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COMPACTIFICATIONS OF THE CONFIGURATION SPACE
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Abstract. We discuss two kinds of compactifications of the configuration space of
six points in the complex projective plane. One is Naruki's cross ratio variety and the
other is a toric variety obtained from the regular triangulations of the product of two
copies of the 2-simplex. The former admits a biregular action of the Weyl group of type
E6. The latter admits a biregular action of S3xS3. The complement of the complex
torus of the toric variety consists of normal crossing divisors. The action of S3 x S3
leaves the set of normal crossing points invariant and decomposes this set into five orbits.

We explicitly show that the natural birational map between the two varieties is
locally biregular around the normal crossing points of the toric variety and the
corresponding points of the cross ratio variety. Utilizing this map, we study fundamental
systems of solutions of the hypergeometric system £(3, 6) on the cross ratio variety which
is a natural domain of definition of the hypergeometric functions of type (3, 6).

1 . I n t r o d u c t i o n . W e c o n s i d e r t h e i n t e g r a l

f(yι,...,yn)=
acycle »

w h e r e > > ! = ( > > ! ! : 7 u ) , . . . , Λ = ( Λ i : ' ' ' : ^ k ) a r e p o i n t s o n t h e p r o j e c t i v e s p a c e P k ί

and (/?!,..., βn) is a parameter with Σβi = n—k. We can naturally regard f(yx,..., yn)

as a function on the configuration space P(k, ή) of n points on the projective space Pk~ *:

P(k, n) = GL(k, C)\{k x n matrices of which all k x k minors are not 0}/(C*)n.

The projective space P(k~ 1 ) ( f l " f c " X ) is a compactification of the configuration space P(k, ή).

The function f(yί9 . . . , > 0 satisfies a holonomic system of differential equations on

p(k-i)(n-k-i) ^ j ς h w e denote by E(k9 ή) and has been intensively studied by a lot of

people (see, e.g., [1], [12] and their bibliography).

We are interested in the following problems:
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(Al) Construct a compactification X of the configuration space P(k, ri) so that
X—P(k9 ri) is the union of non-singular hypersurfaces with normal crossings.

(A2) Construct fundamental series solutions of the holonomic system on X around
the normal crossing points.

We explain results concerning the problems (Al), (A2) for the Appell-Lauricella
hypergeometric function FD(a, bu . . . , bn, c; xl9..., xn) (cf. [2]) which is interpreted as
a solution to E(2, n + 3) on P(2, n + 3) in a natural manner. In this case, Terada [37]
constructed a compactification of P(2, n + 3) which is called the w-dimensional Terada
model in [24]. We denote it by Jtn for a moment. The Terada model Mn has some nice
properties:
(Bl) Jin is non-singular.
(B2) The configuration space P(2, n + 3) is regarded as a Zariski open subset of Jin

and its complement S is the union of divisors with normal crossings.
(B3) S coincides with the pull-back to Jtn of the singular locus of the holonomic

system for FD.
(B4) Permutations among n + 3 points of the projective line naturally induce a biregular

action of the symmetric group on n + 3 letters on Jtn.
The properties (B1)-(B4) of the Terada model give an answer to the problem (Al)

for the case of P(2, n + 3). As to the problem (A2) for the Appell-Lauricella case, it is
possible to solve it for small n. For example, an answer for E(2, 5) (the Appell function
Fγ) is given in [33], but it is not solved for general n. One reason for that is the difficulty
in classifying the normal crossing points of J(n with respect to the natural action of the
group Sπ + 3.

Let us return to the configuration space P(fc, ri) and the system E(k, ri) on it
(k>3,n>2k). No one has yet tried to solve the problems (Al) and (A2). The toric
variety constructed in [11] is a compactification of P(/c, ri) related to holonomic systems
E(k, ri), but it does not satisfy the properties corresponding to (Bl) and (B2). For this
reason, it is worthwhile to solve the problems above.

Compared with the general case, the three spaces P(3, ri) (n = 6, 7, 8) have fruitful
geometric background related with classical topics on del Pezzo surfaces (cf. [6], [18]).
For example, since a non-singular cubic surface in P 3 is obtained as a six-point blowing
up of P 2 , P(3, 6) is regarded as a moduli space of cubic surfaces. In this case, from a
purely geometric motivation to study a moduli space of marked cubic surfaces, Naruki
[21] succeeded in constructing a compactification ^ of P(3, 6) having properties similar
to (Bl) and (B2). In this paper, we call * Narukfs cross ratio variety following [13].
Since V enjoys the properties analogous to the properties (B1)-(B4), ^ can be regarded
as a solution to the problem (Al) for P(3, 6).

Noting these in mind, we focus our attention to the holonomic system E(3, 6) in
this paper. Our interest therefore lies in the following:
(Cl) Study the compactification χ(N'(Σ(Δ2xΔ2))) (for definition, see §4) which is a

modification of the toric variety constructed by the method in [11] in this case.



HYPERGEOMETRIC SYSTEM OF TYPE (3, 6) 381

(C2) Clarify the relationship between # and the compactification χ(N'(Σ(Δ2 x Δ2))).
(C3) Determine the normal crossing points of ^ and those of χ{Nf(Σ(A2 x Δ2))) and

study the correspondence among them.
(C4) Construct fundamental solutions to the pull-back to # of £(3, 6) around normal

crossing points of # which correspond to those of χ(N\Σ(Δ2 x Δ2))).
We can say little about (Cl) and (C2) and leave them for further study. As to (C3), we
obtain a rather satisfactory results; we determine all the regular triangulation of the
product of the 2-simplices Δ2 x Δ2 and, roughly speaking, these correspond to normal
crossing points of χ(N'(Σ(Δ2xΔ2))). Moreover, we clarify the correspondence in a
concrete manner among these points and normal crossing points of # which we call
normal crossing points of ^ attached to triangulations in this introduction. As a
preparation for treating (C4), we construct three kinds of power series in four variables
denoted by

m F(3,6),A(A> XU Xl-> ^3> X4) 9 F(3,6),B(A'9 X ι, X2-> X3, X4) ,

M3,6),c(^ Xί9 Xl-> X39 X4)

depending on parameters

λ = {λl9 λ29 λ3, λA9 λ59 λ6) μ i + A2 + A3 + ̂  + A5 + ̂ 6 = 0).

Then our main result is that each fundamental solution of E(3, 6) around each normal
crossing point of # attached to a triangulation is expressed in terms of one of F ( 3 t 6 ) f Z

(Z = A9 B, C), only changing variables and parameters in a certain manner. This result
is partly contained in a general theory of hypergeometric functions on P(fe, ή) (cf. [11]),
but it is stressed here that it is sufficient to use three kind of power series introduced
above. There are normal crossing points of # which are not attached to triangulations.
We do not enter into the construction of fundamental solutions around such points in
this article and only give a remark at the end of §5.

We are going to briefly explain the contents of this article. Section 2 is devoted to
the construction of a 4-dimensional toric variety associated to the triangulations of the
product of two copies of the 2-simplex Δ2. The product Δ2 x Δ2 admits an £ 3 x S3-action
induced from the natural ^-action on Δ2. Our study starts with showing a result of
Postnikov [12] on the S3 x 53-orbital structure on the set of triangulations of Δ2 x Δ2.
By a general theory of [11], we construct a 4-dimensional toric variety associated to
the triangulations and finally introduce a non-singular model of the toric variety and
a power series to each triangulation. They are solutions of the holonomic system. In
Section 3, we first review the definition of the configuration space of six points in P2

and its compactification # due to Naruki. Naruki's cross ratio variety # admits a
biregular W^fi^-action, where W(E6) is the Weyl group of type E6. It naturally contains
S6. Noting that the hypergeometric system of type (3, 6) is preserved by the 56-action,
we see 56-orbits of normal crossing points of <g. By studying the intersections of
hypersurfaces of <β9 we determine that there are nine S6-orbits denoted by (NC./)
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(i = l, 2, ,9). In Section 4, we study the correspondence between the totality of
5 3 x S3-orbits of triangulations investigated in Section 2 and those of normal crossing
points of <g. The types of such points are (NC./) (ι' = 2, 4, 5, 6, 7). Noting this, we are
going to construct fundamental solutions of the holonomic system around each normal
crossing point whose type is one of (NC.i) (/=2, 4, 5, 6, 7). We show that each
fundamental solution of the holonomic system around each normal crossing point whose
type is one of (NCi) (/=2, 4, 5, 6, 7) is expressed in terms of one of the functions above
by a suitable choice of variables and parameters. Finally, we discuss fundamental
solutions at other normal crossing points.

2. Triangulation of the product of two copies of 2-simplices. This section is devoted

to a brief introduction of a toric variety associated to triangulations of the product of
2-simplices. Let Δ2 be a 2-simplex. We first state a theorem due to Postnikov on the
enumeration of all triangulations of Δ2 x Δ2. Secondly, under the guidance of the general
theory due to [11] and [14], we will construct a 4-dimensional toric variety associated
to these triangulations and study properties of it. Finally, we will construct series
solutions of the hypergeometric system of type (3, 6) on the toric variety based on the
general method developed in [11].

We begin this section with giving an embedding of Δ2 x Δ2 into the 6-dimensional
Euclidean space: Δ2 x Δ2 is the convex hull of the nine column vectors of the following
matrix A regarded as points in R6:

A: =

/
We denote by {ij} the (3(ί—l)+y)-th column vector of the matrix A. By a

triangulation of Δ2 x Δ2, we mean a triangulation of the product of the simplices of
which each vertex is one of the nine vectors {i,j}. We can show that any triangulation
of Δ2 x Δ2 consists of six 4-simplices. So each triangulation is given by six sets of five
points.

Let y be the set of all triangulations of Δ2 x Δ2. Since the 2-simplex Δ2 admits an
action of the group S3 of the permutations on three letters, Δ2 x Δ2 naturally admits
an action of the product S3 xS3. The set 2Γ is decomposed into S3 x53-orbits. The
representatives of such orbits are given in the following theorem.

THEOREM 1 (cf. Postnikov [12, p. 249]). The set F is decomposed into five
S3 x S3-orbits whose representatives are the triangulations Tt (i = a,..., e) below:
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{1,1}, {1,2}, {1,3}, {2,3}, {3,3}

{1,1}, {1,2}, {2,2}, {2,3}, {3,1}

{1,1}, {2,1}, {2,2}, {2,3}, {3,1}

" {1,2}, {2,2}, {2,3}, {3,1}, {3,3}

{1,2}, {2,2}, {3,1}, {3,2}, {3,3}

{1,1}, {1,2}, {2,3}, {3,1}, {3,3}

{1,1}, {1,2}, {1,3}, {2,3}, {3,2}

{1,1}, {1,2}, {2,2}, {2,3}, {3,2}

{1,1}, {2,1}, {2,2}, {2,3}, {3,2}
b {1,1}, {2,1}, {2,3}, {3,1}, {3,2}

{1,1}, {2,3}, {3,1}, {3,2}, {3,3}

{1,1}, {1,3}, {2,3}, {3,2}, {3,3}

{1,1}, {1,2}, {1,3}, {2,3}, {3,1}

{1,1}, {1,2}, {2,2}, {2,3}, {3,1}

{1,1}, {2,1}, {2,2}, {2,3}, {3,1}
±c {1,2}, {2,2}, {2,3}, {3,1}, {3,2}

{1,3}, {2,3}, {3,1}, {3,2}, {3,3}

{1,2}, {1,3}, {2,3}, {3,1}, {3,2}

{1,1}, {1,2}, {1,3}, {2,3}, {3,1}

{1,1}, {1,2}, {2,2}, {2,3}, {3,1}

{1,1}, {2,1}, {2,2}, {2,3}, {3,1}

' {1,2}, {2,2}, {2,3}, {3,1}, {3,2}

{1,2}, {2,3}, {3,1}, {3,2}, {3,3}

{1,2}, {1,3}, {2,3}, {3,1}, {3,3}

{1,1}, {1,2}, {1,3}, {2,3}, {3,1}

{1,1}, {1,2}, {2,2}, {2,3}, {3,1}

{1,1}, {2,1}, {2,2}, {2,3}, {3,1}
e {1,2}, {2,2}, {2,3}, {3,1}, {3,3}

{1,2}, {2,2}, {3,1}, {3,2}, {3,3}

{1,2}, {1,3}, {2,3}, {3,1}, {3,3} .

The lengths of the orbits ofTa, Th and Tc are 12, 6 and 18, respectively. The lengths of
the orbits ofTd and Te are 36. The product Δ2xA2 admits 108 triangulations. Furthermore,
these triangulations are regular (coherent) triangulations in the sense of Definition 2.3 in
[12, p. 228].

REMARK 1. Theorem 1 was firstly obtained by Postnikov around the end of the
1980's. Though there is no reference on how he derived it, it is possible to check his



384 J. SEKIGUCHI AND N. TAKAYAMA

result in the following manner. We first enumerate and triangulations of the boundary
of Δ2xΔ2. Next we check the possibility of extensions of the triangulations of the
boundary obtained above to those of Δ2 x Δ2. (We are deeply indebted to Mathematica
in carrying out this idea.)

Although no algorithmic method to obtain all triangulations is known, we have a
systematic method to get all regular triangulations; computer programs are available
to enumerate all regular triangulations (cf. [17] and [19]). Actually the 108 regular
triangulations of Δ2 x Δ2 can be obtained in a few minutes by means of these programs.
The readers who are interested in the algorithm may consult [4] and [12, pp. 231-233].
Here, we only note that the enumeration is done by utilizing the circuits of the nine
points. A subset Z of the nine points is called a circuit if any proper subset of Z is
linearly independent but Z itself is linearly dependent. Let us denote by the 3x3 matrix
(cij) a circuit of the nine points; the set of {ij} for which c^φO is the circuit and
moreover (cί7) corresponds to the relation

5>y{U}=0.
ij

In the case of Δ2 x Δ29 the 5 3 x 53-orbits of

/ 1 - 1 0

cί = l - 1 1 0
\ 0 0 0

are all the circuits. The enumeration of the regular tiangulations is done by modifying
a given triangulation along a suitable circuit. Modifications along circuits and flops of
hypergeometric functions have a close relationship. As to this topic, see [36].

Let Γbe a regular triangulation of Δ2 x Δ2. We define a vector φτ = ((</>Γ)0 ), (1 < i < 3,
1 </<3) in Z 3 * 3 by letting (φτ)ij to be the number of the appearances of the vertex
{ij} in the triangulation T. For example

where the triangulation Tb is as given in Theorem 1.
The secondary polytope Σ(Δ2 x Δ2) is the convex hull of the 108 vectors {φτ | TG 2Γ}

in /? 3* 3 . The following theorem is shown by an implementation of the algorithm
obtaining the convex hull of a given set of points by Edelsbrunner (cf. [7, Chap. 8]).

THEOREM 2. (i) The secondary polytope Σ(Δ2x Δ2) is a 4-dimensionalpolytope in
R9. It has 108 vertices corresponding to the 108 regular triangulations. The numbers of
1-, 2-, 3-faces are 222, 144, 30, respectively.

(ii) The secondary polytope Σ(Δ2xΔ2) has two types of vertices corresponding
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to the properties (1) and (2) below:
(1) The numbers of the adjacent 1-, 2- and 3-faces are 6, 9 and 5, respectively.
(2) 77ze numbers of the adjacent 1-, 2- and 3-faces are 4, 6 and 4, respectively.

Φτb w 0/fλe ίy/^ (1) β / ί ^ 07v (* = α> c> ̂ > e) α r ^ of the type (2).
(iii) TTze triangulation Ta has support on the circuit c2 in the sense 0/[12, p. 232,

Definition 2.9].
(iv) The facets of the secondary poly tope decompose into three S3 xS3 orbits. Let

fufi and f3 be representatives of the orbits respectively. The 3-polytope fγ has twelve
facets consisting of four A-gons.four 5-gons and four 6-gons. The 3-polytope f2 has twelve
facets consisting of eight 4-gons and four 6-gons. The 3-polytopef3 has six facets consisting
of six 4-gons.

REMARK 2. The statement (iii) can be understood as a combinatorial counterpart
to the fact that the power series Fi3t6)t^Xi9 X2, X3, X*) introduced later (cf. §5) is reduced
to the generalized hypergeometric function 3F2(X^) when X1=X2 = X3 = 0. Details on
this subject will be discussed elsewhere (see also [36]).

We consider the normal fan N(Σ(A2 x Δ2)) of the secondary polytope Σ(A2 x A2);
the normal fan is the collection of the normal cones at the faces / :

N(Σ(A2 x Δ2\ /) = {ι;| O, p-q)>Q for aΆpeΣ{Δ2 x Δ2) and all qef).

We are going to consider the 4-dimensional toric variety χ(N(Σ(Δ2 x Δ2))) defined
by the normal fan. Let C be a cone of the fan N(Σ(Δ2 x Δ2)). We can get the semi-group
ring defined by the integral points of the dual cone C[CV n Z 3 x 3 ] . The toric variety
χ(N(Σ(Δ2 x Δ2))) is obtained by gluing the spectra of the semi-group rings corresponding
to the cones of the fan by the incidence relations among the cones; the semi-group rings
are the coordinate rings of the affine charts of the toric variety (see [23, §2], or [9,
§§1.3, 1.4 and 1.5] for the definitions on toric varieties). Noting the definition in mind,
we are going to look at the semi-group ring corresponding to each of the normal cones
at the vertices φTi. We put

v = \\ 1 1).

Let τ be a simplex of a regular triangulation T in 3Γ. Then there exist four vectors b(jj)

({ij}φτ) in Z 3 x 3 such that
(Dl) ( 6 « \ = 1
(D2) m k l = θ({kj}φτ,{k,l}ϊ{ij})
(D3) bMekeφl: Z3x3^Z% i.e., ̂  = ̂ ^ = 0.
We can show that the conditions (Dl), (D2) and (D3) uniquely determine the vector
b(jj). For example, if τ is given by the five points

{1,1}, {1,2}, {1,3}, {2,3}, {3,3},

then the four vectors M21), M22), M31), M33) are as follows:
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(The explicit forms of b{jj) corresponding to the triangulations Ta, Tb, Tc, Td, Te will be

given in Section 6.)

PROPOSITION 1. The normal cone at the vertex φτ. is given by

PROOF. The normal cone to the secondary poly tope at the point φT. agrees with

the cone of the weight vectors for the regular triangulation Tt (cf. [12, p. 228, Theorem

2.4]). The cone of the weight vectors are characterized by the right-hand side of the

proposition by [4, Lemma 4.2]. q.e.d.

Consider 3 x 3 indeterminates utj ( l < ΐ < 3 , 1 < 7 < 3 ) . For each 6 = (ή i j ) 6 Z 3 x 3 , we

put uh = Y\iju
b

iy. The following proposition is a consequence of Proposition 1; what we

have only to do is to show that {bξq\τeTb {p, q}φτ} generates the semi-group

N(Σ(A2 x A2\ φT)
v nZ3*3 which follows from case-by-case computations.

PROPOSITION 2.

ClN(Σ(A2xA2\ ^ ) v n Z 3 x 3 ] ^ C [ W ^ \τeTi9 {p,q}φτ^ .

The ring given in the proposition is the coordinate ring of the affine toric variety

defined by the normal cone at the vertex φTi. The coordinate ring is isomorphic to

C[xί9 x2, x3, x 4 ] in the case of T^Tb, but not isomorphic in the case of Ti—Tb from

the following theorem and a general argument in the theory of toric varieties.

THEOREM 3. There exist two types of maximal cones;

(1) N(Σ(A2xA2),φτ.) is the direct sum of a linear space and a ^-dimensional

unimodular cone where i = a, c, d, e.

(2) N(Σ(A2 x A2), φTb) is not unimodular.

The theorem can be shown by explicit presentation of the secondary polytope

Σ(A2 x A2) as a convex hull of 108 vectors {φτ}.

It is well-known in the theory of toric varieties that the toric variety defined by a

given fan is non-singular if and only if all the cones are unimodular (cf. [23, Theorem

1.10] or [9, p. 29]). In our case, since the cone at the point φTb is not unimodular, the

toric variety χ(N(Σ(A2 x A2))) is singular. We look at the coordinate ring for the cone

at φTb and refine the cone to get a unimodular fan as follows.

THEOREM 4. (i) The semi-group

N(Σ(Δ2xA2),φTbynZ3*3 = :Sv
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is generated by the following six vectors:

/ - I 1 OX / 0 0 0 \ / - 1 0 I X / 0 0 0

x:={ 1 - 1 0 , y:=l - 1 1 0 ),P-=( 0 0 0 ] , ? : = ( 1 0 - 1 ) ,

V o o o / \ l — 1 0 / \ i o - i / V - i o i

/0 1 -IX /0 -1 I X

x+y-p=l 0 0 0 I, p+q-χ=l 0 1 -1 I

\0 -1 1 / Vo 0 0 /

a n d

C [ 5 V ] -^ C ^ 1

fl

where /\ is defined by

andf2 is defined by

(ii) Put

pqx~it->y2

= (0,0,0, I ) , p 2 = ( l , 0,0, l),/>3=(0, 1,0,0),

=(1, 0,1,0), /»5 = (0, 1,1,0)

^ = ( 1 , 0 , 0 , 0 ) , ? 2 = (0, 1,0,0), ^ = ( 0 , 0 , 1 , 0 ) ,

ί 4 = ( 0 , 0,0,1), ί 5 = (l, 1,-1,0), ί 6 = ( - l , 0 , l , l ) .

Σ R>aPi J n Z 4 = C X Z s 0 ί j ^ C[x, y, p, q, xyp~\ pqx'1]

where

(iii) Put

C 2 «re unimodular and Cι
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(iv)

r nZ 4 ] - C[x" V, x,

n Z 4 ] - Clxp-\y,

where the correspondence between the monomials and lattice points is that o

PROOF. The statement (i) follows from Proposition 2.

Let us show (ii). We first note that qj9 ( y = l , . . . , 6) are exponent vectors of

monomials x,y,p,q,xyp~1,pqx~1. Taking the dual cone of Σ;= !#>()#/> w e obtain

vectors p{. The isomorphisms of the rings in (ii) can be easily checked.

We have (iii), because | det(/?l9 p3, p4, p5) | = | det(/?1? p2, p3, p4) | = 1.

The statement (iv) is easy to prove. q.e.d.

The cone Cf in Theorem 4 (iii) above defines the corresponding cone contained in

the cone of the fan N(Σ(Δ2 x Δ2)) that we also call Cf. The orbit of the cone Cί by the

action of S3 x S3 consists of twelve elements which contains C2 (we checked this fact

by Mathematica). The other cones in the orbit is outside of Cί u C2, which means that

the action of S3 x S3 is compatible with the refinement by C1 and C2. Thus, we obtain

a refined fan N'(Σ(Δ2xΔ2)) by taking the 5 3 x 5 3 orbit of the cone Cί in the fan

N(Σ(Δ2 x Δ2)). This fan consists of 114 maximal cones and admits the action of S3 x S3.

The toric variety χ{N'(Σ(Δ2 xΔ2))) is non-singular. The proper regular map from

χ(N'(Σ(Δ2 x Δ2))) to χ(N(Σ(Δ2 x Δ2))) is denoted by r.

Before closing this section, we review the construction due to [11] of series solutions

of the hypergeometric system of type (3, 6) which is denoted by £(3, 6) from now on.

We regard the series as functions on the non-singular toric variety that has been

constructed. In the sequel, we take parameters ocu α2, α3, βl9 β2, β3 with the condition

(2) α1-fα2 + α3 = j31+j82 + jS3.

We put

α = ί(α1 α2 α 3), β = \β, β2 β3).

We take a regular triangulation T of &~ and its simplex τ. Then there exist four

vectors 6?Λ ({i,j}φτ) with conditions (Dl), (D2), (D3). Associated to the four vectors,

we introduce a semi-lattice L{τ) defined by

which is on a four-dimensional subspace of J R 3 X 3 .

On the other hand, we take a 3 x 3 matrix y = (yij) such that

(3) yi> = α, 'γv = β,

(4) 7ij=0 if{ij}φτ.
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We now consider a 3 x 3 matrix

/"ll "12 "13

(5) u=[ u
2ί
 u

22
 u

23

\ M
3 1
 M

3 2
 W

3 3

and by using the semi-lattice L(τ) and the 3 x 3 matrix γ introduced above, we define a
formal power series in u

(6) F t > τ = Σ «"
keL(τ)

where

(7) t ι * + '=Γ

(8)

Let τί = τ, τ2 . .., τ 6 be the six simplices of Γ. Then

are linearly independent over C for generic choices of the parameters αf and βj. These
functions are naturally regarded as solutions of the hypergeometric system E(3, 6).

Later, we shall compute explicit forms of the functions defined by the series of the
form (6).

3. The configuration space of six points in P 2 . In this section, we will first reviw

the configuration space P(3, 6) of six points in P2 and its compactification # due to
Naruki. For details on this subject and related topics, see [21], [30], [31]. There exist
seventy-five non-singular hypersurfaces whose union coincides with the complement of
P(3, 6) in (€. It is better to consider one more hypersurface denoted by Yr of ^ when
we treat ^ as a variety with W(E6)-action. As a preparation for our purpose, we will
study normal crossing points of the 76( = 75 +1) hypersurfaces of (€. In particular, we
will determine the 56-orbit decomposition of the set of such points, regarding S6 as a
subgroup of W(E6) in the standard manner.

We begin with defining the configuration space of six points in P2. For this purpose,
we first introduce the linear space M3 6 of 3 x 6 matrices:

Clearly M3>6 admits a left GL(3, C)-action and a right (7L(6, C)-action in a natural way.
For a moment, we identify (C*)6 with the maximal torus of GL(6, Q consisting of
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diagonal matrices and consider the action of GL(3, C) x (C*)6 on M3 6 instead of that

of GL(3, Q x GL(6, Q.

Let M 3 t 6 be the open subset of M 3 > 6 defined by

where

i! X3i2

 X3i3

Then for any element I e M ' 3 ( 6 , there exist (g, h)ε GL(3, C) x (C*)6 and (x l 5 JC2, yl9 y2)G

C 4 such that

gXh =

In this sense, P(3, 6) = GL(3, Q\M3J(C*f is identified with an open subset of C 4 . In

this article, P(3, 6) is called the configuration space of six points in P2. Transpositions

of column vectors of Xeλf'3 6 induce birational transformations on C 4 with coordinate

system (^x, x2, >^,^2). Let sίj (\<j<5) be the birational transformation on C 4

corresponding to the transposition of the 7-th column vector and (j+ l)-column vector

of XeM'36. Then, by an easy computation, we obtain

1

x2 xί x2

y2)

1 - J Ί ^ l " 1 ^ 2 - 1

)>2o . ί γ γ y y \ ^ I *"

S$ '. yXj, X 2 , J^i? 3^2/ * v^2* " ^ I J 3̂ 2> 3^1/ *

Let 5 6 be the symmetric group on six letters. If Sj is the transposition of j and

7 + 1 , 5 6 is generated by ^ l 5 . . . , s5. Then, from the construction, it is clear that the

correspondence Sj\-+Sj (1 <j<5) induces a birational action of S6 on C 4 . In the sequel,

we frequently identify 5 6 with the group generated by Sj (ί<j<5) and we frequently

use Sj and Sj interchangeably. The birational transformations Sj ( 7 = 1 , . . . , 5) are
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nonsingular outside the union of the fourteen hypersurfaces Rj={pj = 0} (1</<14),

where

-^2^1, Pll=*2> Pl2=*l, ^13=^2, />14=>Ί

Let j 0 be the birational transformation on C 4 defined by

*o (*i, *2> yu y2) — * (Vχi> V*2> i/yi, Vy2)

Then the group (5 generated by sί9..., s5 and J 0 is isomorphic to the Weyl group of

type E6 as will be seen soon. We define the hypersurface Rί5 = {Pι5=0}, where

Pis =^1^2(1 —3̂ iXl - ^ ) - ^ 2 > ; i ( l -^i)( l ~yi) -

It follows from the definition that sί9...,s5, s0 and therefore all the elements of G are

biregular outside the union R of the hypersurfaces Rj (1 <j< 15).

We are going to introduce the root system Δ of type Eβ. For this purpose, we

consider the 8-dimensional Euclidean space E with a standard basis εu . . . , ε 8 . Let

< , > be the inner product on E defined by

(εpεky = δjk

and let E be the linear subspace of E spanned by the six vectors

ε l> 5 ε 5 » ε = ε 6 — ε 7~~ ε 8

We introduce the thirty-six vectors

r= (εi+ ε2 + ε3 + ε4 +

rijk= -εt-^εj-^εk-

following [13], where

ro = —-

It is possible to take

as a set of positive simple roots. Then the Dynkin diagram is as in Figure.
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Moreover, r, rjk, rijk defined above are the totality of positive roots of A and r is the

longest root.

Let Qj be the reflection on E with respect to α ; 0 = 1 , . . . , 6) and let g0 be the

reflection on E with respect t o r . Then the Weyl group W(E6) of type E6 is generated

by g. (j = 1, . . . , 6). The relation between W(E6) and the group generated by the birational

transformations Sjf (y = 1,. . . , 5) and s0 is given by the following lemma.

LEMMA 1. (i) The correspondence

0 1 I > s i i 9 i \ > s o > 0 3 I > S 2 > QA.\ > S 3 > 9 S I > s 4 - > 9 β I > s s

induces a group isomorphism Φ of W(E6) to G.

(ii) Ifco = Φ(go)9 then

-y2))

-y2))

> (xίy2 - x2yι)(x2 - l)/((^i -^2X^2-^2))

2yi)(χi - i)/((^i -^2X^1 -yι))

Let Go be the group generated by S6 and c0. Since cl = id by definition and since

c0 centralizes S6, we find that G0~S6x Z 2 .

REMARK 3. We now introduce an involution c on C 4 defined by

c: (*!, x2, yl9 y2) I—> (y29 x29 yl9 xt).

Then it is easy to show that c 0 = co(14)(26)(35), where (if) means the transposition of

/ and j . In particular, Go is also generated by S6 and c.

We write

tj=<εpty, 7=1 5, t6 = {ε,t}

for any ίG.E. Then the linear forms A, A^, hijk given in [30] correspond to positive roots

r, rjfc, riJk9 that is,

A = <r, ί> , A^ = <>>, r> , Ayk = (rijk, t} .

We are going to define an embedding of P(3, 6) into Naruki's cross ratio variety

along the line in [30] and [31]. Let Z(Δ) be the Zariski open subset of P5 defined by

* Π V Π KjkΦ0.
j k i j k
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We now recall the definition of the Z>4-cross ratio maps (cf. [31]). A Z)4-cross ratio

map of Z{Δ) to CR(P) is given by

t I >(h35h34.5h26h24.6 : — ^25^245^36^346 :^23^234^56^45o) >

where CR(P) is the hyperplane of P2 with homogeneous coordinate ζ = (ξι'.ζ2-ζ3)

defined by ξx + ξ2 + ξ3 = 0. By permutations of indices among 1, 2, 3, 4, 5, 6, we obtain

thirty maps of the form above. There is another Z>4-cross ratio map defined by

In this case, by permutations of indices among 1, 2, 3, 4, 5, 6, we obtain fifteen maps

of the form above. As a result, we obtain 45 ( = 30 +15) Z>4-cross ratio maps of Z(Δ)

to CR(P).

By taking the product of these maps, we define a map cτΔDA of Z(Δ) to CR(P) 4 5

which is actually W(2Γ6)-equivariant. Let %>' = cτΔDA(Z(Δ)) and let # be its Zariski closure

in CR(P) 4 5.

THEOREM 5 (cf. [21]). (i) ^ is 4-dimensional and non-singular.

(ii) The W(E6)-action on *& is biregular.

(iii) <€—(€' is a divisor with normal crossings. There exist seventy-six irreducible
components of^ — ̂ ' each of which is smooth.

Following [13], we call ^ Naruki's cross ratio variety.
We define a map F of Z(Δ) to C 4 by

where

/V\_ ^24 * ^234
^ ' Ί 7Ί 7 ΐ 7

Λ 1 4 * Λ 1 3 4 * Λ 2 5 ' ^ 2 3 5

(9)
2 3 4

236

as in [30]. Then it follows from [30, Theorem 4.4] that F is f^XEy-equivariant and its

image F(Z(Δ)) coincides with

which is an open dense subset of P(3, 6).

We now put

= \teEc;Y\hjk- Π
I j<k i<j<k
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Clearly Z(Δ)h contains Z(Δ) and both of the maps cτΔD4 and F are extended to Z(Δ)h.

Then it is easy to show that F(Z(Δ)h) coincides with P(3, 6). On the other hand, c€'
is naturally identified with F(Z{Δ)). Indeed, the identification is established by the

correspondence

On the other hand, the hypersurface pί5 = 0 is non-singular outside the hypersurface

Pi'' '/7i4 = 0 Therefore P(3, 6) is regarded as a Zariski open subset of (€. This embedding
of P(3, 6) in ^ is G0-equivariant, where G0 = S6 x Z 2 . This follows from the fact that
the G0-action on # preservesp15 = 0 outside/?! 'Pi4. = 0.

We are going to write down the seventy-six irreducible components of (€ — <€'. Each
component is described in terms of a subroot system of Δ. Noting this, we put

± rijk

following the notation in [31]. Then Yi} and Yijk are hypersurfaces in ^ . Roughly

speaking, the subvariety Ytj is the image of λl7 = 0 by the map crΔD4.

We now take three subsets Δu Δ2, Δ3 of Δ with the following condition:

CONDITION 1. (i) Each of Άl9 Δ2, Δ3 is a root system of type A2.

(ii) Al9 Δl9 Δ3 are mutually orthogonal.

(iii) The vectors of Δ1\JΔ2VΔ3 span E.

Let YA,D4(ΔJ) (j—1» 2, 3) be the subvarieties of ^ defined in [31]. Then as is shown

in [31, Lemma 3.5],

We determine the triples {Δu Δ2, Δ3} satisfying Condition 1. It is easy to see that there

are two kinds of such sets. The first one is of the form

Δ1 = {±riίh9 ±rhi3, ±riίi3} ,

Δ 2 = { ± r i 4 i 5 , ± r ί 5 ί 6 , ± r i 4 ί 6 } ,

Λ3 = {±r, ±riίi2i3, ±ri4i5i6}.

We denote by Ziii2i3fi4isi6 the hypersurface YΛtD4(^i) ^n ^ s c a s e ^ e s e c o n d one is of
the form

Δί = {±riιi2, ±ri2i3i4, ± r i l i 3 ί 4 } ,

A2 = {±ri3i4, ±ri3i5i6, ±ri4i5i6},

Δ3 = {±ri5i6, ±rili2i59 ± r i l ί 2 ί 6 } .
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We denote by Z ί l i 2 t i 3 l 4 f i 5 l 6 the hypersurface YΔ%DA(Δ^) in this case.

REMARK 4. From the definition, we have

(a) Ziii2hj4i5i6 = Zi4i5i6fili2i39

In the sequel, we denote by Ω the totality of the seventy-six divisors in (€ — (£'.
Then Ω is decomposed into the following five G0-orbits:

Ω 4 = {Z i l i 2 i 3 j l J 2 J 3 ; {ι\, i2, i W W W a H j l . 2> 3, 4> 5, 6}},

05 = {Zili2,i3i4fi5i6; {*Ί, *2> *3> ύ , 5̂, ίβ} = {l, 2, 3, 4, 5, 6}}.

The hypersurfaces contained in Ωx u Ω2 u Ω3 (resp. Ω 4 u Ω5) are called hypersurfaces of

the first kind (resp. of the second kind) (cf. [30]). Then we have the following.

PROPOSITION 3 (cf. [21], [31]). Hypersurfaces of the first kind (resp. of the second

kind) are isomorphic to the ^-dimensional Terada model Jt-$ (resp. (P1)3).

The Terada model was constructed in Terada [37] (see also [24]).

We are going to describe the intersection relations among the seventy-six divisors

above shown in [21] (see also [31], Theorem 3.6]). Let Y be one of the seventy-six

hypersurfaces above.

( i ) If Y intersects Yr9 then Y is isomorphic to one of the hypersurfaces

YtJ (iφj), Ziιi2i3jιj2j3 {{il9 i2, hJuJzJs) = {1, 2, 3,4, 5, 6}).

(ii) If Y intersects Y129 then Y is isomorphic to one of the hypersurfaces

Yr> Y34> Y35? ^36> -*45> ^46» ^56> ^123> Y124* -* 125> M26» ^345> -* 346» Y356' -*456»

(iii) If Y intersects Γ1 2 3, then Fis isomorphic to one of the hypersurfaces

^12> ^ 2 3 J ^135 ^ 4 5 J ^46» -̂ 56» ^145» ^156» ^146> ^245> ^256» ^246» ^345» ^356? ^ 3 4 6 J

Z I 2 3 , 4 5 6 » Z 1 2 f 5 6 > 3 4 , Z 1 2 , 4 6,35? Z 1 2,45,36» Z 1 3 > 5 6 ί 2 4 , <Zi3,46,25> ^13,45,26'

Z23,56,14? Z 2 3 f 4 6 f i 5 , Z 2 3 > 4 5 t l 6 .

(iv) If F intersects Z 1 2 3 4 5 6 , then Γis isomorphic to one of the hypersurfaces

Yn Y\2τ Yl3> Yl3> ^ 4 5 J ^46J ^56» ^123» ^456-

(v) If Y intersects Z 1 2 3 4 5 6 , then Γis isomorphic to one of the hypersurfaces

^12> ^34» ^56? ^134? ^234? ^356» ^456> ^125> ^ 1 2 6

The action of S 6 on the set Ω is same as that of S6 on the indices of Yip Yijk,
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ziιi2i3jij2j3> ziii2,i3i4,isi6 a s a permutation group. In particular, Yr is left invariant by S6.

On the other hand, the action of g0 on Ω is given as follows. The hypersurfaces in Ωj

(/= 1, 2, 4) are fixed by g0. Moreover, if {ih i2, i3, ι4, i5, i6} = {1, 2, 3,4, 5, 6}, then

The property of ̂  given in the following proposition might be of some interest,

although we do not use it in our later discussion.

PROPOSITION 4. Let φ be a biregular transformation on <% such that (€ — c€' is left
invariant by φ. Then there exists ge W(E6) such that φ(Y) = g(Y)for any YeΩ.

PROOF. We consider the action of φ on the hypersurface Yr. Since φ( Yr) is contained

in Ω, in virtue of Proposition 3 we find that φ{Yr) is contained in the union of Ωj

(j= 1, 2, 3). Since W(E6) acts on the set of root hyperplanes in E transitively, there exists

ke W(E6) such that k(φ(Yr))= Yr. Noting this, we may assume from the beginning that

φ(Yr)=Yr.

We put

Div(r,)= U YrnY
YeΩ2ϋΩ4

Then we find that any geS6 acts on Yr as a biregular transformation and

^(Div(yr)) = Div(yr). Moreover the action of S6 on Yr is faithful. This combined with

the results in [37] implies that there exists geS6 such that g°φ(y)=y for any ye Yr.

Therefore we may assume from the beginning that φ fixes Yr pointwise. As a consequence,

r) = φ(F0.n Yr)= 7 0 n Yr.

This shows that φ(Yy)= YtJ. Similary, we find that φ{Zhilhthhh) = Z

We now consider the image of y 1 2 3 by φ. We first note that ^(^123) is contained

in Ω3. Since F 1 2 3 intersects Yί2, F 1 3 , Y23, so does 9(^123)- These combined with the

intersection relations imply that ^(^123) coincides with Yί23 or Y^s. We may assume

that ^(^123)= ^i23 Indeed, suppose <p(F1 2 3)= y 4 5 6 . Since g0 permutes Yί23 and Γ 4 5 6 ,

it follows that gooφ(Yi23)— ^123- Noting that g0 fixes Yr pointwise, we may take go°φ

instead of φ in this case. Then φ(Y4.56)= Y4.56.

We next treat Yί24.. Since Γ 1 2 4 intersects Y12, Y14, Y1Ar and Y456, so does φ(Yί2d-

Then we conclude that ^(^124)= ^124- F o r the same reason, we find that φ(Yijk)= Yijk.

We finally treat Z l l l 2 f J 3 i 4 f i f l l 6 . Since Ziίhj3i4ti5i6 intersects all of Yiιi2, Yiιh, Yhh9 Yiihi5, so

does φ(Z ί l ί 2 t i 3 i 4 i i 5 i 6 ) . Noting that φ ( Z i l i 2 t i 3 i 4 f i 5 j 6 θ 5 , we conclude that φ(Ziίi2thi4ti5iJ =

We have thus proved the proposition. q.e.d.

REMARK 5. As an easy consequence of Propositions 4 and 3, we find that if φ is

a biregular transformation on # such that φ leaves the set Ω invariant, then φ(y)=y

for all yεΉ—(€f. It is conjectured that such a biregular transformation φ on # is the
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identity transformation on (€. If this is the case, then W(E6) coincides with the group
of biregular transformations on ̂  leaving c€' invariant.

For later purpose, we are going to determine normal crossing points of four
hypersurfaces of Ω and their isotropy subgroups in W(E6).

Let Hί9 H29 H39 H^eΩ be mutually distinct four hypersurfaces such that
H1nH2nH3ni/4 is not empty. Then H1nH2(\H3r\HA consists of a unique point, say
p9 and Hl9 H29 H39 i/4 have normal crossing at p and there is no other hypersurface
of Ω containing p. Moreover, under the action of Go, the quadruple (Hί9 H29 H39 /f4)
is transformed to one of the points (nc.l)-(nc 9) given in Table 1.

We are going to explain the notation in Table 1 briefly. Let/? be the normal crossing
point which is the intersection of the hypersurfaces given in (nc.j) (j= 1,..., 9). The
determination of the isotropy subgroup ofp in 5 6 and the cardinality | Go p | are easy
exercises and are left to the reader. In Table 1, Dh(8) and W(B3) mean the dihedral
group of order 8 and the Weyl group of type B39 respectively. Moreover, noting that
S3 is regarded as the quotient of W(B3)9 we denote by W(B3)Λli the pull-back of the
alternating group (53, £3) in W(B3). In the sequel, a normal crossing point that is
conjugate to the point (nc.i) by the 56-action is called a normal crossing point of type
(NCί).

PROPOSITION 5. Local coordinates in the neighborhoods of normal crossing points

(nc./), / = 2, 4, 5, 6, 7 are given in Table 2.

TABLE 1. Types of normal crossing points.

(nc.l)

(nc.2)

(nc.3)

(nc.4)

(nc.5)

(nc.6)

(nc.7)

(nc.8)

(nc.9)

/7 = //1n//2n//3n7/4

^i23 n ̂ 45 n r 2 4 6 n y 3 5 6

^234nF 1 5 ny 3 4 nr 1 2 5

^234 n ^16,25,34 n ^136 Π ^125

^234nZ 1 6 f 2 5 < 3 4 n F 3 4 n Yί25

Zi5,34,26 n y 1 5 n y 3 4 n y 1 2 5

^ i 5,34,26 n ^ i 5 n F 3 4 n y 2 6

Yrr)Yi2nY56^Zi23A56

^12 n ί 45 n ί r i23nZ 1 2 3 f 4 5 6

The isotropy of p in S6

^ 4

Dh(8)

W(B3)

z2
Z2xZ2

Dh(8)

Z2xZ2

\GO-P\

30

90

15

240

360

180

30

90

180

(nc.2)

(nc.4)

(nc.5)

(nc.6)

(nc.7)

TABLE 2. Local coordinates at normal crossing points.

xί9

l/x2,
yjyύ

y*
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PROOF. It is clear that in the (xί9x2, ^i,y2)-space, the origin is not a normal

crossing point of the union R of the fifteen hypersurfaces introduced before in this

section. We are going to blow up R in the following manner:

(^lUy x i =z z\z2 , •X2

=:Zj, y ί== z±z2z3z^ , y2

==z^z3 .

Let ^Z-Space be the pull-back of R by the map

(z 1 ? z 2 , z 3, z 4) I—• (χl9 χ29 yl9 y2) = (zxz2, zl9 zγz2z3z±y zγz3).

Then it is easy to show that in the z-space, the origin is a normal crossing point of

ẑ-space C>n the other hand, by direct computation, we have (cf. (9), (10))

^24^234^16^136 *1 h
26
h
236
h
ί5
h
ί35

z i = * 2 = ^ — : : — : , ^2 = =
X2 ^16^136^25^235

25^125^36^136

24Λ ί124Λ ί36"l36

z - y i - _ 3 4 1 3 4 2 6 1 2 6
X2 ^24^124^36^

It is shown that the hypersurfaces z x = 0 , z2 = 0, z 3 = 0, z 4 = 0 are local defining

equations of Γ 2 3 4 , 7 1 5 , F 3 4 , Yl25, respectively. Indeed, this is proved as follows. We

treat the case zx = 0 . By definition, zί = 0 is equivalent to h24.h234.hi6hί36 = 0. Therefore

there exist four possibilities

In the three cases except Λ2 3 4 = 0, at least one of z2, z3, z 4 becomes infinity. This implies

that zί = 0 is a local defining equation of Γ 2 3 4 . Similarly, we show that z2 = 0, z 3 = 0,

z 4 = 0 are local defining equations of Y15, Y34, Y125. Therefore we conclude that

z = (z1,z2,z3,z4) is regarded as a local coordinate system of V whose origin is

7 2 3 4 n F 1 5 n F 3 4 n 7 1 2 5 .

By an argument similar to the one above, we can determine local coordinates of

Table 2 in neighborhoods of the normal crossing points (nc./), z = 4, 5, 6, 7. q.e.d.

It is clear from the definition that there exist hypersurfaces Rj (j= 1, . . . , 15) on #

corresponding to the hypersurfaces Rj (j= 1, . . . , 15). Then the following proposition

is easy to show.

PROPOSITION 6. The following relations hold:
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4. Triangulations and normal crossing points. The purpose of this section is to

study the relationship between the toric variety χ{N{A2 x Δ2)) introduced in Section 2

and the normal crossing points of Naruki's cross ratio variety <€.
As was pointed out in Section 3, the set of normal crossing points of ̂  is decomposed

into nine S6-orbits. Among these nine orbits, we focus our attention on five orbits
which are denoted by (NC.2), (NC.4), (NC.5), (NC.6), (NC.7) in Section 3. We take
representatives of such orbits by giving the relations among local coordinates of the
points in question and (xi9 x2, yί9 y2).

Let Γbe a regular triangulation of Δ2 x Δ2 and let τ be a simplex of T. Then there

exist four vectors b\ij) ({ij}φτ) satisfying the conditions (Dl), (D2), (D3). Then ub*J)

({ίj}φτ) are monomials in the matrix entries of u = (uij). We now pay our attention to

the restriction of u to the matrix

/I 1 1 \

I 1 *1 *2 l

Then ub''J> {{i,j}φτ) turn out to be rational functions of xu x2, yu y2 which were

introduced in the previous section. We are going to compute the functions thus denned

for simplices of the triangulations Ta, Tb, Tc, Td, Te.

Here is the result:

PROPOSITION 7. The relation between the simplices of the triangulations Ta, Tb, Tc,

Td, Te and the variables xu x2, ylt y2 introduced in the previous section are given as fol-

lows:

{1,1}, {1,2}, {1,3}, {2,3}, {3,3} l/x2 xjx2

{1,1}, {1,2}, {2,2}, {2,3}, {3,1} xt/x2 l/x, yt Xιy2/x2

J l , 1}, {2, 1}, {2,2}, {2,3}, {3, 1} ί/x, l/x2

" {1,2}, {2,2}, {2,3}, {3,1}, {3,3} Xly2/x2 xjx2

{1,2}, {2,2}, {3,1}, {3,2}, {3,3} yt

{1,1}, {1,2}, {2,3}, {3,1}, {3,3} l/y2 y2/x2 Xιy2/x2 y,

{1,1}, {1,2}, {1,3}, {2,3}, {3,2} l/x2 xjx2 l/y

{1,1}, {1,2}, {2,2}, {2,3}, {3,2} xjx2 l/x, l/y

{1,1}, {2,1}, {2,2}, {2,3}, {3,2} l/x, l/x2 xjy
b {1,1}, {2,1}, {2,3}, {3,1}, {3,2} l/y, l/x2 xjy

{1,1}, {2,3}, {3,1}, {3,2}, {3,3} ί/y, l/y

{1,1}, {1,3}, {2,3}, {3,2}, {3,3} yjy, 1/x
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{1,1}, {1,2}, {1,3}, {2,3}, {3,1} l/x2 xjx2 y, y2

{1,1}, {1,2}, {2,2}, {2,3}, {3,1} xjx2 \/xi yγ Xly2/x2

{1,1}, {2,1}, {2,2}, {2,3}, {3,1} l/xx xjx2 yjx, y2/x2
c {1,2}, {2,2}, {2,3}, {3,1}, {3,2} y, xjx2 yjx,

{1,3}, {2,3}, {3,1}, {3,2}, {3,3} y2 yjy, y2/x2

{1,2}, {1,3}, {2,3}, {3,1}, {3,2} y, yjx2 xjx2

{1,1}, {1,2}, {1,3}, {2,3}, {3,1} l/x2 χjx2 y, y2

{1,1}, {1,2}, {2,2}, {2,3}, {3,1} xjx2 1/x, yx Xιy2/x2

= {1, 1}, {2, 1}, {2,2}, {2, 3}, {3, 1} l/xx l/x2 yjx, y2/x2

" {1,2}, {2,2}, {2,3}, {3,1}, {3,2} y, xjx2 yjx,

{1,2}, {2,3}, {3,1}, {3,2}, {3,3} yt yjy2 l/x2

{1,2}, {1,3}, {2,3}, {3,1}, {3,3} y2 y2/x2 xjx2 yjy2

{1,1}, {1,2}, {1,3}, {2,3}, {3,1} l/x2 xjx2 y, y2

{1,1}, {1,2}, {2,2}, {2,3}, {3,1} xjx2 ί/x, y, Xly2/x2

{1,1}, {2,1}, {2,2}, {2,3}, {3,1} l/xx l/x2 yjx, y2/x2
e {1,2}, {2,2}, {2,3}, {3,1}, {3,3} Xly2/x2 xjx2

{1,2}, {2,2}, {3,1}, {3,2}, {3,3} y,
{1,2}, {1,3}, {2,3}, {3,1}, {3,3} y2 y2/x2 xjx2 yjy2

PROPOSITION 8. We put iff = N(Σ(A 2 x A 2), φTl)
 v n Z 3 x 3 (k = a, b, c, d, e). Then,

!, l/y2, xjx2, y2/yu 1/x,, j2/x2] ,

!, xjx2, yu yjyj ,

* Clyjy2,y2, x1y2/x2y1, 1/xJ ,

C[Se

v] =ί C[l/x,, xjx2, y2> x2y1/x1j2] .

The two propositions above are direct consequences of the table on b^ (see Section
6).

By using the system of coordinates (xt, x2, yu y2), we find that the complex torus

(C*)4 = {(*!, x2, ylt y2)Ix,eC*, yjeC*}

is embedded into the toric variety χ(N(Σ{Δ2 x Δ2)))\

f':(C*r—+χ(N(Σ(A2xA2))).

Regarded as a Zariski open subset of (C*)4, the configuration space ^(3, 6) is naturally
embedded into χ(N(Σ(A2 x Δ2))) by the composite of the natural inclusion P(3, 6) -> (C*)4

and / ' :
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By definition, the map / is birational. There exist birational actions of the elements of

5 6 on the configuration space P(3, 6). Among them, the actions of su s2, s 4 and s5 can

be extended to biregular actions on the toric variety χ(N(Σ(A2 x Δ2))); they act on each

of the coordinate rings of the toric variety as follows:

s 1 \ u b \ — > u S ί 2 b , s 2 : u b \ — > t f 2 3 b

9 s 4 r : u b \ — > u b S ί 2 , s 5 : u b \ — > u b S 2 3

where

/O 1 0

s 1 2 = [ 1 0 0
\ 0 0 1

and

On the other hand, we defined in Section 3 a birational map from the configuration

space P(3, 6) into the cross ratio variety # :

Therefore the composite

is also birational.

THEOREM 6. The birational map f°g~ί is locally isomorphic at the normal crossing

points which are contained in the S3 xS3-orbits of the four points

:
 125 5 16,25,34' 125 :

^234
 Π
-^16,25,34

 n
 ^34

 Π
 ^125 » ^15,34,26 Π Y

ί5
 Π Y34.ΓI Yχ

25
 ,

whose types are respectively, (NC.2), (NC.4), (NC.5), (NC.6) (cf. Table 2).

PROOF. Each of the local coordinate rings given in Table 2 is isomorphic to the

corresponding ring given in Table 3 by the following actions of 5 3 x 5 3 :

TABLE 3.

T.

τb

τc

T,

τe

(NC.4)
(NC.7)

(NC.2)
(NC.6)
(NC.5)

( HΊ,

( 1/Λ,
( yjxu

! XZ
( 1/χ,,

Xιyi/χ2, X2yι/X

*I/JΊ, 1

xjx2,

y» χιyzlχ

xjx2,

l72» 1/Xl)

/^2. XjXl)

yyi yyjy\)
iy» i/χi)
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(SC.2) :sssl9 (NCΛ) :s^s5s29 (NC.5):sl9

q.e.d.

The birational map /° g~1 is not locally isomorphic at the normal crossing points

contained in the S 3 x S3-orbit of Zί 5 3 4 2 6 n 7 1 5 n 7 3 4 n Y26 of type (NC.7) (cf. Table 2).

THEOREM 7. The birational map

*r-'ofog-i . V ^ χ(N(Σ(Δ2 x Δ2))) *-+ χ(N'(Σ(Δ2 x Δ2)))

is locally isomorphic in a neighborhood of the point Zl53Af26v\ Yl5n Y34.n Y26 of type

(NC.7).

PROOF. Indeed, applying SγS^γ (resp. s4) to the local coordinate rings of Table 2

of type (NC.7), we get the local coordinate ring C[Cf n Z 4 ] (resp. C\_Cl n Z 4 ] ) given

in Theorem 4 (iii). q.e.d.

REMARK 6. The correspondence among the variables s, y, p, q in Theorem 4 (iv)

and the variables wu w2, w3, w4 for the triangulation Tb in Table 3 are as follows:

χ1/y2=χp~1 ι/χi=y y2/yi=p yil*2=χ~1pq

Noting that χ(N'(Σ(Δ2 x Δ2))) admits an S3 x53-action, we now pose a problem

concerning the relationship between ^ and χ(N'(Σ(Δ2 x Δ2))).

PROBLEM 1. 1. Does there exist an S3xS3-equivariant surjective map of %> to

χ(N'(Σ(Δ2xΔ2)))Ί

2. Study the correspondence of hyper surfaces on %> and χ(N'(Σ(Δ2 x Δ2))).

REMARK 7. Kapranov [14] constructed compactifications of the configurations

spaces called the Chow quotients. Then it is interesting to clarify the relationship between

the Chow quotient of the Grassmann variety G(3, 6) of the 3-dimensional linear subspaces

in C 6 and Naruki's cross ratio variety c€.

5. Construction of fundamental solutions. The system E(3, 6) of linear differential
equations on C 4 with coordinates (Xl9 X2, X3, X4) is given in [27] and plays an essential
role in the study of the period map of a family of K3 surfaces (cf. [20]).

The system of differential equations 2s(3, 6) does not have singularities on P(3, 6)
£ C4. Any local holomorphic solution on P(3, 6) can be analytically continued to a
multivalued holomorphic function on P(3,6). We regard the local solutions as
holomorphic functions defined on domains in the cross ratio variety ^ by the embedding
g: P(3, 6)-»#. These functions naturally define a holonomic system on #; there exists
a holonomic system E(3, 6) defined on ^ of which spaces of local holomorphic solutions
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on the image of g agree with the spaces of local holomorphic functions obtained from
those of £(3, 6) by the embedding above. The group S6 acts on the space of solutions
of 2?(3, 6) and the singular locus of £(3, 6) is the union of the hypersurfaces belonging
to Ωj (y = 2, 3, 4, 5). In particular, the singular locus of E(3, 6) does not contain Yr.
Noting these, we discuss the problem of constructing fundamental solutions around the
normal crossing points (NC.i) (/= 1, 2, 4, 5, 6, 7, 9) which Yr does not pass through.
Among these points, (NC.i) (ι = 2, 4, 5, 6, 7) correspond to triangulations of the toric
variety χ(N'(Σ{A2 x Δ2))) whereas (NC.i) (/= 1, 9) do not. We explained how to construct
power series solutions on the toric variety χ(N'(Σ(A2 xΔ2))) in Section 2 and proved
that the normal crossing points (NC, z) (z = 2, 4, 5, 6, 7) are locally isomorphic to the
corresponding points on the toric variety in Theorems 6 and 7. By virtue of these results,
it is possible to construct power series solutions of E(3, 6) at the normal crossing points
(NC,/) (/ = 2, 4, 5, 6, 7). First, we give power series solutions explicitly around these
points. Next, we shall discuss fundamental solutions around the remaining normal
crossing points.

We are going to introduce three kinds of functions defined by power series:

M3,6),y4vH> ^2> ^3? ^ 4 ' ^5> ^6> ^ 1 J ̂ 2 > ^ 3 ' ̂ 4 /

Σ yl3.β)Mu^2,^3,^>^5^άmι,m2,m3,

1

~2

3~

2"

m 2, m 3, m 4

—
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7(3,6),c(^i> ^2» ^3» ^4> ^5> λ6; mu m2, m3, m4)

m1\m2\m3\m4.\Γ(λl5+ml2 —

where mij = mi + mj, mijk = mi-\-mj-\-mk9 λί</ = λί + λ</ , 2,^ = ̂  + ̂  + ̂ , etc. In the sequel,

we write

/ Λ-i, Λ2, Λ,3 \

^(3,6),Z\^Ί9 ^2» ^35 ̂ 4? ̂ 5? ̂ 65 ̂ 1 > ̂ 2 » ^ 3 > ̂ 4 / = M3,6),Z I ^ J ^5> ^6» I

(Z=A, B9 C) for simplicity.
It is stressed here that each of the functions of the form (6) is reduced to one of

(̂3,6),z (Z=A, B, C). Noting this, we are going to construct a set of fundamental solutions
around normal crossing points of types (NC./) z = 2, 4, 5, 6, 7. The result is given below
where the variables (wl9..., vv4) are as given in Table 3 (we use those in the upper row
in the case of Tb).

(I) A set of fundamental solutions around the normal crossing point of type
(NC.4) corresponding to Ta.

/-<*!-1/2, - α 3 - l / 2 , - α 2 - l / 2 \

wΓα2-α3w2-^4

α2F(3,6Mί 03 + 1/2, Λ + l/2, 02 + 1/2; J,

J
-α 3 -l/2, -αi-1/2, -α 2 - l/2

β2+1/2, 0! +1/2, j33 +1/2;

WiW2u>3, w 2 w 3 , w3,

- α 2 - l / 2 , - α i - l / 2 , - α 3 - l / 2

- α i -l/2, -α3-l/2, -α2-l/2

03 + 1/2, 02 + l/2, 0^1/2;
W l s W 2H> 3, W2W4, W2

/ -α 3 -l/2, -α 2 -l/2, - α i - l

i6) iBί 02 + l/2, 01 + l/2, 03 + 1/

V W^3, W 2 H ^ 4 , W ^ ,

-α 2 -l/2, - α i - l / 2 , -α 3 - l/2
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(II) A set of fundamental solutions around the normal crossing point of type
(NC.7) corresponding to Tb.

-α 3 -l/2, - β l - l / 2 , -α 2 - l/2 \
03 + 1/2, & + 1/2, ft+ 1/2; 1,

WιW2, WtW2W3, MΊW3W4, H> /
ιW2, WtW2W3, MΊW3W4, H>4

- β l - l/2, -α3-l/2, -α2-l/2
ft + 1/2, ft+ 1/2, 02 + l/2;

H> 3 , WtW2W3, W1W2Wi, MΊ

-03-1/2, -ft-1/2, -ft-1/2

-α3-l/2, -α2-l/2, - β l - l/2
0X + 1/2, ft + lA 03 + 1/2;

W2, WίW2, HΊW3W4,

-ft-lA -ft-1/2, -03-1/2

-ft-1/2, — jS3 —1/2, -ft-1/2

W!VV2, W!W 2 W 4 , V

(III) A set of fundamental solutions around the normal crossing point of type
(NC.2) corresponding to Tc.

( -α 2 -l/2, -0^-1/2, -α 3 - l/2 \

WiW 2 , W 2, VV3, W3>V4 /

A* 1 /O Λ# 1/0 Λ# 1/0

— (%2—A/z, —OLγ — i / z , — α 3 — i / z

-α3-l/2, -α2-l/2, - β l - l/2
03 + l/2, 02 + l/2, 0, + l/2;

-α2-l/2, -βχ-1/2, -α3-l/2

ft+ 1/2, 03 + 1/2, 02 + l/2;
H Ί , Vf2, M>3,
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-α3-l/2, -Λl-lβ, -α2-l/2

K>4, H>3, W 2 , ^

- f t - 1 / 2 , -02-1/2, -03-1/2
+ l/2, ^ + 1/2;

w3, w2,

(IV) A set of fundamental solutions around the normal crossing point of type
(NC.6) corresponding to Td.

-0(3-1/2, -oti-1/2, - α 2 - l / 2

03 + 1/2, 01 + l/2, 02 + l/2;

- α 2 - l / 2 , - α 3 - l / 2 , - α , - l / 2

01 + l/2, 02 + l/2, 03 + l/2;

WιW3WA, W4

-α2-l/2, -α i-l/2, -α3-l/2 \

0^1/2, 03 + 1/2, 02 + l/2; ),

VV4, WtW3, WίW2, W{W2W3 /

_αi_l/2, -«3-l/2, -α2-l/2

03 + 1/2, 02 + l A & + 1/2;

wl5 MΊW2, wγw2w3wx, w3

-02-1/2, -03-1/2, -0,-1/2 \

α3 + l/2, α i + l/2, α2+l/2; I,

Wu WιW3, WιW2W3W4, W2 /

-03-1/2, -02-l/2, -0!-l/2

(V) A set of fundamental solutions around the normal crossing point of type
(NC.5) corresponding to Te.

/ - α 2 - l / 2 , - α i - l / 2 , - α 3 - l / 2 \

w-^w^F^6)A j31 + l/2, j33 + l/2, jS2 + l/2; j ,

\ 1 2 ' " 2 ' ΓK 2 3 4 ' 3 '

-α2-l/2, -αi-1/2, -α3-l/2 \

^ + 1/2, jί2 + l/2, y83-hl/2; J,

HΊW2, Wi, WiWaWa, HΊW2W3W4 /
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-α3-l/2, -α2-l/2, -αx-l/2 \

- α 2 - l / 2 , -oq-1/2, - α 3 - l / 2

- α 3 - l / 2 , - α 2 - l / 2 , - ^ -

Before going into discussion on Problem (A2) in the Introduction for the case
£(3,6), we explain the relationship between our point of view and Horn's study on
analytic continuations of the Appell hypergeometric functions (cf. [8]). We first re-
call the case of the Gaussian hypergeometric functions. The differential equation
for F(a, b, c x) has singularities at x = 0, 1, 00. As is well-known, all the fundamen-
tal solutions around x = 0, 1, 00 are expressed in terms of such functions as
xei(l — x)e2F(a\ b\ c'\ x'\ where a', b\ c\ eί9 e2 are linear with respect to α, b, c and x' is
obtained by a linear fractional transformation of x.

In the case of the Appell hypergeometric functions Fu F 2, F 3, F 4 , the situation
becomes slightly different. Taking F2 as an example, we consider fundamental solutions
of the holonomic system &?

Fl for F2. In this case, we take the 2-dimensional Terada
model Jί2 as the blowing up of P2 where 5^2 is defined. Then the singular locus of the
pull-back of Sf¥l to Ji2 is the union of ten lines and there exist fifteen normal crossing
points. As fundamental solutions around normal crossing points of Jt2, we obtain F2,
F3 and one of Horn's functions denoted by H2 (cf. [8]). To construct fundamental
solutions around all normal crossing points, we need three other functions; two are,
roughly speaking, two-variable versions of the generalized hypergeometric function
3^2^!, α2, α3; bί9 b2; x) and the remaining one is complicated to describe, since we need
the special values of 3F2 at x = 1 to write coefficients of its power series expression. (For
details on this subject, see [29], [32] and [35].) In this sense, Horn's study is incomplete.

We return to the case £(3, 6). For this purpose, it is better to explain the results
by separating the types of normal crossing points of ̂  into the four cases:
(El) The cases (NC.z) (i = 2, 4, 5, 6, 7). As we have already shown, each of the
fundamental solutions around normal crossing points whose type is one of (NC.i)
(z' = 2, 4, 5, 6, 7) can be expressed in terms of Fi36)Z (Z = A, B, C).
(E2) The case (NC.9). To construct fundamental solutions around normal crossing
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points of type (NC.9), we have to introduce four kinds of functions defined by power
series in four variables which are of hypergeometric-Horn type, namely, their coefficients
satisfy product formulas. (For details, refer to [32].)
(E3) The case (NC.l). Fundamental solutions at the point (NC.l) are given in [27].
We need a function defined by power series whose coefficients are expressed in terms
of the special values of 3F2 at x= 1 as in the case of AppelΓs F2.
(E4) The cases (NC.3), (NC.8). Normal crossing points of types (NC.3) and (NC.8)
are contained in Yr. The hypergeometric differential equation £(3, 6) does not have
singularities along the hypersurface Yr which is the closure of the image of/?15 = 0 by
the map g: P(3, 6)->^. For this reason, we do not enter into the determination of
fundamental solutions around such points. We only note here that the solutions of
2?(3, 6) on Yr can be expressed in terms of determinants of the Lauricella functions FD

in three variables (cf. [38]).

6. Table of bψ\ We give the table of b[ij) for the triangulations Ta, Tb, Tc, Td, Te.
We explain notation in the table. To each simplex, there is associated a 3 x 3 matrix

σ whose entries are asterisks as follows. If

is a simplex, the (i,gentry of σ is * in the case of (ίJ) = (ίkJk) (A:= 1, 2, 3, 4, 5) and is
empty otherwise. Let Γbe a triangulation given in Theorem 1. Then the vector (iί9..., i6)
following T means that the Λ>th simplex of T corresponds to the /fc-th series solution
in Section 5. For example, the vector (1, 6,4, 3, 5, 2) following Ta means that the first
simplex corresponds to the first series solution in Section 5 and the second simplex
corresponds to the sixth series solution and so on.

Ta9 (1,6,4,3,5,2)
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Γfc,(l,5,6,4,3,2)

Tc, (1,4,2,5,6,3)



410 J. SEKIGUCHI AND N. TAKAYAMA



HYPERGEOMETRIC SYSTEM OF TYPE (3, 6) 411

Γβ, (1,4, 2, 6, 5, 3)
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