting to clarify the relationship between
the Chow quotient of the Grassmann variety G(3, 6) of the 3-dimensional linear subspaces
in C® and Naruki’s cross ratio variety €.

5. Construction of fundamental solutions. The system E(3, 6) of linear differential
equations on C* with coordinates (X ;, X ,, X3, X,) is given in [27] and plays an essential
role in the study of the period map of a family of K3 surfaces (cf. [20]).

The system of differential equations E(3, 6) does not have singularities on P(3, 6)
= C*. Any local holomorphic solution on P(3, 6) can be analytically continued to a
multivalued holomorphic function on P(3,6). We regard the local solutions as
holomorphic functions defined on domains in the cross ratio variety % by the embedding
g: P(3, 6) > €. These functions naturally define a holonomic system on €; there exists
a holonomic system £{(3, 6) defined on % of which spaces of local holomorphic solutions
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on the image of g agree with the spaces of local holomorphic functions obtained from
those of E(3, 6) by the embedding above. The group S acts on the space of solutions
of F(3, 6) and the singular locus of E(3, 6) is the union of the hypersurfaces belonging
to Q; (j=2,3,4,5). In particular, the singular locus of E{(3, 6) does not contain Y,.
Noting these, we discuss the problem of constructing fundamental solutions around the
normal crossing points (NC.i) (i=1,2,4,5,6,7,9) which Y, does not pass through.
Among these points, (NC.i) (i=2,4, 5, 6, 7) correspond to triangulations of the toric
variety y(N'(2(4, x 4,))) whereas (NC.i) (i=1, 9) do not. We explained how to construct
power series solutions on the toric variety y(N'(Z(4, x 4,))) in Section 2 and proved
that the normal crossing points (NC,i) (i=2, 4, 5, 6, 7) are locally isomorphic to the
corresponding points on the toric variety in Theorems 6 and 7. By virtue of these results,
it is possible to construct power series solutions of £(3, 6) at the normal crossing points
(NC,i) (i=2,4,5,6,7). First, we give power series solutions explicitly around these
points. Next, we shall discuss fundamental solutions around the remaining normal
crossing points.
We are going to introduce three kinds of functions defined by power series:

F(3,6),A(j'1, 123 )'3, )'45 2'59 2'6; Xla X23 X3a X4)

= Z VG.6).4(A15 A2s A3, Aay Asy Agy My, My, My, m) XTI XG2 XX

my,mz,m3,ms=0

’y(3.6).A(}'1’ j'2’ j'3’ }'45 '159 2’6, mls m2’ m3’ m4)

1 1 1 1
F(/lz+m12+7>1"<13+m34+—2—)1”<—15+m24+—2—>l"(—/16+m13+5>

b

3
my !mz!m3!m4!1"<).234+m1234+3>

F3.6),8(A15 A2y A3y Ags Asy A6 X1, X, X5, X))
©
= Z 'y(3.6),B(Ala 12’ 139 j'4» '15’ 16; my, my, ms, m4)Xi"'X§"2X§"’X3"“ P

my,ma2,m3,ms=0

V(3,6),B('11, Ay Az, Agy As, Aey My, my, M3, my)

1 1
F</13+m34+7>r<—2.5 +m24+?>r<—234+m1—m34>r(115 +m1—‘m24)

] s
ml!mz!m3!m4!r<ﬂ.156+m1—m234+?>

F'(3,6),C(ﬂ'l, Ays A3, Ay, As, Aes Xy, Xy, X, XYy)
= Z 7(3_6),(:(/11, Aas A3, Ags Asy )~6§ my, My, my, m) X7 X372 X33 X7,

my,mz,m3,ms=0
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'y(3.6),C(A'l’ AZ’ )'33 14’ )'Sa '16> ml’ m2’ m3s m4)

1 1 1
(— 1)"‘”1"(&l +my, +3>F<A3 +m34+?>1"<—16 +m23+?)

ml!mz!m3!m4!r(115 +m12“m4+1)r(l34~m1 +m34+ 1)

Where mij=mi+mj, mijh=mi+mj+mk, j’l]=ll+lj’ j'ijk=j'i+)'j+)'k’ etc. Il’l the Sequel,
we write

)“1’ )“2’ j'3
F(3,6).z('11a A2s A3y Ags As, Ae; X1, X3, X, X4)=F(3,6),z Aa As, Ag; >
Xb XZ’ X3s X4

(Z=A, B, C) for simplicity.

It is stressed here that each of the functions of the form (6) is reduced to one of
F3.6),z(Z=A, B, C). Noting this, we are going to construct a set of fundamental solutions
around normal crossing points of types (NC.i) i=2, 4, 5, 6, 7. The result is given below
where the variables (w, ..., w,) are as given in Table 3 (we use those in the upper row
in the case of T;).

(I) A set of fundamental solutions around the normal crossing point of type
(NC.4) corresponding to T,.

—ay—1/2, —az—1/2, —a,—1/2
Wi TBwy w2 F s 6 4l Bs+ 172, Bi+1/2,  Ba+1/2 ’
WiW, W3, Wi, WiWz,  WiWaW,

—ay—1/2, —a =12, —ay—1/2
wiBswowy) T2 bR ol B+ 172, By+172, Ba+1/2 )
WiW, W3, WyWs, W3, WaW3Wy
=12, —oy—1/2, —ay—1/2
wiPwiPwi BBy 64l Bi+1/2, Bs+1/2,  Ba+1/2; s
Wy, WiWoWy, WaW3W,, WoW,4
—ay =12, —ay—1/2, —ay—1/2
wibwiwiF, 65| Ba+1/2,  Ba+1/2,  By+1/2 ,
Wi WyWs, WaWy, P
—ay—1/2, —ay—1/2, —a —1/2
Wfﬂ"Wz-a‘—aﬁﬂzwzazF(s,e),B B+1/2,  Bi+1/2,  B3+1/2; ,
W3, WoWy, WiW;, Wy

WI”’WE"’WZ”Es.s),B< Bi+172,  Bs+172, B,+1/2

Wy, wyWs, WyW3, W,
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(II) A set of fundamental solutions around the normal crossing point of type
(NC.7) corresponding to T,

a3—1/2, —al_l/z, —az—l/z
Wi B, By B 2Fa 6 cl Bs+1/2,  Ba+1/2,  Bi+1/2 )
Wq

WiWs, WiW,yWs, WiW3Wy,

—a1—1/2 —a3—1/2, ‘_az_]/z
ﬂ3+1/2 Bi+1/2,  Bp+1/2 >,
Wiw,

wl—az—ﬁzwz-ﬁzw;ﬁz-ﬂsw;az (3.6).C

( WiWw, W3, WiW, Wy,
( 133—1/2 —B1—1/2, —B,—1/2

oaz+1/2, o, +1/2, o, +1/2; ),
W,

wl—ﬁz "ﬂzwz- ﬂzw; B2— ﬂsw; BsF(3,6) c
WiWa, WiW3Wa, WiWs,
WiWs, WiW3W,,

wi az —aswz— asw; az —asw; ﬁaF(s,a) c

a—1/2, —ay—1/2, —a,—1/2
TR PR LS IS ﬁ +1/2 B,+1/2,  Bs+1/2; >,
WiWw,

31—1/2 —B—1/2, —B3—1/2
o +1/2, oy +1/2,  az3+1/2 ,
Wa

wWiWs, WiWw, W3,

WiWrWy,
—B—1/2, —B3—1/2, —B,—1)2
wpe by byrasay o, ol a+1/2, as+1/2, a,+1/2 .
Wiw,, WiW,oWy, WiW3W,, W3

(III) A set of fundamental solutions around the normal crossing point of type
(NC.2) corresponding to T..

=12, —a;—1/2, —a3;—1/2
W1—G2W2_“F(3.6),c< Bi+1/2,  Bs+1/2, B,+1/2 >,

WiWj, Wa, W3,

Wi, WiWs, WiWs,

—o,—1/2, —a;—1/2, —az—1/2
wl—ﬂz—ﬂsw;ﬁsp(aﬁ),A( Bi+1/2,  Bs+1/2,  Br+1/2 ’

—ay—12, —ay—1/2, —a;—1)2
wi 2wy 2w Pwg T B EL o | Ba 12, Bat1/2, Bit+1/2 )
Wa

WiWoW3Wy,,  WoWy, W3Wg,

12, —a —1/2, —as—1/2
Wf“"’f”’ﬂs,m,n( Bi+172,  Bs+1/2, B,+1/2 >
WaW3W,

W19 W2, W3,
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—ay—1/2, —a;—1/2, —a,—1/2

wiw; 2wy PFs 68| Bs+1/2,  Bi+1/2,  Br+1/2 )

Wa W3, Wi, WiW,W3

=B:1—1/2, —B,—1/2, —p3—1/2
wi P2y Pany _ﬂlF(a,s),c a+1/2, a3+1/2, ay+1/2;

WiWs, W3, Wi, WaWy
(IV) A set of fundamental solutions around the normal crossing point of type
(NC.6) corresponding to T,.

—o3—1/2, —a;—1/2, —a,—1/2
wi w3 BPwiF3 6.0l Bst+1/2,  Bi+1/2,  By+1/2% > )
W, wWiWs, WiWs, WiW3Wwy
—o,—1/2, —a3—1/2, —oa,—1/2
Wf”’WJB’WZ”Z_”’E3.6>,A Bi1+1/2, B.+1/2,  B3+1/2; > ,
WiWW3W,a,  WiWW,, W W3W,, W,
—a,—1/2, —o;—1/2, —oaz—1/2
wiPBwiPwimFs 68l Bi+1/2,  Bi+1/2,  Br+1/2 >,
Wa, WiWs, wWiw,, WiW,oW3
—oy,—1/2, —a3—1/2, —a,—1/2
Wl_a'_az+ﬂzwa§3_ﬂlwa_azwat_azF(s.s).c Bs+1/2,  B,+1/2,  B+1/2; )
Wi, wWiw,, WiWo,W3W,, W3

w{‘“wi"”‘w;“’w;""l’w,é,p( as+1/2, a,+1/2, o, +1/2;
Wiy, WiWs, WiW, W3Wy,

—B>—1/2, —B3—1/2, —p—1/2 )
w, ,

—Bs—1/2, —B,—1/2, —B;—1/2
wps Tt s Tl Sy i Es el @12, ap+1/2, oy +1/2
W3, wiws, WiWw,, WiWoWw,

(V) A set of fundamental solutions around the normal crossing point of type
(NC.5) corresponding to T,.

= 1/2, —a =172, —ay—1/2
wiwy2F36.cl Bi+1/2,  Bs+1/2,  B,+1/2; > ,
W3

WiWw,, W, WaW3Wy,

—062—1/2, —061—1/2, —a3_1/2
wl—ﬁz—ﬁawz-ﬁsF(lw,A Bi+1/2,  B+1/2, Bi+1/2; s

WiW,, Wi, WiWw, W3,
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- —Bi- —B1y,,—ar—az+
wywg Ty by et hE, o a0 Ba+ 12, Bi+1/2, Bi+1/2;
WiWaW3Wy, Wa, WaW3Wy,

—o,—1/2, —o;—1/2, —oaz—1/2 >
WoWws

—ay—1/2, —a,—1/2, —a;—1/2 >

Wl_mzwz_ﬂzF(s,s),B Bi+1/2, Bs+1/2,  B,+1/2;
Wy, Wi, WaW3Wy,

witwy h bWl E o8l Ba+1/2, Bi+1/2,  Bi+1/2
Wa, WiWw,Ws, Wa,

—a3—1/2, —a,—1/2, —o,;—1/2 )
WoWs

wimw; WP TP E 6l o +1/2, az+1/2,  a,+1/2;
W3, WiW,ws, Wa,

~ﬁ1—1/2, _—ﬂ3'—1/25 —ﬂz_l/z >
WoW,

Before going into discussion on Problem (A2) in the Introduction for the case
E(3,6), we explain the relationship between our point of view and Horn’s study on
analytic continuations of the Appell hypergeometric functions (cf. [8]). We first re-
call the case of the Gaussian hypergeometric functions. The differential equation
for F(a, b, c; x) has singularities at x=0, 1, 0. As is well-known, all the fundamen-
tal solutions around x=0,1, 00 are expressed in terms of such functions as
x*Y(1—x)**F(a’, b, c; x'), where a’, b’, ¢', e,, e, are linear with respect to a, b, c and x’ is
obtained by a linear fractional transformation of x.

In the case of the Appell hypergeometric functions F;, F,, Fj, F,, the situation
becomes slightly different. Taking F, as an example, we consider fundamental solutions
of the holonomic system %, for F,. In this case, we take the 2-dimensional Terada
model .#, as the blowing up of P? where %%, is defined. Then the singular locus of the
pull-back of %%, to .4, is the union of ten lines and there exist fifteen normal crossing
points. As fundamental solutions around normal crossing points of .#,, we obtain F,,
F; and one of Horn’s functions denoted by H, (cf. [8]). To construct fundamental
solutions around all normal crossing points, we need three other functions; two are,
roughly speaking, two-variable versions of the generalized hypergeometric function
1F,(ay, ay, as; by, by; x) and the remaining one is complicated to describe, since we need
the special values of ;F, at x=1 to write coefficients of its power series expression. (For
details on this subject, see [29], [32] and [35].) In this sense, Horn’s study is incomplete.

We return to the case E(3, 6). For this purpose, it is better to explain the results
by separating the types of normal crossing points of 4 into the four cases:

(E1) The cases (NC.i) (i=2,4,5,6,7). As we have already shown, each of the
fundamental solutions around normal crossing points whose type is one of (NC.i)
(1=2,4,5,6,7) can be expressed in terms of F3 ¢,z (Z=A4, B, C).

(E2) The case (NC.9). To construct fundamental solutions around normal crossing
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points of type (NC.9), we have to introduce four kinds of functions defined by power
series in four variables which are of hypergeometric-Horn type, namely, their coefficients
satisfy product formulas. (For details, refer to [32].)

(E3) The case (NC.1). Fundamental solutions at the point (NC.1) are given in [27].
We need a function defined by power series whose coefficients are expressed in terms
of the special values of ;F, at x=1 as in the case of Appell’s F,.

(E4) The cases (NC.3), (NC.8). Normal crossing points of types (NC.3) and (NC.8)
are contained in Y,. The hypergeometric differential equation (3, 6) does not have
singularities along the hypersurface Y, which is the closure of the image of p,s=0 by
the map ¢g: P(3, 6)—> %. For this reason, we do not enter into the determination of
fundamental solutions around such points. We only note here that the solutions of
F(3, 6) on Y, can be expressed in terms of determinants of the Lauricella functions Fj,
in three variables (cf. [38]).

6. Tableof b). We give the table of b’ for the triangulations T, T}, T,, T;, T,.
We explain notation in the table. To each simplex, there is associated a 3 x 3 matrix
o whose entries are asterisks as follows. If

{ilajl}’ {iz, jZ}y {i3’j3}’ {i4’j4}! {iS’jS}
is a simplex, the (i, j)-entry of ¢ is * in the case of (i,j)= (i, ji,) k=1,2, 3,4, 5) and is
empty otherwise. Let T be a triangulation given in Theorem 1. Then the vector (i,, . . ., ig)
following T means that the k-th simplex of T corresponds to the i,-th series solution
in Section 5. For example, the vector (1, 6, 4, 3, 5, 2) following 7, means that the first

simplex corresponds to the first series solution in Section 5 and the second simplex
corresponds to the sixth series solution and so on.

T, (1,6,4,3,5,2)

* ok x -1 0 1 0 -1 1 -1 0 1 0 -1 1
< *>< 1 0 —1><0 1 —1>< 0 0 0 ><O 0 0 >,
* 0 0 O 0 0 O 1 0 -1 0 1 -1
* 0 -1 1 -1 1 0 1 =10 1 -1 0
* *>:<0 1 —1)( 1 -1 O>< 0 0 O>< 0 1 —1),
* 0 0 O 0 0 0 -1 1 0 -1 0 1
* -1 1 0 -10 1 0 0 O 0 0 O
* *x % | 1 -1 0) 1 0 —l)( 1 -1 0) 1 0 -1 |},
* 0 0 O 0 0 O -1 1 0 -10 1
* 1 -1 0 0 -1 1 0 0 O 0 0 0
I K 0 1 —-1><0 1 —1>< 1 0 —1><0 -1 1 ),
* * -1 0 1 0 0 O -1 0 1 0 1 -1
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0 0
)(0 5
0 1

1

0 -1 0 0
><0 : )( o
0 1 1 -1 0

1

-10
0 0
0

Tb’ (1’ 59 6’ 49 37 2)

—1

1
0 0

0
0

)

1

0
0 0
-10

0

-1

-1 1
0 0
1

0 0
1

0

0

)(:

1 -1 0 -1 1 0
—1> 1 —10> 0 0 O
0 0 O 1 —-10

0

1
0 0
-1

0 -1
0

0
-1
1

0 0 O
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T, (1,4,2,6,5,3)

[1]
[2]

[3]
[4]

[5]
6]

£7]
[8]

(91

-10 1 0 —1 1
1 0 —1><0 1 -1
0 0 O 0 0 0

1 —-10
0 0 o
-1 1 0

* 0 -1 1 -1 1 0 1 —-10 1 -1 0
* % )1 0 1 —l> 1 -1 0>< 0 0 0>< 0 1 —1>,
0 0 O 0 0 O -1 1 0 -1 0 1
-1 1 0 -1 0 1 0 0 O 0 0 O
: 1 -1 0> 1 0 —l>< 1 -1 0><l 0 —1),
0 0 O 0 0 O -1 1 0 -1 0 1
* 1 -1 0 0 -1 1 0 0 O 0 0 O
* x J: 0 1 —1> 0 1 -1 >< 1 0 —1><0 -1 1 >,
* -1 0 1 0 0 O -10 1 0 1 -1
* 1 —-10 0 -1 1 0 0 O 0 0 O
* >: 0 0 0> 0 0 O >< I -1 O><0 -1 1 >,
* x -1 1 0 0 1 -1 -1 1 0 0o 1 -1
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