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Abstract. We develop the theory of toric varieties from a topological point of view

using equivariant cohomology. Indeed, we introduce a geometrical object called a unitary

toric manifold and associate a combinatorial object called a multi-fan to it. This

generalizes (in one direction) the well-known correspondence between a compact

nonsingular toric variety and a (regular) fan. The multi-fan is a collection of cones which

may overlap unlike a usual fan. It turns out that the degree of the overlap of cones is

essentially the Todd genus of the unitary toric manifold. Since the Todd genus of a

compact nonsingular toric variety is one, this explains why cones do not overlap in a

usual fan. A moment map relates a unitary toric manifold equipped with an equivariant

complex line bundle to a "twisted polytope", and the equivariant Riemann-Roch index

for the equivariant line bundle can be described in terms of the moment map. We apply

this result to establish a generalization of Pick's formula.

Introduction. The theory of toric varieties says that there is a one-to-one corre-

spondence between toric varieties (an object in algebraic geometry) and fans (an object

in combinatorics). This correspondence often brought new insights to combinatorics

from algebraic geometry, and vice versa (see [2], [4], [15]).

A compact nonsingular toric variety is called a toric manifold and the corresponding

fan is called regular. Toric manifolds are well studied among toric varieties and play

an important role in the theory of toric varieties. In this paper we develop the

correspondence between toric manifolds and regular fans from a topological point of

view. In fact, our geometrical object called a unitary toric manifold constitutes a much

wider class than that of toric manifolds. A unitary (resp. almost complex) toric manifold

M is a compact unitary (resp. almost complex) manifold with an action of a compact

torus T having nonempty isolated fixed points, where 2 dimR T= dimR M. The Todd

genus of a unitary (resp. almost complex) toric manifold takes any (resp. positive)

integer, while that of a toric manifold is one.

To a unitary toric manifold M we associate a combinatorial object ΔM called the

multi-fan of M using equivariant cohomology. To this end, closed connected real

codimension two submanifolds Mt ( ί = l , . . . ,d) of M, left fixed by certain circle

subgroups, play an essential role. Each M{ defines an element ξ{ in the equivariant

cohomology H\(M\Z) through Poincare duality and ^'s are used to associate an

element vieH2(BT\ Z) to each M v To each subset /c={l,. . . , d) such that f| i 6 / Λ
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we form a cone in H2(BT;R) spanned by ι;f's O'e/). The multi-fan ΔM is the collection
of these cones (together with two functions on maximal cones).

Whenever M is a toric manifold, the collection of cones in ΔM agrees with the
(usual) fan of M, and in this case cones intersect only at their faces. But, otherwise,
cones in ΔM may overlap in general. The Kosniowski formula about Todd genus tells
us that the "multiplicity of overlap" of cones is closely related (often agrees) with the
Todd genus of M. Since the Todd genus of a toric manifold is one, this explains why
cones in ΔM do not overlap when M is a toric manifold. One can read other topological
properties of M, such as equivariant cohomology and Euler number, from the multi-fan

The theory of toric varieties also says that a toric manifold (or variety) equipped
with an (equivariant) ample holomorphic line bundle corresponds to a convex polytope,
and the Riemann-Roch-Hirzebruch formula for the line bundle can be used to count
the number of lattice points on the convex polytope. The ample line bundle over a toric
manifold defines a moment map with the convex polytope as its image. Karshon and
Tolman [11] studied the equivariant Riemann-Roch index for an arbitrary equivariant
line bundle over a toric manifold from the viewpoint of symplectic topology. They
described the equivariant index in terms of a moment map associated with the equivariant
line bundle. A notable phenomenon in their study is that the image of the moment map
is no longer a convex polytope unless the line bundle is ample. It turns out that their
study fits well in our setting. To be more specific, let M be a unitary toric manifold.
Then an equivariant Gysin homomorphism

π,: KT(M)-> Kτ (point) = R(T)

is defined in equivariant ^-theory for the map π collapsing M to a point. The equivariant
Riemann-Roch index for a complex 7Mine bundle L over M is then given by πt(L),
which equals the Todd genus of M when L is trivial. Associated to L there is defined
a moment map

Φ'L: M^ Lie(T)*=H\BT; R)

shifted using the "canonical" line bundle of M. Under certain conditions the orbit space
M/T becomes a smooth manifold with boundary, and Φ'L induces a map

Φ'L:δ(M/T)-+H\BT;R).

It turns out that the multiplicity with which an irreducible Γ-module weHom(Γ, S*) =
H2(BT;Z)^H2(BT;R) occurs in the equivariant index π\(L) agrees with the winding
number of Φ'L around u.

A classical formula called Pick's formula describes the number of lattice points on
the domain bounded by an integral simple plane polygon P in terms of the area of the
bounded domain and the number of lattice points on P. As is well-known, it can be
reproved, when the bounded domain is convex by applying the Riemann-Roch formula
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to an ample line bundle over a toric manifold. It turns out that Pick's formula can be
generalized to any integral plane polygon which may have self-intersections. We will
prove it by applying the above result for the Riemann-Roch index to a line bundle over
a unitary toric manifold.

This paper is organized as follows. In Section 1 we introduce a unitary toric manifold
M and associate the element υieH1{BT\Z) to each Mt. Lemma 1.5 is the key of our
study. In Section 2 we introduce a subring A$(M) of H^(M Z) (they often agree) and
study its relation with combinatorics. In Section 3 we compute the equivariant Chern
class of M and study A$(M) in relation to equivariant Chern class. The multi-fan ΔM

of M is introduced in Section 4, and its relation with the topology of M is studied. We
also give a negative answer to a question asked by Guillemin [5, p. 2]. In Section 5 we
provide examples of almost complex toric manifolds of real dimension 4 whose Todd
genera take any positive integer. A moment map associated with a complex T'-line
bundle is discussed in Section 6, and the extension of the result of Karshon-Tolman
mentioned above is established in Section 7. Section 8 treats the generalization of Pick's
formula. Throughout this paper all homology and cohomology groups are taken with
Z coefficients unless otherwise stated.

ACKNOWLEDGMENT. I am grateful to Professor A. Hattori for his interest and
useful comments on this article. He also brought the paper of Karshon and Tolman to
my attention. I am also grateful to Y. Hashimoto, Y. Nishimura and K. Ono for helpful
conversations and to Professors M. Brion, Y. Karshon and T. Oda for useful comments
on an earlier version of this article.

1. Unitary toric manifolds and characteristic submanifolds. A unitary (or weakly

almost complex) manifold M is a smooth manifold endowed with a complex structure
on the stable tangent bundle of M. If the complex structure is given on the tangent
bundle TM of Aί, M is called an almost complex manifold. A unitary manifold M is
oriented in the following way. Suppose there is given a complex structure on TM@R\
where Rι denotes the product bundle M xRι. Then TMφR1 is oriented as a complex
vector bundle and Rι is also oriented in the usual way. These orientations determine
an orientation on M.

If a Lie group G acts on a unitary (resp. an almost complex) manifold M and the
differential of each element of G preserves the given complex structure on TM@Rι

(resp. TM), then M is called a unitary (resp. an almost complex) G-manifold. Let T be
a compact torus and M a unitary Γ-manifold. Then each component of the fixed point
set of a subgroup of T is again a unitary Γ-manifold, and its normal bundle to M is a
complex Γ-vector bundle with the complex structure induced from the one on TM@Rι.
In particular, the tangent space 7^Mat an isolated T'-fixed point/? is a complex Γ-module.
Note also that / must be even if there is an isolated Γ-fixed point.
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DEFINITION. A closed, connected, unitary (resp. almost complex) Γ-manifold M

is called a unitary (resp. an almost complex) tone manifold if dimR M=2 dimR T and the

Γ-fixed point set Mτ is non-empty and isolated. (Note that if M is a unitary Γ-manifold

with ά\mRM=2άimRT and the Γ-action is effective, then Mτ is necessarily isolated

unless Mτ is empty.)

Throughout this article, M will denote a unitary toric manifold and the Γ-action

on M will be effective unless otherwise stated. We set

n = dimR T= — dimR M.

A closed, connected, real codimension two submanifold of M is called characteristic if

it is a fixed point set component by a certain circle subgroup of T and contains at least

one Γ-fixed point. One easily sees that M has only finitely many characteristic

submanifolds. Let Λff (i = 1,..., d) be the characteristic submanifolds of M, let vf be its

normal bundle, and let Ti be the circle subgroup which fixes Mi pointwise. For peMτ

we set

Then

(1.1) TpM= 0 vt | as complex Γ-modules,
iel(p)

P

where vf \p denotes the restriction of v; to p. This, in particular, shows that I(p) consists

of n elements. Since both M t and Mare oriented, the inclusion map defines an equivariant

Gysin homomorphism: Hf{Mi)^Hf + 2(M) (see [12] for example). Let ξ^H^M) be

the image of the identity in Hj(Mι). As is well-known,

(1.2) ξi I agrees with the equivariant Euler class of vt \p .

LEMMA 1.3. (1) The set {ξi\p\iel{p)} forms a basis of H^(p) =

(2) Let jel(p). Then ResΓj.(ξ f | ) ^ 0 if and only if j=i, where Res Γ j denotes the

restriction map from H2{BT) to H2(BTj).

(3) If p and q are points in Mh then RQSτ.(ξi\p) = RQSτ.(ξi\q).

PROOF. (1) Since the Γ-action on M is assumed to be effective, the one-

dimensional T'-modules v, | (iel(pj) form a basis of the free abelian group Hom(Γ, S1)

consisting of homomorphisms from T to S1. Since the equivariant Euler class gives an

isomorphism between Hom(Γ, S1) and H2(BT), (1.1) and (1.2) imply (1).

(2) The identity (1.1) shows that v f |p is non-trivial, when restricted to Tj9 if and

only if j = i. The statement (2) immediately follows from this observation.

(3) Since Mt is connected and fixed pointwise by Tu vf | is isomorphic to vf | as

complex ΓΓmodules. This implies (3). •
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The map π which collapses M to a point induces a homomorphism π* : H*(BT)^>
H$(M), which is injective since Mτ is non-empty, and makes H%{M) an algebra over
H*(BT). We often regard H*(BT) as a subset of Hf(M) through the collapsing map.
Let S be the subset of H*(BT) generated multiplicatively by non-zero elements in
H2(BT). The localization theorem (see [10, p. 40]) says that the restriction map:
H*(M)-^H*(MT) becomes an isomorphism when localized by S. Since H*(MT) =
H*(BT)®H*(MT) has no S-torsion, this implies

LEMMA 1.4. The restriction map induces an injection: Hf(M)/S-torsions^>H$(Mτ).

To implify notation we set

Hf(M): = H*(M)/S-torsions .

We also use the same notation for an element in 77*(M) as well as for its image in
Ή$(M). Remember that H*(BT) is regarded as a subset of Hf(M) through the collapsing
map π.

LEMMA 1.5. For each ίe {1, . . ., d) there exists a unique element vieH2(BT) such
that

d

M= X <M, v^ξi in H2{M) for any ueH\BT),
ί = 1

where <( , ) denotes the usual pairing between cohomology and homology.

PROOF. Let peMτ. It follows from Lemma 1.3(1) that there is a unique element
vi(p)eH2(BT) for each iel(p) such that

u= Σ <u,vι(p)>ξ,\p in HΪ(p) = H2(BT) for any ueH2(BT).
iel(p)

We shall show that v^p) is independent of p. Let qeMτ be another point. For this,
we have the same identity as above with I(p) replaced by I(q). Suppose I(p)c\I(q)^0.
Let iel(p)r\l(q) and restrict the two identities above forp and q to the circle subgroup
Γf. Then it follows from Lemma 1.3(2), (3) that <w, ι;I (p)>ResΓ.(ξI |p) = ResΓ.u =
<M,uite)>Resri(^|q) and Res r i(^.|p = Res r i(^.| e)^0. This shows that <M, vi(p)) =
<M, Vi(q)} for any ueH2(BT) and hence vi(p) = vi(q).

Now we take υ^v^p). By construction the element £<w, v^ζi in Hγ(M) restricts
to u in Hj(Mτ). Since, u, viewed as an element of Hγ(M), also restricts to u and the
restriction map is injective by Lemma 1.4, the identity in the lemma follows. Q

REMARK. When M is a toric manifold, the elements v{ are the edge vectors used
to define the fan of M. In fact, Lemma 1.5 is a counterpart in equivariant cohomology
to the lemma in [4, p. 61] stated in terms of invariant divisors.

EXAMPLE 1.6. Let n=\ (hence T=S^) and M=S2 with the standard effective
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Γ-action which has two fixed points. We shall give M two different unitary structures.

One is the usual complex structure on CP1. The elements υγ and v2 are then unit vectors

with opposite direction. The other unitary structure is defined as follows. We view M

as the unit sphere of χ ® 1?, where χ denotes the standard one dimensional complex

Γ-module. Mapping positive unit vectors in R to outward unit normal vectors to M

in χ®R induces an isomorphism from TM®R to χ®R. Adding R to them and

identifying R2 with C in a natural way, we obtain an isomorphism from TM®R2 to

X®C This makes M a unitary toric manifold. The tangential representations at the

two fixed points are both χ, and the elements vί and v2 in Lemma 1.5 are both the unit

vector with "positive" direction. (See Lemma 1.7 below.)

LEMMA 1.7. The set {υi \ i e I(p)} is the dual basis of {ξt \p\ie I(p)} for each p e Mτ.

In particular, ξt \p = ξt \q for any i if I(p) = I(q).

PROOF. By Lemma 1.5, u = ̂ (u,viyξi for any u. Take u = ξj\ and restrict the

identity to p. It reduces to

£ / l P = Σ <ξj\p9Viyξi\p9
iel(p)

because ζi\p = 0 unless iel(p). This together with Lemma 1.3(1) implies the lemma.

D

Remember that there is a canonical isomorphism: Hom(77, Sι) = H2(BT). We

denote by χu the element in Hom(Γ, S1) corresponding to ueH2(BT). We also have

an isomorphism: Hom(»S1, T)^H2(BT) and denote by λveHom(Sι, T) the element

corresponding to veH2(BT). Note that

(1.8) χu(λv(z)) = z<u'υ> for zeS1 .

LEMMA 1.9. LetpeMτ. By Lemma 1.7 any element veH2(BT) can be written as

v = ΣieI(p)biυi with integers b{. We view TpMas an Sx-module through the homomorphism

λv. Then the weights of the S1-module are all positive if and only if all bt are positive.

PROOF. It follows from (1.1) and (1.2) that TpM=@ieI(p)χ
ξλp. The weight of χξilp

restricted to the S^-subgroup λv(Sι) is <ί t | , v} by (1.8), and is equal to bt by Lemma

1.7, proving the lemma. •

Here is a geometrical meaning of vt.

LEMMA 1.10. λVi(S1) = Ti.

PROOF. Let peMf. Lemma 1.7 together with (1.1) implies that TpMi is the

subspace of TpM left fixed by ^ . ( S 1 ) . It follows that M{ is fixed pointwise by λv.(S:),

since Mi is connected, proving the lemma. •

The element vt e H2(BT) is primitive, that is, it is not of the form vt = av[, aΦ + leZ



UNITARY TORIC MANIFOLDS 243

and v eH2(BT). There are two primitive elements in H2(BT) which are associated with

Th and Lemma 1.10 says that v( is one of them. (The other one is — vt.) One finds that

the argument developed in this section works once M and all the M,'s are oriented and

that if the orientation on Mt is reversed, then vt becomes —vt. The unitary (toric)

structure on M is used to assign orientations to them in a consistent way.

Let i* : H${M)^H*(M) be the restriction map. Then i * ^ e / i 2 ( M ) is the Poincare

dual of the homology class in H2n_2(M) represented by Mt.

LEMMA 1.11. If M is an almost complex toric manifold, then ι*ξ{ is primitive.

PROOF. It suffices to find a closed submanifold of real dimension two which

intersects Mt transversely at only one point. Let p e Mj. The connected component N

of P| jφieI{p)Mj containing p is an almost complex manifold of real dimension two. In

fact, TV is diffeomorphic to S2, because it supports a non-trivial ΓΓaction with non-empty

fixed point set. (Note that peNTi.) We note that Mt intersects N transversely because

they are components of the fixed point sets of subgroups of T. Clearly /?eM, nN.

Suppose MiΓ\Ny£{/?} and let qeMtnN\{p}. Then TpN= TqNas complex ΓΓmodules

because p and q are in the same 7"Γfixed point set component M t . However, since TV is

almost complex and diffeomorphic to S 2 , those complex tangential representations are

not isomorphic as is well-known. Therefore MiV\N={p], proving the lemma. •

2. Face rings. We set

Γ M : = {/c{l, . . . , r f } | φ # J c / ( p ) for some peMτ} .

This is an (abstract) simplicial complex. We also set

): = the subring of H$(M) generated by ξf's ,

): = the image of Af(M) in H$(M).

In this section we will study these from the viewpoint of combinatorics.

Consider a polynomial ring Z [ x 1 ? . . . , xd] in d-variables and a map

which sends xi to ξf. Clearly φ is surjective.

PROPOSITION 2.1. The kernel of φ is the ideal generated by monomials Y\ieι
χifor

all IφΓM. In other words, A$(M) is isomorphic to the face ring (or Stanley-Reisner ring)

of the simplicial complex ΓM.

PROOF. We first introduce some notation. Let«/ denote a finite set which consists

of elements in {1, . . . , d} taken with multiplicity, i.e., elements in {1,. . . , d} may appear

in J repeatedly. Set ξ^ : = \\u, ξ, and denote by r(J) the subset of {1, . . . , d) consisting

of elements appearing in J. Then the proposition is equivalent to the statement: a finite
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sum Σa,ξj (a^φOeZ) vanishes in Hf(M) if and only if r(J)φΓM for all «/. This
equivalent statement follows from the following three observations:

(1) £ « , £ , = () in Hf(M) if and only if £<v<^ \p = 0 for a\\peMτ by Lemma 1.4.
\p

p(2) X ajξs \p = 0 if and only if ξj\p = 0 for all S, since ξt \p φ 0 if and only if i e I(p),p 0 for all S, since ξt \p

= H*(BT) is a polynomial ring and
(3) ^ |p = 0 if and only if r(J) φ I(p). Hence ξj\p = 0 for all p e M τ if and only if

•
For 0<k<n — 1 we denote by /k the number of /c-simplices in ΓM. The vector

(/0, ... ,fn_1) is called the f-vector. Observe that fo = d. The /-vector is associated with
the so-called /z-vector (/i0, ...,hn) defined by

Σ V"-*=ΣΛ-i(*-1)"-\

where /_ i = 1 and 5 is an indeterminate. Note the following relations

(2.2) A 1 = / 0 - π = d - π , Σ AΛ=Λ-i.

We define the Hubert series of J^(M) by

where we omit the odd degree terms in A$(M), since they vanish by definition. Since
Af(M) is the face ring of the simplicial complex ΓM, it follows from [17, Theorem 1.4
in p. 54] that

(2.3) FtfftM), s)= l
Σ hs •

(l-sz)n k = o

The following lemmas show that the /z-vector is closely related to the Betti numbers
of M.

LEMMA 2.4. Σ"k = ohk<χ(M\ where χ(M) denotes the Euler number of M, and the
equality holds if and only if MI(p): = f] ieI(p) M{ = {p} for any peMτ.

PROOF. We know that Σ£ = c A = / " - i by (2.2). By definition any (n— l)-simplex
in ΓM is of the form I(p) for some peMτ. Therefore

/rt-^the number of points in Mτ = χ(Mτ) = χ(M),

and the equality holds if and only if I{p)Φl(q) for any distinct points p and q in Mτ.
The latter is equivalent to saying that MI{p) = {p} for any/?eMΓ because I(p) = I(q) for
any qeMI(p). \J

LEMMA 2.5. h1 <mnkzH
2(M) andn<d<n + rankzH

2(M).
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PROOF. One easily sees that the kernel of the restriction map i* : Hj(M)^H2(M)

is H\BT). Therefore

rankz H
2(M) < n + rankz H\M).

On the other hand, we have

where the last two identities follow from (2.2) and (2.3). These inequalities prove the

lemma. •

LEMMA 2.6. Suppose Hodd(M) = 0 and A*(M) = H*(M). Then

(1) Afc = rank z// 2 / c(M). In particular, ]Γftfc = χ(M).

(2) ΓM is a Cohen-Macaulay complex, i.e., for all IeΓM {possibly 1=0) and all

g/dim(lk/), Hq(\kI) = 0, where lk/={/eΓM |/u/eΓM, /n/=0}. In particular,

Hq(ΓM) = 0 unless q = n — \.

REMARK. When M is a toric manifold, the assumption in Lemma 2.6 is satisfied

and the geometric realization of ΓM is homeomorphic to a sphere of dimension n — 1.

PROOF. (1) Since Hodd(M) vanishes, one has that H$(M)^H*{BT)®H*(M) as

i/*fθ7)-modules. In particular, H${M) is a free #*(£7>module. Therefore H${M) =

), and

! 2 k ( M ) s 2 k) = - — ! — - Σ rankzH
2k(M)s

( 1 - s 2 ) " fc = o

One concludes that Ak = rank z// 2 f c(M) by comparing the above identity with (2.3).

(2) Let F denote a field of prime order. As before, one can view H*(BT\F) as a

subset of H$(M;F). On the other hand, since Hodd{M;F) vanishes, H$(M;F) is a free

module over H*(BT;F) as in the proof of (1). These remarks show that Hf(M F) is

a Cohen-Macaulay ring. Therefore ^ ( l k / ; F ) = 0 for all #^dim(lk/) by Reisner's

theorem (see [17, p. 60]). Since F is a field of arbitrary prime order, the statement (2)

follows from the universal coefficient theorem for homology groups. •

3. Έquivariant Chern classes. Remember that the equivariant Chern class cτ(E)

of a complex T-vector bundle E over M sits in H%(M) and it restricts to the ordinary

Chern class c(E) through the restriction map i* : H$(M)^>H*(M) (see [12] for example).

One should note that the equivariant Chern class cτ(E) is computable by means of the

localization theorem, once one knows the complex fiber Γ-modules Ep over Γ-fixed

points p. Applying this idea to E= TM, we obtain

THEOREM 3.1. Let M be a unitary toric manifold. Then cτ(M) = Y\d

i=ι (1 + ξ f ) in
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PROOF. When restricted to M τ , both sides of the identity coincide by (1.1) and

(1.2), so the theorem follows from Lemma 1.4. D

LEMMA 3.2. A2

T(M) = H2(M).

PROOF. By [9] any element in Hj(M) is represented as cl(L) for some complex

Γ-line bundle L over M, so it suffices to show that cl(L) viewed in Hγ(M) is a linear

combination of ξ/s over integers.

Let peMτ. By Lemma 1.3(1) one can write

(3.3) cΐ(L)\p= Σ ai{p)ξί\p

iel(p)

with integers a^p). For another point qeMτ we have the same identity as above with

I(p) replaced by I(q). Suppose iel(p)r\l(q). This means that both p and q sit in Mt .

Since Mi is connected and fixed pointwise by the ΓΓaction, ResΓ.(cf(L) | ) =

ResΓ.(c^(L)|9). Therefore, restricting (3.3) for/? and q to H2(BTi) and using Lemma

1.3(2) (3), we see that ai(p) = ai(q). This shows that at(p) is independent of/?, so we may

set a—a^p). Clearly, the restrictions of cf(L) and Yaaiξi to H\(MΎ) coincide, so

cJ{L) = Yjaiξi in Hj(M) by Lemma 1.4. This proves the lemma. Q

PROPOSITION 3.4. (1) // Hodd(M) = 0, then A2(M) = H2(M) and d=n +

rankz//2(M).
(2) If H*(M) is generated by degree 2 elements as ring, then A%(M) = H%(M\

MJip) = {/?} for any p e M Γ , and ΓM is a Cohen-Macaulay complex.

PROOF. (1) Since # o d d (M) = 0, H*{M)^H*{BT)®H*(M) as //*f£7>modules.

Hence H$(M) = Hf(M), Af(M) = A$(M)9 and their odd degree terms vanish. This

together with Lemma 3.2 shows that A^(M) = H^(M).

Since H1(M) = 0 and Mτ Φ0, we have a short exact sequence:

0 —> H\BT) ^-> H$(M) -^ H\M) —> 0 .

In particular, rankz//^(M) = H + rank z//2(M), since mnkzH
2(BT) = n. On the other

hand, it follows from (2.2) and (2.3) that rank z^£(M) = d. These prove the desired

identity, because A$(M) = H%(M).

(2) Since A^(M) = H^(M) by (1), it suffices to show that Hf(M) is generated by

£i's as ring. We shall prove this by induction on the degree of cohomology. Suppose

that H$(M) is generated by ξf's up to * < 2k - 2 as ring. Since H$(M) ̂  H*(5Γ) <g) H*(M)

as //*(i?Γ)-modules, the kernel of the restriction map z* : Hj\M)^H2k(M) is additively

generated by products of elements in H%(M) for * <2k — 2 and positive degree elements

in H*(BT). The latter sets are both generated by ξ/s by induction assumption and by

Lemma 1.5, respectively. On the other hand, the image of i* :H$k(M)^>H2k(M) is
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generated by * % 's because i* :Hϊ(M)^H2(M) is surjective, H$(M) ( = A$(M)) is
additively generated by £f's, and i/*(M) is generated by degree 2 elements by assumption.
Thus Hjk(M) is generated by ^'s, and the induction step has been completed. This
establishes the first statement of (2) in the proposition. The latter two statements then
follow from Lemmas 2.4 and 2.6. •

4. Multi-fans. In this section we introduce the notion of multi-fan and see how
it is related to the topology of a unitary toric manifold.

We begin with a notation. Let Γ^ be the set of (k— l)-simplices in ΓM. If /e Γ^,
then M / = P | ί e / M i is a compact unitary Γ-manifold of real dimension 2(n — k); in
particular, Mι is a finite subset of Mτ when k = n.

The tangent space TpM at peMτ has two orientations: the one induced from the
orientation of M and the other induced from the complex structure on TpM. They
coincide whenever M is almost complex, but otherwise may differ. We set

ε(/?):= + l or - 1

according as those orientations coincide or not, and define two functions on Γ^: for

: = the number of {peMI\ε(p) = +1} ,

£^(7): = the number of {peMj\ε(p)= — 1} .

Note that if M is an almost complex toric manifold, then ε^{I) = 0 for all /ef^, and
if M is a toric manifold, then ε^(/)= 1 and ε^(I) = 0 for all leΓ^. To each IeΓM we
associate a cone Lvι in H2{BT\R):

Σ^il*. 6* a n d bί^° f o r a 1 1 ίeI

iel

DEFINITION. The collection of cones L Vj indexed by ΓM together with the two
functions ε^ on Γ^ is called the multi-fan of M, which we denote by ΔM.

Apparently, ΔM contains more information than ΓM. For instance, Proposition
2.1 shows that ΓM determines the ring structure of A$(M\ while it together with Lemma
1.5 shows that ΔM (in fact, ΓM and ι;f's) determines the algebra structure of Ά${M) over
H*(BT).

We note that χ(M/) = εi(/) + εΛf(/)>0. Since χ(M) = χ(Mτ) and Mτ is the disjoint
union of Mι over leΓ^, we have

(4.1) χ(M)= Σ

>the number of ^-dimensional cones in ΔM ,

and the equality holds if and only if ε^(/) + εΛf(/)= 1 for all IeΓn

M, that is, if and only
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if MHp) = {p} for any p e M τ.

Here is a relation of ΔM with the Todd genus of M.

THEOREM 4.2. Let M be a unitary torίc manifold and v e H2(BT; R) be generic, i.e.,

v does not lie in any hyper plane spanned by v/s. Then the Todd genus T[M~\ of M is

given by

I.ve Z_ vi

In particular, if M is an almost complex toric manifold, then T[M~\ >0, and if MIip) = {p}

for allp e Mτ in addition, then Γ[M] equals the number of maximal cones which contain v.

PROOF. We may assume that υ is integral, i.e., veH2(BT). Since v is generic, the

fixed point set of the restricted action of the S^-subgroup λυ(Sι) agrees with Mτ. Then

the Kosniowski formula for unitary manifolds ([8], [13]) tells us that Γ[M] equals

the sum of ε(p) over such peMτ that the weights occuring in TpM viewed as the

λv(S ^-module are all positive. This together with Lemma 1.9 proves the theorem.

D

COROLLARY 4.3. IfT\_M~\ φθ (e.g., if M is an almost complex toric manifold), then

(1) the union of cones in ΔM cover the whole space H2(BT,R),

(2) χ{M)>n+\,

(3) M is cohomologically symplectic, i.e., there is an xeH2(M) such that xnφ0.

PROOF. (1) If the union of cones in ΔM does not cover the whole space H2(BT; R),

then one can take a generic element veH2(BT;R) outside the union, so that Γ[Λ/]=0

by Theorem 4.2. This contradicts the assumption and proves (1).

(2) One easily sees that at least n + 1 number of/^-dimensional cones are necessary

to cover the whole space H2(BT;R), so (2) follows from (4.1).

(3) We note that since ι*ξt is the Poincare dual of M f, P J ί e / i*ξ£ evaluated on the

fundamental class of M is equal to ε^(/) — ε^(I) for any IeΓ^. On the other hand,

since Γ [ M ] Φ 0, there is an Io e Γ^ such that εi(/ 0) — 8^(1Ό) Φ 0 by Theorem 4.2. Therefore

Πίe/o **^i ^s n o t a t o r s i ° n element. Then it is not difficult to see that the «-th power of

a certain linear combination of ι*ξt ( Ϊ G / 0 ) over Z is not zero. Π

REMARK. The assumption in Corollary 4.3 cannot be dropped. For instance, take

M to be the unit sphere of the direct sum of a complex ^-dimensional faithful 7"-module

and R. It becomes a unitary toric manifold with the unitary structure described in

Example 1.6 for n=l. One sees that Γ [ M ] = 0 and the multi-fan of M has two

/^-dimensional cones when n = 1 and has only one /i-dimensional cone when n > 1. In

case n=l, the two ^-dimensional cones are the same half line. Therefore the union of

cones does not cover the whole space H2(BT; R) in either case.

When M is an almost complex toric manifold, we can make a rather stronger
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statement than the statement (1) in Corollary 4.3.

LEMMA 4.4. Suppose that M is an almost complex tone manifold. Then, to each

JeΓΊlf1, there exist I and Γ in Γ^ such that LVjΠ LυΓ= Lv3, that is, Lv3 is not one-

sided.

PROOF. By the definition of ΓM, there is peMτ such that /(/?)=) J, i.e.,

Since JeΓ"^1, M3 is of real 2-dimension. Let S be the connected component of Mj

containing p. The induced Γ-action on S is non-trivial because of the effectiveness of

the Γ-action on M, so the Γ-fixed point set Sτ consists of exactly two points: one is p

and the other one we denote by p'.

We claim that I(p) and I(p') are the desired / and /'. Since S admits an almost

complex structure induced from the one on M, the weights w and w' of the one-

dimensional complex Γ-modules TpS and TpS are related with w'= — w. We note that

(4.5) <w,ι; j> = 0 = < w > j > for all jeJ,

which follows from the fact that S is contained in M3. Now let / and ϊ be the unique

elements in I(p)\J and I(p')\J, respectively. It follows from Lemma 1.7 and (4.5)

that <w, Vι) = 1 =<w', vv}. But, since w'=—w, this means that v{ and υv lie in the

defferent regions separated by the hyperplane "orthogonal" to w, while Lv3 lies in the

hyperplane by (4.5), proving the lemma. •

We can define a multi-fan A in the context of combinatorics from these three data:

(1) An abstract simplicial complex Γ with vertices {1}, . . . , {d}.

(2) Elements vu . . . , vd in H2(BT).

(3) A pair of functions s1 on the subset Γn of (n— l)-simplices in Γ. (Motivated

by the multi-fans of unitary toric manifolds, we may require that ε± take

values on nonnegative integers and ε+(/) + ε~(/)>0 for any IeΓn.)

We may call the multi-fan A nonsίngular if v/s (iεl) form a basis of H2(BT) for each

IeΓn, and complete tfΣI.veLvi(ε+(I) — £~(I)) is independent of the choice of a generic

element v e H2(BT; R), where the sum is understood to be zero unless v lies in the union

of all cones LVj. Then the multi-fan AM of a unitary toric manifold M is nonsingular

by Lemma 1.7 and complete by Theorem 4.2. It would be an interesting problem to

characterize multi-fans obtained geometrically from unitary (or almost complex) toric

manifolds. Proposition 3.4(2) and Lemma 4.4 suggest that there might be other

constraints than nonsingularity and completeness on the multi-fans geometrically

obtained.

Finally we shall give a rigidity theorem. See [7], [14] and [16] for related results.

THEOREM 4.6. Let M be an almost complex toric manifold.

as groups, then H*(M)^H *(CPn) as rings, c(M) = (l+x)n + 1 and x"[M] = Γ[M] = 1 for

a suitable generator xeH2(M).
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PROOF. We have d = n+l by Proposition 3.4(1) and ι*ξt= ±x by Lemma 1.11.

Hence c(M) = ( 1 + x)n + *~q( 1 - x ) q for some 0<q<n+lby Theorem 3.1. An elementary

computation of Todd genus using the Hirzebruch-Riemann-Roch formula shows that

Γ [ M ] = 0 unless q = 0 or q = n+\ (see [6, Proposition 4.3] or [12, §49]). However

Γ [ M ] > 0 by Theorem 4.2, since M is an almost complex toric manifold. Therefore

0 = 0 or « + 1, and in either case c(M) = (l+x)n + 1, by replacing x with —x if necessary.

Then, an elementary computation of Todd genus again shows that Γ [ M ] = x " [ M ] .

Since cn(M) = (n+l)xn and cn(M) agrees with the Euler class of M, we obtain

X(M) = (w + l)x n [M]. On the other hand, χ(M) = n + l because //*(M)^//*(CP n ) as

groups. These remarks show that xn[M~\ = 1 and hence H*(M) = Z[x']/(xn+1). •

The proof above shows that if Hodd{M) = 0 and H2{M)^Z, then c(M) = (l + x)n + 1

and x w [M] = Γ[M] for a suitable generator xeH2(M).

As is well-known, the complex quadric

satisfies the above weakened cohomology condition when « > 3 , and xn\_Q^\ = 2 for a

generator xeH2(Qn). One sees that βΛ cannot be an almost complex toric manifold

when n>3. In fact, if Qn (n>3) becomes an almost complex toric manifold, then

X(Qn) = cn{Qn)lQn~\ = (* + l ) x " [ β J = 2(n + 1), while χ(Qπ) = n + 1 if n is odd and n + 2 if n

is even, as is well-known. But this is impossible.

However, Qn admits an action of Γ[(/1 + 2 ) / 2 ] such that the k-th S1 -factor of the torus

rotates the coordinates (z2/c_2, z2/c_ x) via 2 x 2 rotation matrices. This action has a finite

number of fixed points and preserves the Kahler form on Qn, induced from the

Fubini-Study form on CPn + 1, so that the action is Hamiltonian. This gives a negative

answer to the first part of the following question [5, lines 11-9 from the bottom in p.

2]: Given a Hamiltonian action of a torus on a compact symplectίc manifold M with finite

fixed point set, is M a Delzant space ( = a toric manifold)? If not, can one obtain M from

a Delzant space by a series of "blowing-ups" and "blowing-downs"?

5. Examples. In this section we provide examples of almost complex toric

manifolds of real dimension 4 using equivariant plumbing technique. It turns out that

their Todd genera take any positive integer, so most of these almost complex toric

manifolds are not isomorphic to toric manifolds because the Todd genus of a toric

manifold is one. The reader will find that a similar method developed in this section

may produce unitary toric manifolds of real 4-dimension whose Todd genera take any

integer. One can produce higher dimensional unitary (or almost complex) toric manifolds

by taking products of the 4-dimensional examples with toric manifolds or taking

projective bundles over the 4-dimensional examples. The author believes that smooth

Γ-manifolds constructed in [3] will provide more essential examples of higher

dimensional unitary toric manifolds.
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In what follows we take n = 2. We fix a decomposition of T= T2 into S1 xS1 and
identify H2(BT) with Z2 through the decomposition. The purpose of this section is to
prove the following.

THEOREM 5.1. Let vu...,vd (d>3) be a sequence of vectors of Z2 in counter-

clockwise order such that each successive pair vi_1 and vt is a basis of Z2 for ie

{1,..., d}9 where vo = vd. Then

(1) there is an almost complex toric manifold M of real dimension 4 whose multi-fan

is the collection of cones spanned by successive pairs ί;£_± and vt (i— 1, . . . , d) together

with the functions ε ^ ( / ) = l and ε^(I) = 0 for IEΓM,

(2) T\_M~\ = (3d + ]Γf=! #i)/12, where a/s are the integers defined by vi_ι + vi + 1 +

aiVi = 0.

Combining Theorem 4.2 with Theorem 5.1(2), we obtain

C O R O L L A R Y 5.2. The rotation number of the sequence of the vectors vl9...,vd in

Theorem 5.1 is given by

The rest of this section is devoted to the proof of Theorem 5.1. We prepare some
notation. For an integer α, let Θ(a) denote the holomorphic line bundle over CP1 such
that the self-intersection number of the zero section is a. The total space of Θ(a) is
realized as the quotient of (C2 — 0) x C by the C*-action defined by g(z1,z2,w) =
(gzugz2,g

aw\ where #eC* and (z l 5 z 2 ,w)e(C 2 -0)xC Let t = (t1,t2)eT2 = T. For
k = (kί, k2)eZ2 we abbreviate t\H\2 as tk. For a basis {/, m} of Z2 we define a Γ-action
on Θ(a) by

where [z1? z2, w] denotes the equivalence class of (zl5 z2, w). This action is effective and
makes Θ(a) a holomorphic Γ-line bundle. Denote by Da(l, m) the total space of the disk
bundle of Θ{a) with this Γ-action. It is a real 4-dimensional Γ-manifold with boundary
and has two fixed points p = [1, 0, 0] and q = [0, 1,0]. The tangential Γ-representations
at these points are respectively

TpDa{lrn) = χι + χm, TqDa(l m) = χ — ι + χ~ι,

where χu denotes the Γ-representation defined by t^tu as before. The relation between
the weights of the tangential Γ-representations are expressed as

( m-al\ ( -a(53) ( M
Let vt and at be as in Theorem 5.1. The relation u, _ 1 + ι;t + x + a}υi = 0 may be written

as

0 - 1

1 -a*
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One then sees that the integers at must satisfy

0 -1 Y° -1 V Ύ°
-aj\ί -a2) \ί -aj \0

For /e{l, ...,d}9 let {uψ, uψ) be the dual basis of {t^-i, vt}. Then we have

(5.4)

where uf+ι) = uγ) for j =1,2.
Now we consider Γ-manifolds Dfl. (w Jf), ι4°) for each i e {1,..., d}. As observed above,

each Da.(u{{\ uψ) has two fixed points Pi = [l, 0, 0] and gt = [0, 1, 0], and the tangential

representations at these points are related as in (5.3). Therefore (5.4) ensures that one

can plumb Da.(u{ι\ u(

2

l)) and Da. + ί(u[i + ί\ u(

2

ί+1)) at q{ and/?I + 1 equivariantly. We plumb

the Γ-manifolds I>ai{μψ9uψ) (i=l,...,d) at all Γ-fixed points in this way to get a

connected compact smooth Γ-manifold N of real dimension 4. The boundary δN of N

is connected, on which Γacts freely. The orbit space δN/Tis a connected closed manifold

of real dimension one, and hence is a circle, so that principal Γ-bundle δN^δN/T is

trivial. Hence δN bounds D2 xT equivariantly, the Γ-action on D2 being trivial and

that on Γ by multiplication. We paste N and D2xT together along the boundary

equivariantly to get a closed connected smooth Γ-manifold M of real dimension 4.

We shall show that M becomes an almost complex toric manifold. Remember that

Da.{u{{\ u{

2

i]) is the total space of the disk bundle of a holomorphic Γ-line bundle. In

particular, the interior of Da.(u^\u^) is a complex Γ-manifold. Since the plumbing

construction does not destroy the complex structures, we may assume that the tangent

bundle TM admits a Γ-invariant complex structure over the interior of N. Pushing N

a bit into its interior equivariantly, we may assume that the complex structure on

TM\(N — δN) extends to TM\N. Since the Γ-action on δN is free and the complex

structure on TM\δN is Γ-invariant, the quotient vector bundle (TM\δN)/T^δN/T

inherits a complex structure from ΓM|δiV, and the complex Γ-vector bundle

TM\δN-+δN is isomorphic to the pullback of the quotient bundle by the quotient map

from δN to δN/T. Similarly, since the Γ-action on D2 x T is free, the real Γ-vector

bundle TM\D2 X T-+D2 x T is also isomorphic to the pullback of the quotient bundle

(TM\D2 x T)/T-^D2 x T/T=D2 by the quotient map from D2 x T to D2. Thus it

suffices to show

CLAIM. Let E-^D2 be a real vector bundle of dimension 4. Then any complex

structure on E | δD2 extends to a complex structure on E.

PROOF. The complex structure on E\ δD2 is classified by a continuous map from

δD2 to GL4(R)/GL2(C). Here the homogeneous space is homotopy equivalent to the

disjoint union of two copies of S2, so the map extends to a map from D2. This implies
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the claim.

The characteristic submanifolds Mi of the almost toric manifold M constructed

above are the zero sections of the disk bundles Da.(u(l\ uψ). One can check that the

element vieH2(BH) in Lemma 1.7 associated to M{ is the given vector vt in Z2 through

the identification of H2(BT) with Z 2 . Since M is almost complex, the function ε^

identically vanishes and it is obvious from the construction of M that ε^{I)=l for all

IeΓn

M. One also sees that Hodd(M) = 0 and H2(M)^Zd~2.

It remains to prove (2) of Theorem 5.1. Since Da.(u[ι\ uψ) is the disk bundle of a

holomorphic line bundle 0(flt ) over CP1 and Mi is its zero section, the self-intersection

number of M-x is at. On the other hand, it follows from Theorem 3.1 that

c(M) = Y[d

i=! (1 +1 *ξi), where i * : H$(M)^>H*(M) denotes the restriction map as before.

Noting that ι*ξt is the Poincare dual of Mf and ( ι * ^ u ι*^ )[M] is the intersection

number of Mf and M^ one sees that

i f I / — y I = 1 o r {Uj} = { l , d } ,

if i=j,

otherwise .

Putting these into the Riemann-Roch formula T[M~] = ((c1(M)2 + c2(M)) /12, [M]>,

we obtain the statement (2) in Theorem 5.1.

REMARKS. (1) Instead of D2 above, one can use a compact orientable surface

of genus g with a circle boundary to get an almost complex toric manifold Mg. An

elementary computation shows that H\Mg)^Hι{Mg)^Z2g and H2(Mg)^Zd~2 + 4r9.

The multi-fan of Mg is the same as that of M. This shows that unlike the theory of

toric varieties the correspondence between unitary (or almost complex) toric manifolds

and multi-fans is not bijective.

(2) Using unitary structures on S2 described in Example 1.6, one can produce

unitary toric manifolds M of real dimension 4, where the successive pair vt _ x and vt is

a basis of Z2 for each / e {1,..., d} as before, but the vectors vί9 . . . , vd are not necessarily

in counterclockwise order, i.e., they may go back and forth. One checks that ε^(/)= 1

and εΰ(I) = 0 (resp. ε^(/) = 0 and ε^(/)=l) for IeΓn

M if vi_ί and vt ( / = { i - l , i}) are

in counterclockwise order (resp. in clockwise order).

6. Moment maps. Henceforth we will use the following identification. First

we identify R with the Lie algebra LieίS1) of S1 through the differential of the exponential

map from R to Sι which sends reRto exp(2π^/— lr). Similarly, Hom(/?, T) is identified

with Lie(Γ). Hom(5 1 , T) is viewed as a lattice of Hom(/?, T) through the exponential

map from R to S1, and it is naturally isomorphic to H2(BT) as remarked before. This

induces an identification of Lie(Γ) with H2(BT;R) and that of Lie(Γ)* (the dual of

Lie(Γ)) with H2(BT;R).
Let L-*Mbe a complex Γ-line bundle. With this it is associated a principal S ^bundle
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P over M. We may think of P as the unit circle bundle of L. Let θ be an invariant

connection 1-form on P, i.e., θ is a smooth 1-form on P which satisfies these three

properties:

(1) iLθ = r for reR = Lie(S1),

(6.1) ( 2 ) s * θ = θ f o r seS1,

(3) ί*0 = 0 for / G Γ ,

where r denotes the fundamental vector field on P associated with r. The commutativity

of the actions of T and 5 1 on P and the SMnvariance (2) above imply that for

v e H2(BT\ R) = Lie(Γ) the function iβ on P descends to a function on M. The descendent

function is Γ-invariant by (3). Thus it produces a Γ-invariant map ΦL: M^>H2(BT; R) =

Lie(Γ)* such that

(6.2) (ΦL(plv} = (iv_θ)(β),

whereβ ePΊs any point in the fiber over/?. The map ΦL is called a moment map (associated

toL).

By Lemma 3.2 one can write

(6.3) cΐ(L)=Σciξi in

with integers cf. Let IcΓ^ and peMj, i.e., /=/(/?). By Lemma 1.7, ξ f | =ξ f if qeλfj.
p q

This together with (6.3) shows that cf(L) | =cl(Lp) depends only on /, so we denote

cftL,) by M/,i.e., £ , = *"'.

LEMMA 6.4. Lef / e Γ ^ and peMj. Then ΦL(p) = Uj.

PROOF. Let peP be any point in the fiber over p. Since Lp = χUl, we have

)P = z<Ul'v>β for z e S 1 by (1.8). This together with (6.2) and (6.1)(1) implies that

Since veH2(BT) is arbitrary, this proves the lemma. •

For /e{l, . . . , d) we set

LEMMA 6.5. (1) For IeΓn

M,

(2) Φ^

PROOF. (1) It follows from (6.3) and Lemma 1.7 that
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proving (1).

(2) It follows from the Γ-invariance (6.1)(3) of θ that the Lie derivative Seβ

vanishes for any υeH2(BT;R) and hence dίj9=-ί2dθ by the Cartan formula

&v = div + ivd. Therefore, taking the exterior derivative at (6.2), we obtain

(6.6) d(ΦL,v}=-i£dθ.

Here dθ is the curvature form of the connection θ and can be viewed as a 2-form on

M. Therefore i^dθ vanishes on M, because the S ̂ subgroup determined by v{ fixes Mt

pointwise. This together with (6.6) means that <ΦL, vt} is constant on M{. On the other

hand, we know that ΦL(Mj) is contained in Ft by Lemma 6.4 and (1) above. These

imply (2). •

In the following we will make this assumption which is satisfied for toric manifolds:

all isotropy subgroups of M are subtorί of T and each fixed point set component of subtori

contains at least one T-fixed point. Then the union (J Mi is the set of points with

nontrivial isotropy subgroups, and it follows from the slice theorem (see [1] or [12])

that the orbit space M/T becomes a compact smooth manifold of dimension n with

U MJT as boundary (after we round corners).

LEMMA 6.7. M/T is orientable.

PROOF. We note that M/T is diffeomorphic to M/T with an open collar of the

boundary removed. Therefore it suffices to prove that if X is an orientable smooth

manifold with free Γ-action, then X/Tis also orientable. Furthermore, it reduces to the

case when T=S1 because X/Tis an iterated orbit space of free S ̂ actions. It follows

from the Wang sequence of the ^-bundle π X^X/S1 that π* :H\X/Sι ;Z/2)->

H\X\Z/2) is injective. On the other hand, since TX=π*(T(X/S1))® TfX where TfX

denotes the tangent bundle along the fiber, w1(TX) = π*w1(Ί\X/S1)) + w1(TfX) where

wγ denotes the first Stiefel-Whitney class. Here both w^TX) and wγ(TfX) vanish because

XΊs orientable and TfX\s a trivial real line bundle, since the free S1-action on X defines

a nowhere zero cross section of TfX. Thus π*wi(T(X/S1)) = 0 and hence w^TiX/S1))

= 0, because π* is injective. This completes the proof of the lemma. •

Since ΦL is Γ-invariant, it factors through the quotient:

We orient M/T in the following way. Choose any orientation for T and give an

orientation on M/T so that the orientation on T followed by that of M/T is equal to

that of M times (— \)n{n~1)/2. The orientation on Γinduces an orientation on H2(BT; R).

If ueH2(BT;R)\[jFi, then ΦL induces a homomorphism ΦL*:Hn(M/T, δ(Λf/Γ))->

Hn(H2(BT\R),H2(BT;R)\{u}) by Lemma 6.5(2). The fundamental classes are

specified in the above homology groups, since M/T and H2(BT;R) are oriented. We
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define a function.

dL:H\BT;R)\[jFi^ Z

by

(6.8) dL{u) = the mapping degree of ΦL*.

Karshon-Tolman [11] establishes the following facts when M is a toric manifold, but

their proof actually works in our setting.

LEMMA 6.9. (1) The function dL is locally constant.

(2) Let F be one ofF s. Let uλ and u2 be elements in H2(BT; R) \{J Ft such that

the interval wJΓ2 intersects the wall F transversely at w, and does not intersect any other

FjφF. Then

dL(u2)-dL(uί)= X sign(ul-u2,vi)dL]M.(w),
Fι=F

where dL\M. is the degree function defined with respect to the map ΦL \ M{: M^F^

PROOF. See [11, Remark 6.5] for (1) and (2). The statement (1) also follows from

our Lemma 6.5(2). •

Let Kbe the "canonical" complex Γ-line bundle of M, i.e., Kis the dual of (n + //2)-th

exterior product of the complex T-vector bundle TM@Rι (I: even). One has a moment

map ΦK\M^H2{BT\R) associated to K. Let

Φ'L = ΦL-— Φκ: M-+H\BT\R).

Since cl(K)= ~Yfi=ιξi in H${M) by Theorem 3.1, it follows from Lemma 6.5(2) that

Φf

L(Mi) is contained in the affme hyperplane

Similarly to ΦL, Φ'L induces a map Φ'L: M/T^H2{BT\ R) and defines a degree function

which depends only on L. Since the union (J F[ misses the lattice H2(BT), d'L is defined

for any lattice point.

LEMMA 6.10. d'L{u) = dL{ύ)for any ueH2(BT) \ ( J Ft.

PROOF. The map ΦL-(s/2)Φκ: (M/T, d(M/T))^(H\BT; /?), H\BT\ R) \{u})

(0<s<\) gives a homotopy between ΦL and Φ'L, which implies the lemma. Q
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7. Equivariant index. Since we have a Γ-invariant complex structure on TM © Rι

(/: even), the map π collapsing M to a point induces, in equivariant AΓ-theory, an

equivariant Gysin homomorphism

πι: Λ^(M) -> Appoint) = ̂ ( Γ ) ,

where ^(JΓ) denotes the character ring of T. The Todd genus T\_M~\ of M is known to

be 7Γ|(1). The purpose of this section is to describe πt(L) in terms of the shifted moment

map Φ'L associated with a complex Γ-line bundle L. To be more specific, we express

(7.1) π,(L)= Σ ™L(u)χu

ueH2(BT)

with integers mL(μ). The function mL vanishes for all but finitely many elements u, since

π»(L) is an element of R(T). The following theorem is an extension of the result of

Karshon-Tolman [11], where M was a toric manifold.

THEOREM 7.2.1 Let L be a complex T-line bundle over a unitary toric manifold M.

Suppose that M satisfies the assumption stated just before Lemma 6.7. Then mL = d'L on

H2(BT), where d'L is the degree function {defined in Section 6) of the "shifted" moment

map Φ'h associated with L.

REMARK. Since _ Φ'L(8)K = ΦL®κ-Φκ/2 = ΦL + Φκ/2 and Φ'L-i = ΦL.ί-Φκ/2 =

— ΦL — Φκ/2, we have Φ'L®K = — Φ'L-1. This together with Theorem 7.2 implies the identity

U\{L® K) = {— l ^ π ^ L " 1 ) * , where * denotes the complex conjugate of a character. The

identity may be viewed as an equivariant index version of the Serre duality. As a matter

of fact, the identity directly follows from the Lefschetz formula of the equivariant index,

but our observation gives an explanation of shifting a moment by Φκ/2.

EXAMPLE 7.3. We shall illustrate Theorem 7.2 with an example when n=\. As

mentioned before, Theorem 7.2 is established by Karshon-Tolman [11] when M is a

toric manifold, so we shall take another unitary structure on M ( = S2) described in

Example 1.6, which does not come from the complex structure on CP1.

Remember that M is viewed as the unit sphere of χ®R. The fixed points are

p = (0, 1) and q = (0, -1), TpM= TqM=χ and ε(p)= 1, ε(q)= -1 (see Section 4 for e). Let

L be a complex Γ-line bundle over M. Then Lp = χa, Lq = χβ for some integers α, β. It

follows from the Lefschetz formula that

tTΛ r , -x" χβ+1-χx+ι

1 After writing this paper, the author was informed by Professor Karshon that the results of [11] is

extended to Spinc-manifolds by Grossberg-Karshon "Equivariant index and the moment map for completely

integrable torus actions", Adv. in Math. 133 (1998), 185-223.



258 M. MASUDA

= < 0 if j8 = α,

^ - χ α + 1 - Z α + 2 - " - Z ^ if j»>α.

On the other hand, the orbit space M/T is an interval with p and </ as boundary.

Our orientation convention on M/T, mentioned in the paragraph above Lemma 6.9,

says that it is oriented from q to p. By Lemma 6.4 we have ΦL(p) = a and ΦL(q) = β.

Since the vectors v1 and v2 are positive unit vectors as remarked in Example 1.6,

Φ'L(P) = <X+ 1/2 and Φ'L(q) = β + 1/2. One sees that unless j8 = α, we have that for weZ

. 0 otherwise,

in case β < α, and

1 if α
d'L{u) = ι

\ 0 otherwise,

in case βxx. Thus Theorem 7.2 is confirmed for our M. There are other unitary toric

structures on M, but the same argument as above may apply to confirm Theorem 7.2

as well.

The rest of this section is devoted to the proof of Theorem 7.2. The key of the

proof is to show that the function mL behaves in the same fashion as dL, that is, to

establish Lemmas 7.7 and 7.8 below. Karshon-Tolman [11] establish them when M is

a toric manifold, but their proof uses an explicit construction of toric manifolds and

does not work in our setting. Instead we make use of the Lefschetz formula for the

equivariant Riemann-Roch index to see the behavior of the function mL.

Let u e H2(BT) and v e H2(BT) with (u, v} φ 0. We will use the following convention

of an expansion

( 7 4 ) l _ f l + ; Γ u + ; Γ 2 " + if <«,!>> < 0 ,

I-*'" \-lu-llu- if <n,ι>>>0,

and call it the Laurent expansion with respect to v. This expansion is motivated by

the following observation. The left-hand side of (7.4) is a function on T. We restrict

it to the S^subgroup determined by υ. It turns into 1/(1 -z~<u-v>) by (1.8). Although

zeS1, we regard z as a variable of C. Then the Laurent expansion of 1/(1 —z~<UtV>) on

0 < | z | < l is

\+z-<u'υ> + z-2<u>v>+'- if <w, ι ;><0,

-z<u'υ>-z2<u>υ>-' if

which corresponds to the right-hand side of (7.4).

Let IεΓn

M and p e Λf7. We write
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iel

with ul9 Wj ieH2(BT). The Lefschetz formula (see [7] for example) applied to π?(L)

tells us that

(7.5) π ! ( L ) = Σ

(See Section 4 for ε^

LEMMA 7.6. Lei veH2(BT) such that (wu, ι>>#0 /or α// weights wu. (This is

equivalent to v being generic.) Then the Laurent expansion of the right-hand side of (7.5)

with respect to v agrees with £ W L ( M ) Z " -

PROOF. Restrict (7.5) to the ^-subgroup of T determined by υ. It follows from

(1.8) that (7.5) together with (7.1) turns into

Although z e S 1 , we may regard the above as the identity of rational functions of

z. Then the Laurent expansion of the right-hand side above on 0 < | z \ < 1 is equal to

the left-hand side. Since the identity holds for any generic v, one concludes that the

Laurent expansion of the right-hand side of (7.5) with respect to a generic v agrees with

Σmiiu)χu. D

LEMMA 7.7. mL(u) = mL(u') if u and u' lie in the same region of H2(BT) \ ( J F[.

PROOF. Expand the term χUl/Y\ieI(l—χ~Wl ι) in (7.5) with respect to a generic

element veH2(BT) and look at the coefficient of χu for u = uI + YjieIociwIi, where αf are

integers. By Lemma 1.7, {wI4\ieI} is a basis of H2(BT) dual to {v^iel}. We note

that u and u'= uI + ΣieIθi'iwIi lie in the same region of H2(BT) \ ( J F[ if and only if

the integers αf and α lie in the same half line separated at 1/2 for all iel, since <M/5 ι;f> = ci

and F[ is the affine hyperplane defined by <M, ι;f> = c f + 1/2.

Suppose <w/t , v}>0 for all /, e.g., v = YjieIvi. Then it follows from (7.4) that the

coefficient of χ" in the expansion is (—1)" if αf > 1 for all /, and 0 otherwise. This shows

that the coefficient of χ" does not change as long as u stays in the same region of

H2(BT)\\J F , and this assertion holds even if <w71 , v)<0 for some /. The lemma

follows from this observation. •

LEMMA 7.8. Let F be one of F?s. Let wl9 u2 be elements in H2(BT) \ ( J Ft such

that the interval u1u2 intersects the wall F transversely at weH2(BT), and does not

intersect any other F^φF. Then
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mL(u2)-mL{uι)= X sigiKi^-M^tO^iΛf.Ov).
Ft=F

PROOF. For simplicity, we treat a special case where F=Fi for only one /. One

finds that the same idea works in the general case. Consider the Laurent expansion of

the right-hand side of (7.5) with respect to a generic element veH2(BT). The difference

wL(M2)-mL(M l) arises from the terms (ε^(I)-εM(I))χUl/Y[jeI(l-χ-Wl-) for IeΓn

M

containing the i. By Lemma 1.7 we may assume that <wΛj , t;I > = 0 for a\\ j^iel and

<W/,i> ^ > = l We split the term for / into

The sum over / of the first factor above containing the i is nothing but the Lefschetz

formula for the equivariant index of the restricted Γ-line bundle L\Mt. Therefore the

coefficient of χw in the Laurent expansion of the sum with respect to v is equal to

mL|M.(w) by Lemma 7.6. On the other hand, the second factor above has two expressions

(7.4) according to the sign of (wIh v). Nothing that (wIh vt} = 1, one sees that

in either case. •

PROOF OF THEOREM 7.2. Step 1. We prove that mL = dL on H2(BT) \ ( J Ft by

induction on n. The case where n = 1 is treated in Example 7.3, so we suppose that the

above identity holds for M of dimension <n—\. Since both mL and dL are constant

on each region of H2(BT)\Fi by Lemma 6.9(1) and Lemma 7.7, it suffices to show

that mL(u) = dL(u) for one element ueH2(BT) in each region. Moreover, since mLk{ku) =

mL(u) and dLk(ku) = dL(u) for any positive integer /c, we may assume that each region has

a lattice point and that for any adjacent regions there exist lattice points ux and u2 as

in Lemma 7.8. Remember that mL(u) — 0 for all but finitely many elements ueH2(BT)

and dL(u) = 0 for u far away from the origin because the image ΦL(M) is compact. This

means that wL = dL( = 0) on some region of H2(BT) \\]Fi. Lemma 6.9(2) and Lemma

7.8 show that the functions mL and dL change in the same fashion when they across

walls F, 's. Since rnL^M. = dL\M. on Fir\(H2(<BT)\\JjΦiFj) by induction assumption, it

follows that mL = dL on H2(BT) \ (J Ft. (To be precise, the identity mL\M. = dL\M. is not

immediate from the induction assumption because the action of T— Tn on L \ M{ does

not reduce to an action of Tn~i. In fact, we take a tensor product of L\Mt with a

Γ-module χu for a suitable ueH2(BT) so that the action of T on L\λfi®χu reduces

to an action of Γ"" 1, and apply the induction assumption to L Mt(χ)χ" to get the

desired identity.)

Step 2. Step 1 together with Lemma 6.10 establishes mL = d'L on H2(BT) \ ( J Fi9

so it remains to prove the equality on (\J Fi)nH2(BT). Let uoe(\J Fi)(\H2(BT).

Define
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c if u φ Ft,

Ci+1 if uoeFi9

and consider a complex Γ-line bundle L with cf(L) = Yjciξi in Hγ(M). Then

u0eH2(BT)\\jFh where Fi: = {ueH2(BT;R)\(u,υiy = ci}, so mL(u0) = dt{u0) by
Step 1. It is clear from the proof of Lemma 6.10 and Lemma 7.7 that d[{uo) = d'L(uo)

and m£(uo) = mL(uo), respectively. Thus d'L(u0) = tnL(u0). Since u0 is arbitrary, this com-

pletes the proof of the theorem. Q

8. A generalized Pick's formula. In this section we establish a generalization of

Pick's formula as an application of the result in Section 7.

Let 0 be an integral oriented polygon in R2 with sign assigned to each side, where

"integral" means that the vertices lie in the lattice Z2czR2 and "polygon" means a

piecewise linear closed curve. We allow 0> to have self-intersections but do not allow

that consecutive three vertices lie on a line. Denote the oriented sides of &> by st

0 = 1,..., d), where they are numbered so that the next side of st in &> is si+ί. The

assigned sign of st is denoted by sgn(s£ ). Let ni (i = 1,..., d) be a normal vector to s t

such that the 90 degree rotation of sgnfo ) ^ has the same direction as st. The winding

number of £P around a point in R2 \&> defines a locally constant function d^onR2 \βP.

We introduce three invariants of 0:

: = the integral of d^ over R2 ,

i= 1

: =the rotation number of the sequence of normal vectors nu ..., nd,

where \st\ denotes the relative length of sh i.e., one plus the number of lattice points

in the interior of st. We say that SP is simple if ^ has no self-intersection, sgnfo) is

positive for any /, and & is oriented so that the domain bounded by & lies on the

left-hand side of 0> when moving in the direction of the orientation of 0*. If 0> is simple,

then A(0>) is the area of the domain bounded by 3P, B{0) is the number of lattice points

on &>, and C ( ^ ) = l .

We now define an integer #̂ > which coincides with the number of lattice points

on the domain bounded by £P when & is simple. Let 8P' be an oriented polygon in

R2 obtained from 0 by translating each st slightly in the direction of «f. It misses

lattice points, so that the winding number d&{u) is defined for any lattice point u.

We define

^ = Σ dA").
ueZ2

The main result of this section is the following, which reduces to Pick's formula (see
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[4]) when 0> is simple.

THEOREM 8.1. *& = A(&>) + (\β)B{0>) + C(0>).

REMARKS. (1) Let ^° be @> with reversed signs on the sides of & Then #^° =

When 9 is simple, #^° coincides with the number of lattice

points on the interior of the domain bounded by 8P.

(2) Given a positive integer m, one can expand 0> by multiplying by m. Denote

the expanded polygon by rn0>. Since A(m0>) = A(0>)rn2, B(m&) = B(0>)m and C(m^) =

it follows from Theorem 8.1 that

+ —

This may be viewed as an Ehrhart polynomial of &. We also have

m 2

so Ehrhart's reciprocity law holds for &>.

Theorem 8.1 can be proved in an elementary way, but we shall give a proof which

uses the result in Section 7.

We identify R2 (resp. Z2) with H2(BT; R) (resp. H2(BT)) through a decomposition

T^S1 x S\ and view 9 as a polygon in H\BT\ R). To each / (i= 1,..., d), there are

two primitive elements in H2(BT) which are constant on st. We denote by vt the one

such that sgn(sf)Uf is positive on the right-hand side of si9 and denote by ct the constant

which Vι takes on st. The constants cf are integers because v^s and the vertices of 0* are

integral. One can recover Θ> from the datum if = {(v1, Cj), . . . , (^, Q ) } and may think

of ^ ' as the polygon obtained from a datum J?' = {(vl9 c\),..., (ud, c'd)} where c/^Cj-h

1/2.

Each successive pair υ^γ and ι;f is not necessarily a basis of H2(BT). We add

vectors i 's between u£ _ x and i;f so that each successive pair of vectors is a basis of

H2{BT) (see [4, Section 2.6]). This provides a new datum 3? by adding (v, v(si-ί n ^ ))'s

to if. The polygon obtained from 3? is the same as ^ but the shifted polygon $'

obtained from & is not the same as 0>'. However one checks that d&. = dp. on the lattice

Z2 = H2(BT). Therefore we may assume that each successive pair vt-1 and vt is a basis

of H2(BT) in the sequel.

Let M be a unitary toric manifold of real dimension 4 whose multi-fan is the

collection of cones spanned by successive pairs ι;f _ x and vt (ί = 1,..., d). We may assume

that the Γ-action on M is effective and Hodd(M) vanishes. Let L be a complex Γ-line

bundle over M with c1

Γ(L) = ̂ c ι ξ ί, whose existence is ensured by Lemma 3.2. Then the

moment map ΦL associated to L can take the place of SP. It follows from Theorem 7.2

together with the Riemann-Roch formula that
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where ^~(M) denotes the Todd class of M. Since M is of real dimension 4 and
= 1 +c1(Λί)/2+ , the identity above reduces to

The formula (5.2) in [11] implies that the first term at the right-hand side of the above
identity agrees with A(g?). (They state the formula for a toric manifold M, but their
proof works in our setting with no change.) We know that Γ[M] = C(^) by our Section
5. Thus it remains to prove that

Since cί(M) = J£ιι*ξi by Theorem 3.1, where i* is the restriction map from Hj(M) to
H2(M\ and ι*ξt is the Poincare dual of Mt , we have

Thus it suffices to prove that

(8.2) <C l(L|M i),[M i]>

Set «i = ,s inj i + 1, so ui_ί and u{ are the endpoints of st. Let/?,- and qt be the Γ-fixed
points in Mf. We may assume that qt (resp. pt) maps to i/,-̂  (resp. u() by the moment
map ΦL. Let φ\qi-^Mi be the inclusion map. We give the usual point orientation on
qt and consider an element φι(l)eHj (Mi)9 where ψ\: H^q^^H^Mi) is the equivariant
Gysin map and 1 denotes the unit element of Hj iqi). Since Mt is fixed pointwise under
the circle subgroup Tv. of Tdetermined by vh and vt is constant on sh φi(\) \ eH2(BT)
viewed as a vector is parallel to st. Moreover, the effectiveness of the Γ-action on M
implies that φι(l) \q. is primitive. Therefore there is a unique integer kt such that

(8.3) k i %

Note that -̂ = 1̂  | up to sign because φι(l) \q, is primitive. On the other hand, we have

where the first identity follows from the fact that qt and p{ have no intersection and the
latter two identities follows from Lemma 6.4. These observations show that &;<p»(l) and
cl^M^ — Ui restrict to the same element in Hγ(Mf). Since the restriction map is
injective, one concludes that

-u-kMil) in H*(M{).
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Now we restrict this identity to i72(M I ). The element φι(l) restricts to ε(gt ) times the

cofundamental class of Mt (see Section 4 for ε(qι)) and wf restricts to zero. Therefore

we obtain

This verifies (8.2) up to sign, since ε(qi) = ± 1 and A:f = |^f | up to sign.

It remains to check that ε(qi)ki and sgn(sf) have the same sign. We know by (1.2)

and Lemma 1.7 that the tangential representation at a Γ-fixed point is determined by

ι;f's. In our case, the Γ-module TqM is determined by vi_ί and vt. Suppose that sgn(sf)

is positive. When vi^ί and vt are in counterclockwise order, ε(gf) = + 1 and ψ\(\) | has

the same direction as ui_ι—ui\ so ε{qi)ki>^ by (8.3). When vi_ί and vt are in clockwise

order, ε(qi)= — \ and Φι(l)|9. has the opposite direction to ui_ί—ui; so εiq^k^O by

(8.3) as well. The same observation shows that if sgnfo ) is negative, then e(gf)ki<0- I n

either case ε(qi)ki and sgn(sf) have the same sign. This completes the proof of Theorem

8.1.
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